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ABSTRACT
The emergence of on-demand ride pooling services allows each
vehicle to serve multiple passengers at a time, thus increasing dri-
vers’ income and enabling passengers to travel at lower prices than
taxi/car on-demand services. Although on-demand ride pooling
services can bring so many benefits, ride pooling services need
a well-defined matching strategy to maximize the benefits for all
parties (passengers, drivers, aggregation companies and environ-
ment), especially the regional dispatching of vehicles has a signifi-
cant impact on matching and revenue. Existing algorithms often
only consider revenue maximization, which makes it difficult for
requests with unusual distribution to get rides. How to increase
revenue while ensuring a reasonable assignment of requests brings
a challenge to ride pooling service companies (aggregation compa-
nies). In this paper, we propose a framework for vehicle dispatching
for ride pooling tasks, which splits the city into discrete dispatch-
ing regions and uses the reinforcement learning (RL) algorithm
to dispatch vehicles in these regions. We also consider the mutual
information (MI) between vehicle and request distribution as the
intrinsic reward of the RL algorithm to improve the correlation
between their distributions, thus ensuring the possibility of getting
a ride for unusually distributed requests. In experimental results
on a real-world taxi dataset, we demonstrate that our framework
can significantly increase revenue up to an average of 3% over the
existing best on-demand ride pooling method.
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1 INTRODUCTION
With the development of the mobile internet and sharing economy,
it is becoming more and more accepted for people to hail a ride
anytime by using mobile devices. On-demand ride pooling is one
of the most popular services among them, where service providers
like UberPool, LyftLine, and GrabShare allow multiple passengers
traveling in the same direction to be matched with the same vehicle
through intelligent algorithms and smart terminal devices [4, 6, 7,
14]. The emergence of ride pooling services not only reduces energy
consumption and emissions, but also reduces traffic congestion, and
lowers the cost of individual passenger’s taxi fares. At the same
time, it also brings economic benefits to drivers and aggregation
companies [10, 17].

However, there are still some challenges in city-scale on-demand
ride pooling systems. First, travel demand is not uniformly dis-
tributed over different regions of the city, and ride pooling systems
often face problems such as an imbalance between supply and
demand in different regions. Secondly, there is a dependency rela-
tionship between dispatching and matching. Finally, unlike usual
ride sharing, an on-demand ride pooling system requires combin-
ing passengers on the same route into a “trip” (a combination of
requests) and matching them to the same vehicle [2].
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To make the algorithm applicable to on-demand ride pooling,
and to consider future benefits and the vehicle-requset distribution
differences while dispatching and matching decisions, we propose
a reinforcement learning-based (RL-based) vehicle dispatch frame-
work (Figure 2). Specifically, our contributions are as follows: (1)
We provide a precise definition of the dispatching and matching
problem for ride pooling systems. Based on this definition, for the
dispatching problem, the city map is divided into an appropriate
number of hexagonal regions (As shown in Figure 1) to facilitate
near-field dispatching in these hexagonal regions; (2) We propose a
reinforcement learning-based regional dispatching algorithm that
uses a mean field Q-learning (MFQL) [13], allowing the algorithm to
scale up to city-scale ride pooling tasks; (3) Optimizing the mutual
information (MI) between the distribution of vehicles and requests
can enable the ride pooling system to adjust the distribution of ve-
hicles according to the distribution of requests, thereby improving
the overall revenue. By using MI as the intrinsic reward value in re-
inforcement learning (RL) [15, 16], we can optimize the value of MI;
(4) In experiments, we use a simulation of an on-demand pooling
task with a real-world dataset to show that our framework repre-
sents a 3% relative improvement over the best available on-demand
ride pooling approach.

Figure 1: Manhattan is divided into hexagonal regions.

2 METHOD
The simple matching algorithm can only get the vehicle-request
matching policy with the highest revenue at the current moment,
which is a rather myopic algorithm. To avoid this myopia, in our
framework, vehicles are modeled as RL agents to obtain the long-
term future impact of the vehicle dispatching strategy. The dis-
patched vehicles are then involved in vehicle-request matching, so
that both the long-term view of the dispatching strategy and the
maximum revenue of timely matching are taken into account in
our algorithm.

Specifically, the framework (Figure 2) includes the following
components: (1) The Q-learning is used to obtain the vehicle dis-
patching strategy. The Q function calculates the Q-value 𝑄 (𝜔𝑣, 𝑎𝑣)
of all possible actions of vehicle 𝑣 . The Q-value is used to select
the action of 𝑣 . (2) Once the action 𝑎𝑣 is determined, the vehicle 𝑣
will dispatch to the region 𝑑𝑣 , and the vehicle 𝑣 is matched with the
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Figure 2: The overall framework.

requests in the region 𝑑𝑣 . (3) To further capture the dependence of
dispatching actions on neighboring vehicles/agents, we use MFQL
in the RL dispatching framework. (4) To better serve the unusually
distributed requests, the mutual information between the request
and vehicle distribution is added as a reinforcement learning intrin-
sic reward value. However, estimating and maximizingMI is usually
intractable. Taking inspiration from the literature on variational
inference [1, 5, 11], the variational posterior estimator is introduced
to derive a tractable lower bound on the MI for each time step 𝑡 .

Varying Parameters NeurADP [10] MFQL+MI ImproveNV PD C
PD 600 300 4 106180.23 110196.19 3.78%
NV 500 300 4 89003.86 92292.44 3.69%
C 600 300 8 117115.35 120660.29 3.03%

Table 1: Compare MFQL+MI with NeurADP [10].

3 EXPERIMENTAL RESULTS
We chose the street network of Manhattan, New York as the source
of dependency for vehicle operation. The New York yellow taxi
dataset [9] is also obtained from the open network. We use Boeing
[3]’s work osmnx to obtain the city’s street network from open-
streetmap using “drivers". Our experimental setup is similar to
papers [10, 17].

Compared with the existing best method for on-demand ride
pooling NeurADP [10] in Table 1, our algorithm has an average
performance improvement of 3%. Considering that even a 1% im-
provement in revenue is considered by the industry to be a large
improvement on similar transportation problems [8, 12].
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