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ABSTRACT
Reinforcement learning (RL) provides a powerful framework for
decision-making, but its application in practice often requires a
carefully designed reward function. Adversarial Imitation Learning
(AIL) sheds light on automatic policy acquisition without access to
the reward signal from the environment. In this work, we propose
Auto-Encoding Adversarial Imitation Learning (AEAIL), a robust
and scalable AIL framework. To induce expert policies from demon-
strations, AEAIL utilizes the reconstruction error of an auto-encoder
as a reward signal, which provides more information for optimiz-
ing policies than the prior discriminator-based ones. Subsequently,
we use the derived objective functions to train the auto-encoder
and the agent policy. Experiments show that our AEAIL performs
superior compared to state-of-the-art methods on both state and
image based environments. More importantly, AEAIL shows much
better robustness when the expert demonstrations are noisy.
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1 INTRODUCTION
Reinforcement learning (RL) provides a powerful framework for
automated decision-making. However, RL still requires significantly
engineered reward functions for good practical performance. Imita-
tion learning offers the instruments to learn policies directly from
the demonstrations, without an explicit reward function. It enables
the agents to learn to solve tasks from expert demonstrations, such
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as helicopter control [1–3, 5, 7, 10], robot navigation [4, 11, 13, 14],
and building controls [6].

The goal of imitation learning is to induce the expert policies
from expert demonstrations without access to the reward signal
from the environment. We divide these methods into three broad
categories: Behavioral Cloning (BC), Inverse Reinforcement Learn-
ing (IRL), and Adversarial Imitation Learning (AIL). AIL induces
expert policies by minimizing the distribution distance between
expert samples and agent policy rollouts. Prior AIL methods model
the reward function as a discriminator to learn the mapping from
the state-action pair to a scalar value, i.e., reward [8, 9, 12]. How-
ever, the discriminator in the AIL framework would easily find the
differences between expert samples and agent-generated ones, even
though some differences are minor. Therefore, the discriminator-
based reward function would yield a sparse reward signal to the
agent. Consequently, how to make AIL robust and efficient to use
is still subject to research.

Our AEAIL is an instance of AIL by formulating the reward
function as an auto-encoder. Since auto-encoder reconstruct the
full state-action pairs, unlike traditional discriminator based AIL,
our method will not overfit to the minor differences between expert
samples and generated samples. In many cases, our reward signal
provides richer feedback to the policy training process. Thus, our
new method achieves better performance on a wide range of tasks.

2 METHOD
Our approach is to minimize the distance between the state action
distribution of the policy πθ and that of the expert demonstrations.

The objective formulation we used in our method is Wasserstein
divergence:

d(πE ,πθ ) = sup
|rw |L ≤K

EπE [rw (s,a)] − Eπθ [rw (s,a)], (1)

where the reward function network’s parameters are denoted
as w and the policy network’s parameters are represented as θ .
Minimizing this distance will induce the expert policy from expert
demonstrations. Therefore, the optimization of the policy πθ and
the reward function rw (s,a) forms a bi-level optimization problem,
which can be formally defined as:

min
πθ

max
rw

(
E(s,a)∼DE [rw (s,a)] − E(s,a)∼πθ [rw (s,a)]

)
. (2)
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Here, we clip the weights of the reward function to keep it K-
Lipschitz. Optimizing Equation 2 leads to an adversarial formulation
for imitation learning. The outer level minimization with respect to
the policy leads to a learned policy that is close to the expert. The
inner level maximization recovers a reward function that attributes
higher values to regions close to the expert data and penalizes all
other areas.

In our method, we use an auto-encoder based surrogate pseudo-
reward function instead, which is defined as:

rw (s,a) = 1/(1 + AEw (s,a)), (3)

where AE is the reconstruction error of an auto-encoder:

AE(x) = ∥Dec ◦ Enc(x) − x ∥22 (4)

Here, x represents the state-action pairs. Equation 4 is the mean
square error between the sampled state-action pairs and the recon-
structed samples. This form of the reward signal uses the recon-
struction error of an auto-encoder to score the state-action pairs in
the trajectories. Equation 3 is a monotonically decreasing function
over the reconstruction error of the auto-encoder. We give high
rewards to the state-action pairs with low reconstruction errors
of the auto-encoding process and vice versa. Section "Overview"
?? motivates that this form of reward signal focuses more on the
full-scale differences between the expert and generated samples,
and it won’t easily overfit to the noise of the expert data.

Training the auto-encoder is an adversarial process considering
the objective 2, which is minimizing the reconstruction error for the
expert samples while maximizing this error for generated samples.
When combining Equation 2 and Equation 3, we can obtain the
training objective for the auto-encoder as:

L =E(s,a)∼πθ [rw (s,a)] − E(s,a)∼DE [rw (s,a)] (5)
=E(s,a)∼πθ [1/(1 + AEw (s,a))] (6)
− E(s,a)∼DE [1/(1 + AEw (s,a))]. (7)

With this adversarial objective, the auto-encoder learns to maxi-
mize the full-scale differences between the expert and the generated
samples. As a result, it gives the agent a denser reward signal. Fur-
thermore, the agent can also be more robust when facing noisy
expert data due to the robust auto-encoding objective.

3 EXPERIMENTS
Question 1. Does our AEAIL achieve best performance compared to
these four ablation methods?

Our method’s overall scaled reward is about 0.921, whereas
the best ablation method is 0.83 for JSD. There is an about 11%
relative improvement. Our method outperforms other ablations on
all locomotion tasks except for Hopper and HalfCheetah. Here we
would like to point out that our AEAIL has already achieved 97.8%
of the expert performance on Hopper while 91.7% on HalfCheetah,
which is very close to completely solving the tasks.

Question 2. Is our AEAIL robust to the noisy expert data?
To show the robustness of our proposed AEAIL, we further

conduct experiments on noisy expert data. We add a Gaussian
noise distribution (0, 0.3) to the expert data for Walker2d, Hopper,
Swimmer and HalfCheetah. Since Ant and Humanoid are much
more sensitive to noise, we add (0, 0.03) Gaussian noise to these
two tasks.

Table 1: Relative improvements for different variants of our
AEAIL compared to the best baseline JSD and GOT on clean
and noisy data, respectively.

Improvements Ours Ours-JS Ours-VAE

Clean Data 11.0% 10.5% 7.6%
Noisy Data 50.7% 44.9% 42.1%

The results show that our method outperforms other ablations
on all tasks except for Swimmer, on which F-KLD wins. Our AEAIL
offers an excellent capability in learning from noisy expert data
on these tasks. The overall scaled rewards for our AEAIL is 0.813,
whereas the best ablation is 0.539 for GOT on the noisy expert
setting. There is an about 50.7% relative improvement. Other dis-
criminator based ablations, are very sensitive to the noisy expert.

Question 3. What is the major contributing factor of our AEAIL?
Could it be the specific W-distance metric?

To analyze the major contributing factor of our AEAIL, we con-
duct an ablation study that replaces the distance to other distribu-
tion divergences. Comparable performances indicate that the major
contributing factor is the encoding-decoding process rather than
the specific distribution divergence.

Table 1 shows that our JS-based variant achieves 10.5% and 44.9%
relative improvement compared to the best baseline JSD method
and GOT method on clean and noisy expert data, respectively.
Similar to the original AEAIL, our JS-based variant also greatly
improves the imitation performance on these benchmarks. The
relative improvements are comparable between the two distance
metrics. It indicates that the major contributing factor of our AEAIL
is the encoding-decoding process. This also shows that AEAIL
works not limited to a specific distance metric.

Question 4. Is AEAIL limited to the specific type of auto-encoders?
How about utilizing variational auto-encoders? Table 1 shows our
VAE-based variant gets 7.6% and 42.1% relative improvement com-
pared to the best baseline JSD and GOT on clean and noisy expert
data, respectively. This means that our VAE-based variant improves
the imitation performance considerably compared to other base-
lines. It justifies that our AEAIL is flexible with different auto-
encoders.

4 CONCLUSIONS
This paper presents a straightforward and robust adversarial imita-
tion learning method based on auto-encoding (AEAIL). We utilize
the reconstruction error of an auto-encoder as the surrogate pseudo-
reward function for reinforcement learning. The advantage is that
the auto-encoder based reward function focused on the full-scale
differences between the expert and generated samples, which pro-
vides a denser reward signal to the agent. As a result, it enables the
agents to learn better policies. Experimental results show that our
methods achieve strong competitive performances on both clean
and noisy expert data. In the future, we want to further investi-
gate our approach in more realistic scenarios, such as autonomous
driving and robotics.
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