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ABSTRACT
Learning new skills through previous experience is regular in hu-
man life, which is the core idea of Transfer Reinforcement Learning
(TRL). TRL requires the agent to learnwhen andwhich source policy
is the best to reuse as the target task’s policy and how to reuse the
source policy. Most TRL methods learn, transfer, and reuse black-
box policies, which is hard to explain: 1) when to reuse, 2) which
source policy is effective, and reduces transfer efficiency. In this
paper, we propose a novel TRL method called ProgrAm guiDeD
poLicy rEuse (PADDLE). PADDLE can measure the logic similari-
ties between tasks and transfer knowledge which reflects the logic
behind the target task. To achieve this, we propose a hybrid deci-
sion model that synthesizes high-level logic programs and learns
low-level DRL policy to learn source tasks. Second, we propose a
transferability metric that can measure the logic similarity between
the target task and source tasks. Last, we combine it with the low-
level policy similarity to select the appropriate source policy as the
guiding policy for the target task. Experimental results show that
PADDLE can effectively select the appropriate source tasks to guide
learning on the target task, outperforming black-box TRL methods.
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1 INTRODUCTION
Although Deep Reinforcement Learning (DRL) has achieved success
in various domains, it suffers from the sample inefficiency problem,
making learning from scratch difficult [10, 14]. Transfer Learning
(TL) has shown great potential to accelerate DRL by leveraging
prior knowledge from past learned tasks [4, 6, 15, 16]. However,
most existing transfer learning methods mentioned above focus
on learning, extracting, and reusing black-box knowledge, which
makes it difficult to reveal internal connections between source
tasks and target tasks at appropriate granularity. Thus, learning
when and which knowledge is effective requires significant learning
costs, limits transfer effectiveness, and even fails in situations where
only slight logical changes occur between different tasks.

To this end, we propose the ProgrAm guiDeD poLicy rEuse
(PADDLE) algorithm to address the above challenges. PADDLE in-
corporates a hybrid decision model to learn the policy, a two-level
model combining the advantages of DRL and program synthesis,
where the high-level uses program synthesis to generate logic pro-
grams [1, 3, 5, 8], and the low-level adopts arbitrary DRL methods
to learn primitive policies. Then PADDLE estimates the logic simi-
larity between each source task and the target task and combines
it with the low-level policy similarity to determine which source
policy should be reused at different stages (i.e., in subtasks or for
subgoals). In this way, PADDLE abstracts and aligns the target task’s
state space and the source tasks’ state spaces at a more granular rep-
resentation, effectively selecting appropriate source task policies.
Furthermore, the proposed similarity measurement is easily com-
puted and relies less on the value function than advantage-based
methods [13, 16], avoiding the negative influence of value estima-
tion errors. Our contributions are summarized as: 1) A hybrid deci-
sion model is proposed that demonstrates excellent performance
and logical reasoning ability. 2) A logic program-based transfer
method is proposed that enables efficient knowledge transfer when
learning the target task. 3) Experimental results show that PADDLE
outperforms state-of-the-art transfer baselines in both discrete and
continuous domains, exhibiting the advantages of knowledge with
interpretable logic in TRL.
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Figure 1: The workflow of PADDLE: the dual similarity and
guidance policy selection.

2 LOGIC PROGRAM GUIDED POLICY REUSE
The details of the PADDLE algorithm are illustrated in Figure 1.
Initially, a set of source policies is learned using the hybrid decision
model, and a target policy is randomly initialized. The goal is to
estimate the similarity between each source policy and the target
policy to quickly find the appropriate source policies to guide target
policy learning. PADDLE comprises two key components:

(1) A Hybrid Decision Model (HDM) uses a special hierarchical
structure where the high-level policy uses the program synthesis
method [8, 11, 17] to synthesize logic programs, while the low-level
policy uses a DRL algorithm to learn the primitive policy. Figure 1
demonstrates how the policies are switched, and how interactions
between the environment and different levels of HDM. The HDM
leverages the ability of program synthesis to reveal the causal logic
for a given task and different from the given sequence plan in [7]
which has limited generalizability and needs more prior knowledge
[5], while also releasing expert knowledge on low-level exploration
tasks by lower-cost DRL methods.

(2) A transfer algorithm based on the dual similarity measure-
ment Λ (a semantic coincidence degree Ψ and a performance func-
tion Φ), which directly optimizes the target policy by alternatively
using knowledge from both the environment and from appropriate
source policies. Specifically, Ψ records the most similar scene and
value of each source task for each target task scene, and Φ records
the average cumulative return for the execution of the selected
source policy on the corresponding scene of the target task.

3 EXPERIMENTS
For the evaluation of PADDLE, we constructed some complex tar-
get tasks and source tasks that compose two sets of source tasks
in MiniGrid [2], and each set consists of two source tasks. For
BlockedBoxUnlockPickup ( The agent’s task is to move the yellow
ball blocking the door, then open the box to retrieve the key to
open the door, and finally put down the key to pick up the green
ball behind the door. ), the source tasks in the first set include all
the skills required, to test whether PADDLE can quickly recombine
past skills. The source tasks in the second set only include some of
the skills required for BlockedBoxUnlockPickup. Still, the missing
skills are in different positions in the complete skill chain, which
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Figure 2: Results of transfer experiments in MiniGrid; The
x-axis is the number of training episodes, and the y-axis is
the normalized discounted reward converted according to
the step size of the completed task.

tests whether PADDLE can recombine past skills and quickly learn
new ones.

In addition, We compare various baseline algorithms, including
TL methods CUP [16] and PTF [15], hierarchical algorithms [9], the
original underlying algorithm, and the proposed HDM. PADDLE
is applicable to all program synthesis methods and RL algorithms.
In this paper, we use PPO [12] as the low-level algorithm, and
GALOIS [1] as the high-level algorithm. We averaged all results on
six random seeds, and the results are shown in Figure 2. Compared
with baseline algorithms, PADDLE utilizes white-box knowledge
of causal logic to quickly enable agents to understand which source
policy may be effective at each stage, greatly reducing learning
costs and improving transfer efficiency.

4 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel transfer framework, PADDLE,
with a hybrid decision model as the backbone. Unlike most previous
transfer methods that learned, extracted, and reused black box poli-
cies, we explore how to effectively measure the logic similarity and
transfer knowledge reflecting the logic of tasks behind, which fur-
ther improves transfer efficiency. PADDLE is simple to implement
and easy to combine with existing DRL algorithms. Experimental
results show that PADDLE outperforms previous state-of-the-art
transfer methods. As for future work, it is worthwhile extending
PADDLE to multiagent problems to capture the transferable knowl-
edge among multiple agents, even heterogeneous agents. Another
direction is to investigate how to learn the optimal logic program
from human feedback. Specifically, logic programs with clear se-
mantics and interpretability are intuitive to humans and can be
fine-tuned by introducing human feedback in learning.
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