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ABSTRACT
Deep generative replay has emerged as a promising approach for
continual learning in decision-making tasks. This approach ad-
dresses the problem of catastrophic forgetting by leveraging the
generation of trajectories from previously encountered tasks to
augment the current dataset. However, existing deep generative
replay methods for continual learning rely on autoregressive mod-
els, which suffer from compounding errors in the generated tra-
jectories. In this extended abstract, we summarize a simple, scal-
able, and non-autoregressive method for continual learning in
decision-making tasks using a generative model that generates
task samples conditioned on the trajectory timestep. We evaluate
our method on Continual World benchmarks and find that our
approach achieves state-of-the-art performance on the average
success rate metric among continual learning methods. Code and
a preprint of a complete paper with full details are available at
https://github.com/WilliamYue37/t-DGR.

KEYWORDS
Lifelong Learning; Continual Learning; Decision-Making; Imitation
Learning; Machine Learning

ACM Reference Format:
William Yue, Bo Liu, and Peter Stone. 2024. Overview of t-DGR: A Trajectory-
Based Deep Generative Replay Method for Continual Learning in Decision
Making: Extended Abstract. In Proc. of the 23rd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2024), Auckland, New
Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION
Continual learning, also known as lifelong learning, is a critical
challenge in the advancement of general artificial intelligence, as
it enables models to learn from a continuous stream of data en-
compassing various tasks, rather than having access to all data at
once [9]. However, a major challenge in continual learning is the
phenomenon of catastrophic forgetting, where previously learned
skills are lost when attempting to learn new tasks [7].
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To mitigate catastrophic forgetting, replay methods have been
proposed, which involve saving data from previous tasks and re-
playing it to the learner during the learning of future tasks. This
approach mimics how humans actively prevent forgetting by re-
viewing material for tests and replaying memories in dreams. How-
ever, storing data from previous tasks requires significant storage
space and becomes computationally infeasible as the number of
tasks increases.

In the field of cognitive neuroscience, the Complementary Learn-
ing Systems theory offers insights into how the human brain man-
ages memory. This theory suggests that the brain employs two
complementary learning systems: a fast-learning episodic system
and a slow-learning semantic system [3, 5, 6]. The hippocampus
serves as the episodic system, responsible for storing specific memo-
ries of unique events, while the neocortex functions as the semantic
system, extracting general knowledge from episodic memories and
organizing it into abstract representations [8].

Drawing inspiration from the human brain, deep generative re-
play (DGR) addresses the catastrophic forgetting issue in decision-
making tasks by using a generative model as the hippocampus
to generate trajectories from past tasks and replay them to the
learner which acts as the neocortex [12]. The time-series nature of
trajectories in decision-making tasks sets it apart from continual
supervised learning, as each timestep of the trajectory requires
sufficient replay. In supervised learning, the learner’s performance
is not significantly affected if it performs poorly on a small subset
of the data. However, in decision-making tasks, poor performance
on any part of the trajectory can severely impact the overall per-
formance. Therefore, it is crucial to generate state-action pairs that
accurately represent the distribution found in trajectories. Further-
more, the high-dimensional distribution space of trajectories makes
it computationally infeasible to generate complete trajectories all
at once.

Existing DGR methods adopt either the generation of individual
state observations i.i.d. without considering the temporal nature of
trajectories or autoregressive trajectory generation. Autoregressive
approaches generate the next state(s) in a trajectory by modeling
the conditional probability of the next state(s) given the previ-
ously generated state(s). However, autoregressive methods suffer
from compounding errors in the generated trajectories. On the
other hand, generating individual state observations i.i.d. leads to a
higher sample complexity compared to generating entire trajecto-
ries, which becomes significant when replay time is limited.

To address the issues in current DGR methods, we propose a sim-
ple, scalable, and non-autoregressive trajectory-based DGR method.
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We define a generated trajectory as temporally coherent if the tran-
sitions from one state to the next appear realistic. Given that current
decision-making methods are trained on state-action pairs, we do
not require trajectories to exhibit temporal coherence. Instead, our
focus is on ensuring an equal number of samples generated at each
timestep of the trajectory to accurately represent the distribution
found in trajectories. To achieve equal sample coverage at each
timestep, we train our generator to produce state observations
conditioned on the trajectory timestep, and then sample from the
generator conditioned on each timestep of the trajectory.

To evaluate the effectiveness of our proposed method, t-DGR,
we conducted experiments on the Continual World benchmarks
CW10 and CW20 [13] using imitation learning. Our results indicate
that t-DGR achieves state-of-the-art performance in terms of aver-
age success rate when compared to other top continual learning
methods.

2 METHOD OVERVIEW
Our proposed method, t-DGR, tackles the challenge of generating
long trajectories by training a generator which is conditioned on the
trajectory timestep to generate state observations. At each timestep,
t-DGR generates the 𝑗-th state observation of the trajectory using
the previous generator conditioned on timestep 𝑗 , and then labels
it with an action using the previous policy. After generating all
timesteps in a trajectory, t-DGR adds all labeled state-action pairs
in the trajectory to the existing training dataset. Unlike generating
state observations i.i.d., our method ensures equal coverage of every
timestep during the generative process, significantly reducing sam-
ple complexity. Once t-DGR has augmented the training samples
from the environment with our generated training samples, t-DGR
uses backpropagation to update both the generator and learner
using the augmented dataset. The t-DGR algorithm continues this
process of generative replay throughout the agent’s lifetime, which
can be infinite.

We employ a U-net [10] trained with the diffusion loss to im-
plement the generative diffusion model. Given our use of propri-
oceptive observations in the experiments, we implement the pol-
icy using a multi-layer perceptron trained with the mean squared
error loss. Full details of t-DGR, including code, are available at
https://github.com/WilliamYue37/t-DGR.

3 EXPERIMENTS
We evaluate our method on the ContinualWorld benchmarks CW10
and CW20 [13], along with our own “General Continual Learning"
variant of CW10 called GCL10. We compare our method against
several baselines: Finetune, Multitask, oEWC [2, 11], PackNet [4],
DGR [12], and CRIL [1]. All baselines are evaluated on three met-
rics: average success rate, average forward transfer, and average
forgetting.

In our findings, t-DGR emerges as the leading method, demon-
strating the highest success rate on CW10, CW20 (Table 1), and
GCL10. Notably, PackNet’s performance on the second iteration
of tasks in CW20 diminishes, highlighting its limited capacity for
continually accommodating new tasks. This limitation underscores
the fact that PackNet falls short of being a true lifelong learner, as
it necessitates prior knowledge of the task count for appropriate

Table 1: Continual World 20 Benchmark

Method Success Rate ↑ FT↑ Forgetting↓
Finetune 14.2 ±4.0 -0.5 ±3.0 82.2 ±5.6
Multitask 97.0 ±1.0 N/A N/A

oEWC 19.4 ±5.3 -2.8 ±4.1 75.2 ±7.5
PackNet 74.1 ±4.1 -20.4 ±3.4 -0.2 ±0.9
DGR 74.1 ±4.1 18.9 ±2.9 23.3 ±3.3
CRIL 50.8 ±4.4 4.4 ±4.9 46.1 ±5.4
t-DGR 83.9 ±3.0 30.6 ±4.5 14.6 ±2.9

parameter capacity allocation. On the contrary, pseudo-rehearsal
methods, such as t-DGR, exhibit improved performance with the
second iteration of tasks in CW20 due to an increased replay time.
These findings emphasize the ability of DGR methods to effectively
leverage past knowledge, as evidenced by their superior forward
transfer in both CW10 and CW20.

GCL10 demonstrates that pseudo-rehearsal methods are mostly
unaffected by blurry task boundaries, whereas PackNet’s success
rate experiences a significant drop-off. This discrepancy arises from
the fact that PackNet’s regularization technique does not work
effectively with less clearly defined task boundaries.

Additionally, the diminishing performance gap between DGR
and t-DGR as the replay ratio increases in our experiments indi-
cates that a higher replay ratio reduces the likelihood of any portion
of the trajectory being insufficiently covered when sampling indi-
vidual state observations i.i.d., thereby contributing to improved
performance. This trend supports the theoretical sample complexity
of DGR, as Θ(𝑛 log𝑛 +𝑚𝑛 log log𝑛) closely approximates the sam-
ple complexity of t-DGR, Θ(𝑚𝑛), when the replay amount𝑚 → ∞.
Here, 𝑛 denotes the trajectory length. However, while DGR can
achieve comparable performance to t-DGR with a high replay ratio,
the availability of extensive replay time is often limited in many
real-world applications.

Overall, t-DGR exhibits promising results, outperforming other
methods in terms of success rate in all evaluations. Notably, t-DGR
achieves a significant improvement over existing pseudo-rehearsal
methods on CW20 using a Welch t-test with a significance level of
𝛼 = 0.005. Its ability to handle blurry task boundaries, leverage past
knowledge, and make the most of replay opportunities position
it as a state-of-the-art method for continual lifelong learning in
decision-making.
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