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ABSTRACT
Reinforcement Learning (RL) shows promise in optimizing task-
oriented dialogue policies, but addressing the challenge of reward
sparsity remains challenging. Curriculum learning offers an effec-
tive solution by strategically training dialogue policies from simple
to complex, facilitating a smooth knowledge transition across var-
ied goal complexities. However, these methods typically assume
that goal difficulty will increase gradually to adapt to difficult goals
over time. In complex environments lacking intermediate goals,
attaining smooth knowledge transitions becomes tricky. This paper
proposes a novel Bootstrapped Policy Learning (BPL) framework
that adaptively tailors a curriculum for each complex goal through
goal shaping, which consists of progressively challenging subgoals.
Goal shaping comprises goal decomposition and evolution, break-
ing complex goals into solvable subgoals and progressively increas-
ing subgoal difficulty as the policy improves. BPL harmoniously
combines these aspects, enabling smooth knowledge transitions
from simple to complex goals, thereby enhancing task-oriented
dialogue policy learning efficiency. Our experiments demonstrate
the effectiveness of BPL in two complex dialogue environments.
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1 INTRODUCTION
Task-oriented dialogue (ToD) systems aim at assisting users to com-
plete specific tasks (also referred to as goals) with fewer turns, such
as making restaurant reservations, booking taxis or movie tickets.
Among these, dialogue policy plays a pivotal role by selecting sys-
tem responses given the dialogue state input [15]. This selection
directly affects the success of the dialogue system. Reinforcement
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learning (RL) is a powerful learning technique for optimizing a
task-oriented dialogue policy [14]. However, the natural reward
function of dialogue goals presents a considerable challenge for
RL-based dialogue policy optimization, as rewards is sparse and
requires a prohibitive amount of exploration to reach the goal and
receive some learning signals [2, 11, 12].

Curriculum Learning (CL) strategically arranges the learning
order of dialogue policies from easy to difficult to alleviate reward
sparsity challenges. This ordered learning strategy enables dialogue
policies to leverage information or skills gained from achieving
simpler goals as a foundation to aid in the accomplishment of more
challenging goals (termed knowledge transition) [6, 8, 17]. These
methods typically require goal difficulty to increase gradually over
time. Training difficult goals directly leads to dialogue policies
requiring numerous rounds of interactions to obtain meaningful
rewards, thereby diminishing learning efficiency [7, 9].

To this end, this paper proposes a novel framework, Bootstrapped
Policy Learning (BPL), which employs goal shaping to dynamically
tailor a subgoal curriculum for each complex user goal. This subgoal
curriculum comprises a sequence of subgoals that incrementally
increase in difficulty, assuring a smooth knowledge transition. Goal
shaping involves two key operations: goal decomposition and goal
evolution. Specifically, goal decomposition breaks down complex
goals into subgoals with solvable maximum difficulty, reducing
their complexity. Meanwhile, goal evolution gradually increases the
difficulty of subgoals in line with the policy’s growing capabilities,
ultimately enabling mastery of the entire goal. On the one hand,
BPL efficiently navigates the policy’s progression from easier to
more difficult goals, ensuring a smooth knowledge transition. On
the other hand, the customized subgoal curriculum aligns with
the policy’s evolving abilities, making training more efficient. We
constructed experiments on two complex dialogue datasets and
verified the effectiveness of our BPL.

2 DIFFICULTY EVALUATION
The measure of successful dialogue depends on accurately identify-
ing all provided information 𝐶 from the user, correctly responding
to all user requests 𝑅, and effectively reserving a ticket meeting the
specified information. Thus, the complexity of user goal 𝑔 varies
according to the number of attributes present in 𝐶 and 𝑅. Fewer
constraints and requests result in fewer agent actions required to
complete 𝑔, reducing the risk of errors. Based on the defined diffi-
culty of user goals, we present the core ideas behind goal shaping:

• Goal Decomposition: reducing the number of attribute in the
user goal to reduce its difficulty;
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• Goal Evolution: increasing the number of attribute in the user
goal to enhance its difficulty.

3 BOOTSTRAPPED POLICY LEARNING
Bootstrapped Policy Learning is composed of two integral com-
ponents: Decomposer and Evolver. Decomposer breaks down the
user goal into a subgoal with maximal solvable difficulty for goal
decomposition. Evolver increases the complexity of the user goal
for goal evolution, until the dialogue policy masters the entire user
goal. Through the interplay of these components, BPL tailors a
curriculum aligned with the dialogue policy’s capabilities for each
goal, thus effectively adapting to complex dialogue environments.

Decomposer ’s role is to decompose tricky user goals during
RL training phase. Decomposing simple user goals is counterpro-
ductive and hampers learning efficiency. Thus, the user goal is
considered a tricky one to decompose if it continues to fail after
a period of dialog policy training. Goal decomposition consists of
three stages:

i) Boundary state detection identifies the state nearest to the goal
state within a failed dialogue trajectory based on the sampled user
goal. The state with the shortest distance 𝑑 from the goal state is
the boundary state. 𝑑 is determined by the number of mismatched
attribute-value pairs: 𝑑 = 𝑁 (𝑠𝑔) − 𝑁 (𝑠), where 𝑁 (𝑠𝑔) and 𝑁 (𝑠)
denote the number of consistent attribute-value pairs of the goal
state 𝑠𝑔 and the state 𝑠 .

ii) Goal Decomposition divides the current user goal into a corre-
sponding boundary subgoal based on the detected boundary state.
Based on attribute-value pairs present in the detected boundary
state, the user goal is decomposed into two parts: the boundary
subgoal, containing attributes from the boundary state, and the
failed subgoal, comprising the remaining attributes in the user goal.

iii) Goal Substitution substitutes the current user goal with the
boundary subgoal.

Evolver ’s role is to increase the complexity of the easy goals that
the dialogue policy has already mastered. Thus, the user goal is con-
sidered an easy one to evolve if it has been successfully attained. We
employ the 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 (𝐷,𝑔)1 function to employ whether dialogue
𝐷 achieves goal 𝑔. Goal evolution is initiated when 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 (𝐷,𝑔)
returns True, and comprises three stages:

i) Evolutionary segmentation divides the failed subgoal into an
evolved part for subgoal evolution and a retained part for the next
iteration. A attribute-value pair within the failed subgoal is ran-
domly designated as the evolved part ready for evolution, while
the remaining pairs constitute the retained part.

ii) Subgoal evolution merges the evolved part and the current
goal into a new goal. The attribute-value pairs from the evolved
part are merged into the subgoal.

iii) Goal Substitution replaces the original user goal 𝑔𝑖 with the
evolved new goal.

4 EXPERIMENTAL RESULTS
Experiments are conducted on two datasets with a publicly available
user simulator: Taxi Ordering and Multiwoz 2.1 [1, 4, 5]. The former
one contains single domain, while Multiwoz is a multi-domain

1https://github.com/thu-coai/Convlab-2

Table 1: Results of different agents on two complex datasets.
The difference between the results of all agent pairs evaluated
at the same epoch is statistically significant (p < 0.01).

Taxi MultiwozAgent Success Rewards Turns Success Rewards Turns
DQN 0.3635 -7.18 21.81 0.1223 -41.91 35.17
SNA-DQN 0.0000 -42.08 26.16 0.0115 -57.02 38.79
SND-DQN 0.0000 -41.62 25.24 0.0153 -56.68 39.02
ACL-DQN 0.5874 13.90 19.92 0.0584 -50.63 37.26
SDPL 0.6318 18.22 18.27 0.0294 -54.72 38.49
VACL 0.5675 12.51 19.13 0.0544 -51.25 37.55
HRL 0.3783 -3.92 21.24 0.2564 -24.56 28.67
SDN 0.6209 17.24 19.29 0.0986 -45.20 35.05
BPL 0.6972 24.75 17.99 0.3239 -14.18 28.11

dataset spanning seven domains, all of which are complex dialog
environments.

We compare BPL with RL-based representative algorithm: DQN
[3], RL-based algorithms integrating CL: SNA-DQN [10], SND-DQN
[10], ACL-DQN [17], SDPL [6], and VACL [16], as well as RL-based
algorithms utilizing goal decomposition: HRL [9] and SDN [13].
The main results are presented in Tab.1. Due to the random selec-
tion of user goals, DQN often samples difficult user goals, resulting
in learning inefficiency. Although SNA-DQN and SND-DQN es-
tablish learning sequences based on the number of attributes, this
crude assessment of difficulty and inflexible learning have adverse
effects. In contrast, VACL and SDPL employ more precise difficulty
assessment criteria, demonstrating superior performance on the
Taxi dataset. However, for the highly challenging multi-domain
dataset Multiwoz, even the simplest user goals prove too difficult for
dialogue policies. Consequently, these curriculum learning-based
algorithms lose their effectiveness. HRL can reduce goal difficulty
by decomposing targets but excels only in multi-domain datasets
with easily separable domains, showing little variation in single-
domain scenarios where goal separation is challenging. The effec-
tiveness of SDN relies on a wealth of successful dialogues to aid
in user goal decomposition, thus its performance is less evident in
the sparse successful dialogues of the Multiwoz dataset. Our BPL
outperforms other baselines on both challenging datasets, with a
more pronounced advantage on the multi-domain Multiwoz dataset.
In conclusion, by showingconsistent results across different data
sources in both single and multi-domain settings, the BPL frame-
work proves highly effective in various challenging dialogue tasks.

5 CONCLUSION AND FUTUREWORK
This work proposes a novel Bootstrapped Policy Learning (BPL)
framework that effectively handles complex dialogue environments,
leading to efficient task-oriented dialogue policy learning. This
is achieved by dynamically generating progressively challenging
subgoal curriculum for each complex goal through goal shaping,
involving two key operations: 1) goal decomposition, extracting
a solvable boundary subgoal from user goals based on dialogue
trajectories, and 2) goal evolution, progressively increasing the
difficulty of boundary subgoals until mastery of the entire goal. In
the future, our focus will explore the mechanisms for transferring
the knowledge acquired from subgoals to new agents.
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