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ABSTRACT
Diffusion auction design is a new trend in mechanism design for

which the main goal is to incentivize existing buyers to invite their

neighbors on a social network, to join an auction.With more buyers,

a diffusion auction will be able to receive higher revenue. Exist-

ing studies have proposed many diffusion auctions to attract more

buyers, but the seller’s revenue is not optimized. In this study, we

investigate what optimal revenue the seller can achieve by attract-

ing more buyers. Different from the traditional setting, the revenue

can be achieved highly relies on the structure of the network. We

propose a class of mechanisms, where for any given structure, an

optimal diffusion mechanism can be found. Moreover, we show

that an optimal mechanism that handles all structures does not

exist. Therefore, we also propose mechanisms that have bounded

approximations of the optimal revenue in all structures.
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1 INTRODUCTION
Single-item auction is a classic mechanism design problem, where

a seller sells an item to a fixed group of buyers [13]. Recently, to

further improve the seller’s revenue, researchers started to utilize

the connections between buyers to incentivize existing buyers to

invite their neighbors to join the auction [5, 6, 8, 11, 15, 16, 16, 17],

which is called diffusion auction design [7]. A recent review of

these studies can be found in [3]. The challenge is that buyers

would not invite each other by default as they are competitors [4].

The model of diffusion auction design was initiated in [10] and

it demonstrated that the classic VCG mechanism [1, 2, 13] will

give a deficit. Then, they proposed the first incentive compatible

mechanism: Information Diffusion Mechanism. Later, [9] further

proposed a class of mechanisms. However, they are not designed to

optimize the revenue. Therefore, we focus onwhatmaximal revenue

can be achieved, more precisely, given prior distributions of the
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buyers’ valuations, an incentive compatible (IC) and individually

rational (IR) mechanism to maximize the expected revenue.

The well-known optimal mechanism for traditional single-item

auction, Myerson’s mechanism [12], is not IC here as it does not

consider the connections between buyers. The main difficulty is

that the revenue of a diffusion auction may highly depend on the

network structure. In this work, we define optimality over struc-

tures, and propose a class of IC and IR diffusion auctions called the

𝑘-Partial Winner of Myerson’s (𝑘-PWM), where 𝑘 is a parameter

associated with the structure. This class can give an optimal mech-

anism for any given structures, but a 𝑘-PWM may get zero revenue

for the other structures. Unfortunately, we show that the existence

of 𝑘-PWM implies that there is no mechanism that can have higher

expected revenue than others in all structures. Therefore, our next

goal is to find a mechanism to approximate the optimal revenue

under all structures. We propose a mechanism called the Closest
Winner of Myerson’s (CWM) and a general class called the CWM
with Shifted Reserve Prices (CWM-SRP). We show that the CWM

has a bounded approximation of the optimal revenue.

2 PRELIMINARIES
We consider an auction where a seller 𝑠 sells one item in a social

network that contains herself and a buyer set 𝑁 = {1, 2, . . . , 𝑛}.
Each buyer 𝑖 ∈ 𝑁 has a private type of 𝑡𝑖 = (𝑣𝑖 , 𝑟𝑖 ), where 𝑣𝑖 is her
valuation of the item satisfying 𝑣𝑖 ∈ [𝑣, 𝑣] (𝑣 and 𝑣 are public), and
𝑟𝑖 ⊆ 𝑁 \{𝑖} is the set of all her direct neighbors. Let 𝑟𝑠 ⊆ 𝑁 represent

the direct neighbors of the seller. Let𝑇𝑖 be the type space of buyer 𝑖 .

In an auction mechanism, each buyer 𝑖 is asked to report her type,

and her report is denoted by 𝑡 ′
𝑖
= (𝑣 ′

𝑖
, 𝑟 ′
𝑖
), where 𝑣 ′

𝑖
∈ [𝑣, 𝑣] and

𝑟 ′
𝑖
⊆ 𝑟𝑖 . Denote the report profile of all buyers by 𝑡

′
. Let 𝑡 ′−𝑖 be the

report profile of all buyers except for 𝑖 , and then we can represent

𝑡 ′ as (𝑡 ′
𝑖
, 𝑡 ′−𝑖 ). Initially, the seller only knows her neighbors 𝑟𝑠 , and

can only notify them of the auction. Buyers who are aware of the

sale can further invite their neighbors to join. Eventually, the seller

can sell the item to those who are finally informed of the auction. In

practice, buyers who are not informed of the sale cannot participate

in the sale. We call buyer 𝑖 a valid buyer if there exists a path from

the seller to 𝑖 with their reports. Let 𝑉 (𝑡 ′) be the set of all valid
buyers. An diffusion auction mechanism 𝑀 is composed of an

allocation policy 𝜋 = {𝜋𝑖 }𝑖∈𝑁 and a payment policy 𝑝 = {𝑝𝑖 }𝑖∈𝑁 ,

that only run among𝑉 (𝑡 ′), and are independent of 𝑁 \𝑉 (𝑡 ′). Then,
a buyer 𝑖 has utility 𝑢𝑖 (𝑡𝑖 , 𝑡 ′, (𝜋, 𝑝)) = 𝜋𝑖 (𝑡 ′)𝑣𝑖 − 𝑝𝑖 (𝑡 ′).

Definition 2.1. A mechanism (𝜋, 𝑝) is individually rational (IR)

if for all 𝑖 ∈ 𝑁 , 𝑡𝑖 ∈ 𝑇𝑖 and any 𝑡 ′−𝑖 , 𝑢𝑖 (𝑡𝑖 , ((𝑡𝑖 , 𝑡
′
−𝑖 ), (𝜋, 𝑝))) ≥ 0.

Definition 2.2. A mechanism (𝜋, 𝑝) is incentive compatible (IC)

if for all 𝑖 ∈ 𝑁 , 𝑡𝑖 , 𝑡
′
𝑖
∈ 𝑇𝑖 and any 𝑡 ′−𝑖 , 𝑢𝑖 (𝑡𝑖 , (𝑡𝑖 , 𝑡

′
−𝑖 ), (𝜋, 𝑝)) ≥

𝑢𝑖 (𝑡𝑖 , (𝑡 ′𝑖 , 𝑡
′
−𝑖 ), (𝜋, 𝑝)).

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2600

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The expected revenue of a mechanism may be affected by the

structure profile of the network 𝑟 = (𝑟𝑠 , 𝑟1, . . . , 𝑟𝑛). Let 𝑅𝑘 be

the space of all connected structure profiles of 𝑘 buyers, and 𝑅 =⋃
𝑘∈N∗ 𝑅𝑘 be the space of all connected structure profiles. The

revenue of an IC and IR𝑀 is 𝑟𝑒𝑣𝑟
𝑀
(𝑣) = ∑

𝑖∈𝑁 𝑝𝑖 (𝑡). Then, an IC and

IR𝑀 is optimal over 𝑆 if for any 𝑟 ∈ 𝑆 , and any other IC and IR𝑀′
,

E{𝑣𝑖 }∼{𝐹𝑖 } [𝑟𝑒𝑣𝑟𝑀 (𝑣)] ≥ E{𝑣𝑖 }∼{𝐹𝑖 } [𝑟𝑒𝑣𝑟𝑀 ′ (𝑣)], where the buyers’

valuations are drawn independently from c.d.f. {𝐹𝑖 }𝑖∈𝑁 . A virtual

bid of any buyer 𝑖 is 𝑣𝑖 = 𝜙𝑖 (𝑣 ′𝑖 ) = 𝑣 ′
𝑖
− (1− 𝐹𝑖 (𝑣 ′𝑖 ))/𝑓𝑖 (𝑣

′
𝑖
), where 𝑓𝑖

is the p.d.f. of 𝐹𝑖 with monotone non-decreasing 𝑓𝑖 (𝑧)/(1 − 𝐹𝑖 (𝑧)).

3 MECHANISMS AND MAIN CONCLUSIONS
First, we will design a class of optimal diffusion mechanisms over

different structures. We say a buyer 𝑖 who is the Myerson’s winner

without her invitations is a potential winner. The corresponding
payment 𝑝∗

𝑖
is potential payment.𝑊 (𝑡 ′) is the set of all potential

winners. Among𝑊 (𝑡 ′), we call a buyer 𝑖 is a 𝑘-partial potential
winner if there exists 𝑟 ′′

𝑖
⊆ 𝑟 ′

𝑖
such that |𝑉 (((𝑣 ′

𝑖
, 𝑟 ′′
𝑖
), 𝑡 ′−𝑖 )) | = 𝑘 and

she is the winner ofMyerson’s mechanism among𝑉 (((𝑣 ′
𝑖
, 𝑟 ′′
𝑖
), 𝑡 ′−𝑖 )).

The corresponding payment is 𝑘-partial potential payment. We

can observe that there exists at most one 𝑘-partial potential winner.

The 𝑘-Partial Winner of Myerson’s (𝑘-PWM)

Input: a set of buyers 𝑁 and their type report profile 𝑡 ′.

(1) Let𝑚 = |𝑉 (𝑡 ′) |. If𝑚 < 𝑘 , let 𝜋𝑖 = 0, 𝑝𝑖 = 0 for all 𝑖 .

(2) If𝑚 = 𝑘 , then run Myerson’s Mechanism among 𝑉 (𝑡 ′).
(3) If 𝑚 > 𝑘 , if there exists a 𝑘-partial potential winner,

then let her be the winner, and her payment is her

minimal 𝑘-partial potential payment; otherwise, let

𝜋𝑖 = 0, 𝑝𝑖 = 0 for all 𝑖 .

Output: the allocation 𝜋 and the payment 𝑝 .

Theorem 3.1. 𝑘-PWM is IR, IC and optimal over 𝑅𝑘 .

Since the optimal expected revenue in any structure is the same

as Myerson’s mechanism with the same number of buyers without

diffusion, it unfortunately leads a negative result that an optimal
mechanism over 𝑅 does not exist. We then consider the approx-

imation mechanisms. We say an IC and IR𝑀 is 𝛼-optimal if

inf

𝑟 ∈𝑅
E{𝑣𝑖 }∼{𝐹𝑖 } [𝑟𝑒𝑣

𝑟
𝑀 ]/E{𝑣𝑖 }∼{𝐹𝑖 } [𝑟𝑒𝑣

𝑟
|𝑉 ( ( ·,𝑟 ) ) |-PWM] ≥ 𝛼

We then propose a new mechanism as follows.

The Closest Winner of Myerson’s (CWM)

Input: a set of buyers 𝑁 and their report profile 𝑡 ′.

(1) Let the potential winner set𝑊 (𝑡 ′) = {𝑤1,𝑤2, . . . ,𝑤𝑚},
sorted by the distance to 𝑠 . If 𝑊 (𝑡 ′) = ∅, then set

𝜋𝑖 (𝑡 ′) = 0, 𝑝𝑖 (𝑡 ′) = 0 for all 𝑖 ∈ 𝑁 and goto Output.

(2) Set 𝜋𝑤1
(𝑡 ′) = 1 and 𝑝𝑤1

(𝑡 ′) = 𝑝∗𝑤1

(𝑡 ′).
Output: the allocation 𝜋 and the payment 𝑝 .

Theorem 3.2. CWM is IR, IC and (𝜙−1 (0)/𝑣)-optimal (tight) if
all buyers’ valuations are drawn independently from an identical 𝐹 .

Figure 1: The average of the estimated expected revenue over
all sampled structures with 50 ≤ 𝑛 ≤ 300.

4 NUMERICAL RESULTS
As CWM always chooses the first potential winner, buyers away

from the seller have fewer opportunities. To avoid this, a direct idea

is increasing the reserve prices of buyers that are close to the seller.

Let 𝑑𝑖 be the length of the shortest path from 𝑠 to 𝑖 . We can define a

monotone non-increasing shifting function 𝜎 s.t. 0 ≤ 𝜎 (𝑑𝑖 ) ≤ |𝑣 −𝑣 |.

CWM with Shifted Reserve Prices (CWM-SRP)

Input: a set of buyers 𝑁 and their report profile 𝑡 ′.

(1) Let the potential winner set𝑊 (𝑡 ′) = {𝑤1, 𝑤2, . . . ,𝑤𝑚},
sorted by the distance to 𝑠 . If 𝑊 (𝑡 ′) = ∅, then set

𝜋𝑖 (𝑡 ′) = 0, 𝑝𝑖 (𝑡 ′) = 0 for all 𝑖 ∈ 𝑁 and goto Output.

(2) 𝑘 = 1 to𝑚: if 𝑣 ′𝑤𝑘
≥ 𝜙−1

𝑤𝑘
(0) + 𝜎 (𝑑𝑤𝑘

), set 𝜋𝑤𝑘
(𝑡 ′) = 1,

𝑝𝑤𝑘
(𝑡 ′) = max{𝑝∗𝑤𝑘

(𝑡 ′), 𝜙−1
𝑤𝑘

(0) +𝜎 (𝑑𝑤𝑘
)}, and Break.

(3) Set 𝜋𝑖 (𝑡 ′) = 0, 𝑝𝑖 (𝑡 ′) = 0 for all 𝑖 except for winner.

Output: the allocation 𝜋 and the payment 𝑝 .

To provide ideas on how to set shifting functions, we evaluate

these methods through experiments. In all experiments, the val-

uations of buyers are drawn independently from U[0, 1]. Mech-

anisms that are evaluated and compared include (i) IDM [10]:

a representative of existing mechanisms, (ii) CWM, (iii) CWM-
SRP1: with 𝜎1 (𝑑𝑖 ) = 0.1 · I(𝑑𝑖 = 1), and (iv) CWM-SRP2: with
𝜎2 (𝑑𝑖 ) = 0.1(3 − 𝑑𝑖 ) · I(𝑑𝑖 ≤ 2). We sample 100 structures of small-

world networks [14] for each 𝑛. For each structure, we average

100 samples of valuations to approximate the expected revenue.

Figure 1 summarizes the results, where the CWM-SRPs can greatly

improve the expected revenue, and when the graph is larger, a
more aggressive shifting function may perform better.
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