
Bellman Momentum on Deep Reinforcement Learning
Extended Abstract

Huihui Zhang
Dongsheng Intelligent Technolody Co., Ltd.

Suzhou, China
huihuizhang2014@gmail.com

ABSTRACT
The sable point may pretend to be optimal and will further degrade
the asymptotical performance of the whole training task. We try
to solve this problem by seeking more aspects to prepare effective
policy regularization, which will provide better policy exploration
when faced with suboptimal stable points. As we know, the action
is a multidimensional vector with each element as a random vari-
able, so their probabilities compose a vector that can indicate some
direction, which is exactly the information we can utilize.

KEYWORDS
Off-policy, Reinforcement learning, Policy exploration

ACM Reference Format:
Huihui Zhang. 2024. Bellman Momentum on Deep Reinforcement Learn-
ing: Extended Abstract. In Proc. of the 23rd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2024), Auckland, New
Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION
The function approximation is usually adopted to deal with con-
tinuous control problems . Under this setting, the actor-critic ap-
proach is unavoidably employed to get the flexibility of a two-scale
function approximation, which further induce the saddle point prob-
lem due to the iterative update of two parameters. Since saddle
points share the property of zero gradient with the optimal point,
some of them can be stable and disguise to be optimal, which will
also restrict the asymptotical performance of training. Besides, the
intrinsic noise accompanying the function approximationwill make
the value estimates even more inaccurate and exaggerate the harm
of saddle points. Just like the countless suboptimal points that can
be hardly detected, the saddle point problem is difficult to solve,
since RL can be seen as a ”black box” that can only be partially
observed by inputting some actions.

The purpose of this work is to findways to tackle the suboptimal
and saddle points to improve the asymptotical performance as well
as not losing the accuracy of value estimates.

This work is licensed under a Creative Commons Attribu-
tion International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 –
10, 2024, Auckland, New Zealand. © 2024 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org).

2 METHODS
2.1 Momentum Value Iteration
We model the value penalty as the cosine similarity between the
target momentum and the direction of target policy that is a vector
composed of the probabilities of all action parts. Given the MDP
denoted by (S,A, 𝑝, 𝑟 ), a modified Bellman backup operator T𝜋

can be given by

T𝜋𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾E𝑠𝑡+1,𝑎𝑡+1
[
𝑄𝑡 (𝑠𝑡+1, 𝑎𝑡+1)

]
, (1)

where𝑎𝑡+1 ∼ 𝜋 (·|𝑠𝑡+1), and𝑄𝑡 (𝑠𝑡+1, 𝑎𝑡+1) is the sumof𝑄 (𝑠𝑡+1, 𝑎𝑡+1)
and 𝛽 cos( ®𝜋 (𝑎𝑡+1 |𝑠𝑡+1), ®𝑀 (𝑠𝑡+1, 𝑎𝑡+1)). 𝛽 is the hyperparameter that
is used to weight the MMTC term, cos(·, ·) represents the cosine
similarity operator, ®𝜋 represents the vector whose elements are the
probabilities of actions following the target policy, and ®𝑀 shows
the momentum.

2.2 Momentum Regularization
We optimize the policy to maximize the combined value of the ex-
pected return and the cosine similarity between the policy direc-
tion and the momentum as

max
𝜃
E𝑠

[
𝑄 (𝑠, 𝜋𝜃 (𝑠)) + 𝛽 cos( ®𝜋𝜃 (𝜋𝜃 (𝑠) |𝑠), ®𝑀 (𝑠, 𝜋𝜃 (𝑠)))

]
, (2)

where 𝜋𝜃 is the policy approximation parameterized by 𝜃 . The co-
sine similarity can be computed as

cos =
< ®𝜋𝜃 (𝜋𝜃 (𝑠) |𝑠), ®𝑀 (𝑠, 𝜋𝜃 (𝑠))) >
| ®𝜋𝜃 (𝜋𝜃 (𝑠) |𝑠) |

��� ®𝑀 (𝑠, 𝜋𝜃 (𝑠)))��� , (3)

where cos is short for cos( ®𝜋𝜃 (𝜋𝜃 (𝑠) |𝑠), ®𝑀 (𝑠, 𝜋𝜃 (𝑠))), the computa-
tion is just the inner product of two vectors divided by their norms.

2.3 Momentum Constrained Algorithm
Given the current and target networks of both the Q-value and
the policy, the loss function of updating critic parameters can be
estimated at the policy evaluation step as

𝐿(𝜔) = E(𝑠,𝑎,𝑟,𝑠′ )
[
1
2
(𝑟 + 𝛾𝑄𝑡

𝜔 ′ (𝑠
′, 𝑎′) −𝑄𝜔 (𝑠, 𝑎))2

]
, (4)

𝑄𝑡
𝜔 ′ (𝑠

′, 𝑎′) = 𝑄𝜔 ′ (𝑠′, 𝑎′) + 𝛽 cos( ®𝜋𝜃 ′ (𝑎′ |𝑠′), ®𝑀 (𝑠′, 𝑎′)), (5)

where 𝑎′ = 𝜋𝜃 ′ (𝑠′) is the action following the target policy param-
eterized by 𝜃 ′, (𝑠, 𝑎, 𝑟, 𝑠′) is sampled from the replay buffer, 𝜔 and
𝜔 ′ parameterize the critic network and its target estimate, respec-
tively, and 𝜋𝜃 ′ (·|𝑠′) is the target policy pdf conditioned on the next
state 𝑠′.

The surrogate objective function to update the current actor pa-
rameter 𝜃 at the expected policy improvement step can be given

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2588

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(a) (b) (c) (d) (e)

Figure 1: Average reward versus time step in (a) Ant; (b) Halfcheetah; (c) Hopper; (d) Walker2d; (e) Humanoid

by

𝐽 (𝜃 ) = E𝑠
[
𝑄𝜔 (𝑠, 𝜋𝜃 (𝑠)) + 𝛽 cos( ®𝜋𝜃 (𝜋𝜃 (𝑠) |𝑠), ®𝑀 (𝑠, 𝜋𝜃 (𝑠)))

]
, (6)

where 𝑎 = 𝜋𝜃 (𝑠) is the reparameterized action with parameter 𝜃
based on 𝑠 sampled from the tuple of experience dataset. We orga-
nize the above procedures as the MMTC algorithm, whose pseu-
docode is described by Algorithm 1.

Algorithm 1 MMTC Algorithm
1: Initialize parameters 𝜔 ← 𝜔0, 𝜃 ← 𝜃0
2: Initialize target parameters 𝜔 ′ ← 𝜔 ′0, 𝜃

′ ← 𝜃 ′0
3: Initialize the learning rates 𝑙𝑐 , 𝑙𝑎 for the critic and the actor,

the time step 𝑡 ← 0, the soft update hyperparameter 𝜏 , the
maximum time step 𝑇 , the batch size 𝐵 and the replay buffer
D ← ∅.

4: while 𝑡 < 𝑇 do
5: Select action 𝑎𝑡 ∼ 𝜋𝜃𝑡 (𝑎𝑡 |𝑠𝑡 )
6: Observe the reward and next state 𝑠𝑡+1, 𝑟𝑡 ∼ 𝑇 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )
7: Store transition D ← D ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}
8: Sample a batch of transitions B = (𝑠, 𝑎, 𝑟, 𝑠′)𝐵𝑖=1 from D
9: for each time step do
10: 𝜔𝑡+1 ← 𝜔𝑡 − 𝑙𝑐∇𝜔𝑡 𝐿(𝜔𝑡 ) following (4)
11: 𝜃𝑡+1 ← 𝜃𝑡 + 𝑙𝑎∇𝜃𝑡 𝐽 (𝜃𝑡 ) following (6)
12: Update 𝜔 ′𝑡+1 and 𝜃 ′𝑡+1 following soft update [4]
13: end for
14: 𝑠𝑡+1 ← 𝑠𝑡
15: 𝑡 ← 𝑡 + 1
16: end while

2.4 Momentum Design
One option to model the momentum is

®𝑀 (𝑠, 𝑎) = ∇𝑎𝑄𝜔 (𝑠, 𝑎). (7)

For better stability, we prefer to adopt a discounted cumulative
momentum as

®𝑀 (𝑠, 𝑎) = E
[ ∞∑
𝑡=0

𝛾𝑡∇𝑎𝑡𝑄𝜔 (𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠, 𝑎0 = 𝑎

]
. (8)

We can get the Bellman property of momentum as

®𝑀 (𝑠, 𝑎) = ∇𝑎𝑅(𝑠, 𝑎) + 𝛾E𝑠𝑡+1,𝑎𝑡+1
[
®𝑀 (𝑠𝑡+1, 𝑎𝑡+1)

]
, (9)

where 𝑅(𝑠, 𝑎) represents the reward function.

3 EXPERIMENTS
3.1 Benchmarks and Baselines
To evaluate the performance of our proposed algorithm, we adopt
several baselines including DDPG [4], TD3 [1] and SAC [2, 3] to
compare the sample efficiency and stability.

3.2 Results
Figures from Figs. 1(a)-1(e) show the evaluation of MTC algorithm
in comparison with the baselines, where the label ”Momentum”
represents the proposed MTC algorithm using the discounted cu-
mulative partial gradient of the Q-value function with respect to
the action in (8). According to the observation of Fig. 1(c), we can
see that theMTC algorithm is more stable than other selected base-
lines, which is reflected on the fluctuations of algorithm curves.
Confidence interval (CI) is a criterion to measure the variance of
average reward. We can see from Figs. 1(a)-1(e) that CI of our MTC
algorithm is less than that of other baselines. Another observation
from Figs. 1(a)-1(e) is noticeably shown by the converged value of
MTC algorithm, which is much higher than the selected baselines,
especially for the Walker2d task. This observation is understand-
able because the MTC algorithm is able to skip subptimal points
and arrive much closer to the optimal point, which is contributed
by the momentum constrained regularization formulated by (2).
By these empirical evaluation, guiding the policy direction toward
the momentum defined in (8) is beneficial to avoiding suboptimal
points as well as improving the stability, and it can be realized by
maximizing the cosine similarity between the policy direction and
the defined momentum.

We also give the empirical results of momentum algorithm un-
der the definition of (7), which is labeled as ”Momentum-V2” in
Figs. 1(a)-1(e). We can see that except for the Halfcheetah task,
”Momentum-V2” has a bit inferior performance than MTC algo-
rithm. According to empirical attempts, Halfcheetah is much eas-
ier for algorithms to converge than other benchmarks, which may
be the reason for this observation.

ACKNOWLEDGMENTS
This work is supported by Dongsheng Intelligent Technolody Co.,
Ltd., a rising company that is located in Suzhou and aims to de-
velop full potential of every employee. I would like to thank my
boss Xu Han, who initiated the company, and my colleagues Yan-
long Cheng and Cong Yan.

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2589



REFERENCES
[1] Scott Fujimoto, Herke Van Hoof, and David Meger. 2018. Addressing Function

Approximation Error in Actor-Critic Methods. 80 (2018), 1587–1596.
[2] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning with a sto-
chastic actor. (2018), 1861–1870.

[3] TuomasHaarnoja, Aurick Zhou, KristianHartikainen, George Tucker, SehoonHa,
Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. 2018.
Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905
(2018).

[4] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and DaanWierstra. 2015. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2590


	Abstract
	1 Introduction
	2 Methods
	2.1 Momentum Value Iteration
	2.2 Momentum Regularization
	2.3 Momentum Constrained Algorithm
	2.4 Momentum Design

	3 Experiments
	3.1 Benchmarks and Baselines
	3.2 Results

	Acknowledgments
	References



