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ABSTRACT

A primary source of revenue for web platforms is digital advertis-

ing. Platforms typically maximize the effectiveness of advertising

campaigns by exploiting user features (i.e., targeted advertising).

However, performance can be further improved by leveraging user

navigation history. In particular, the advent of new augmented re-

ality platforms encourages users to spend a considerable amount

of time in the same virtual environment, opening up the challenge

of determining which ads to display and at which time of their ex-
perience. In this paper, we initiate the study of history-dependent
advertising by providing a user model and optimized ad allocation

algorithms. Our model assumes that users move through a series

of scenes where they are exposed to ads. The performance of an

ad may be influenced by various factors, such as the features of

the scene in which it is displayed, the externalities of previously

observed ads and the possibility that a user has already purchased

the promoted product. We analyze the computational complexity

of finding an optimal ad allocation for several model flavors and

provide practical approximation algorithms with tight theoretical

guarantees. We also discuss under which conditions our approxi-

mation algorithms are monotone according to Myerson’s definition,

thus leading to truthful auction mechanisms.
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1 INTRODUCTION

In the last decade, artificial intelligence has been one of the main

drivers of growth for digital markets. The use of AI tools in digital
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advertising has become increasingly common, opening up new op-

portunities that were previously unavailable [6, 13]. Some of the

advantages over traditional advertising channels are the possibil-

ity of profiling a user from behavioral data [5], targeting ads in a

precise way [14] and running auction mechanisms to maximize

specific objective functions associated with revenue [15]. AI tools

can efficiently optimize these processes managing the vast amount

of data and the numerous parameters provided by platforms. More-

over, the continuous innovation of web platforms provides further

opportunities to extract value from optimizing these parameters

exploiting the structure of new advertising settings. For instance,

there is a broad agreement that the advent of metaverse platforms

may revolutionize marketing in the next decade [20]. The pecu-

liarity of virtual reality platforms is to offer the user a real-time

immersive experience, enabling the possibility to exploit a plethora

of additional information on users’ behavior to dramatically in-

crease the effectiveness of advertisements. In this environment,

it becomes possible not only to track the ads sequentially shown

to the user as they move through different locations but also to

control which ads to display at each stage of their path. It is worth

noting that, while cookies can be used to gather information on

user navigation history as they browse the web, it is not always

possible for a single provider to manage the allocation of all the

slots observed by the user. On the contrary, new self-contained

environments such as augmented reality platforms enable the op-

portunity to implement history-dependent advertising, since user

experience is not as fragmented as on the web.

To the best of our knowledge, the problem of deciding which
ads to display to the users and at which time of their experience is
unexplored so far. In this paper, we propose a user model which

extends those currently adopted for search and mobile advertising.

In particular, we assume that users traverse several scenes, which
could be, for example, locations in virtual realities (i.e., sports events,
concerts, job meetings, tourist sites, lectures, and conferences).

During the traversal, users are targeted with multiple ads, whose

performance, usually referred to as quality, may depend on the

specific scene in which they are displayed. For example, an ad may

attract the user attention differently if shown during a sport event

or a concert. Furthermore, the ads may be subject to externalities

due to their sequential display. In particular, displaying an ad in a

scene may raise negative forward externalities to other ads shown in

future scenes. This happens, for instance, when two ads promoting
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products that are strategic substitutes are displayed sequentially, as

shown by Deng and Pekec [4]. Finally, real-world experiments show

that it is unlikely that a user recalls every ad seen in the past [1, 2].

Thus, we assume that the users’ behavior is affected only by the

ads displayed in the last 𝑘 scenes, where 𝑘 is a parameter modeling

users’ memory, whose value can be estimated from historical data.

Intuitively, the activities of a user in a self-contained platform

could be modeled as a graph of scenes with stochastic transitions.

An ad allocation defines which ad to display in every graph scene.

Despite the graph provides a compact representation, it would

require to display the same ad every time the user traverses the

same scene independently of the history of previously-observed

ads. This static ad allocation may generate frustration and reduce

the user’s attention. Moreover, disregarding previously-observed

ads could lead to heavy negative externalities. These limits push the

need for (non-Markovian) history-dependent policies whose natural
representation is a tree. Thus, we expand the graph by generating

a tree composed of the potential paths a user can follow starting

from an initial scene and then finding an allocation of ads such that

every node of the tree is treated as a different scene. Interestingly,

in practical applications with a huge number of paths, the tree size

can be bounded by resorting to Monte Carlo sampling techniques.

Related Works. Several works investigate ad allocation problems

in related scenarios such as web and mobile advertising and pro-

vide attention models describing how users observe the slots in

which ads are displayed. A user model needs to address the tradeoff

between a sufficiently accurate description of the user behavior

and the possibility of designing allocation algorithms running in

polynomial time to scale up to real-world applications. The seminal

model for sponsored search auctions, called cascade and proposed

by Kempe and Mahdian [14], assumes that users scan the slots

sequentially. The authors also propose some algorithms for special

cases of their model, while Farina and Gatti [7] provide practical

algorithms for the general case. Fotakis et al. [9] and Gatti et al.

[11] propose detailed models incorporating negative externalities

between ads. This higher degree of model accuracy comes at the

cost of higher computational complexity, as no constant approxima-

tion algorithm is possible. Gatti et al. [10] adopt a similar approach

in the case of mobile advertising, where the user moves in a geo-

graphical area. The aforementioned works assume that the model

parameters values are known. In real-world settings, the proposed

ad allocation algorithms can be paired with multi-armed bandit

techniques to perform an online estimation of those values [5].

Original Contributions. We study the computational complex-

ity of finding optimal ad allocations and provide approximation

algorithms with tight theoretical guarantees. We deliver results for

different model flavors: qualities may or may not depend on the

scene, and externalities may or may not be present (see Table 1). In-

terestingly, allowing the ads qualities to be scene dependent makes

the problem APX-Complete. To address this case, we provide a

polynomial-time algorithm with an approximation factor of 1− 1/𝑒 .
Moreover, introducing externalities among the ads makes the prob-

lem Poly-APX-Complete, therefore, we provide a polynomial-time

algorithm with an approximation factor of 1/(𝑘 + 1), which is tight

and shows that the problem is in APX when 𝑘 is fixed. In particular,

the algorithm returns an optimal solution when 𝑘 = 0, i.e., when

Table 1: Summary of our computational complexity results.

SI = scene-independent quality, SD = scene-dependent qual-

ity, NE = no externalities, E = with externalities. The fourth

column refers to Myerson’s weak monotonicity.

Allocation Complexity Best Best weakly

problem apx. ratio monotone

apx. ratio

SI-NE Poly 1 1

SD-NE APX-Complete 1 − 1/𝑒 —

SI-E Poly-APX-Complete 1/(𝑘 + 1) 1/(𝑘 + 1)
SD-E Poly-APX-Complete (1 − 1/𝑒)/(𝑘 + 1) —

user behavior does not depend on the ads observed in the previous

scenes. Similar upper and lower complexity bounds hold when

adopting the model in the general case, i.e., with externalities and

scene-dependent qualities. Finally, we show that allocation algo-

rithms disregarding basic user features and Markovian solutions

directly defined on the graph provide approximations arbitrarily

worse than ours. This suggests that our model is effective in prac-

tice, even when combined with simple greedy algorithms that scale

up to real-world instances. We also discuss under which conditions

our algorithms define weakly monotone allocation functions in the

sense of Myerson, thus leading to truthful auctions. In particular,

we show that our algorithms are weakly monotone, according to

Myerson’s definition, when the qualities are scene-independent.

2 ADVERTISING MODEL

We introduce the following advertising model. We assume that an

user moves through a graph with stochastic transitions in which

nodes correspond to scenes in a virtual environment. To capture

history-dependent policies, the graph is expanded as follows.

Scenes Tree and User Transitions. Given a graph, a starting scene,

and a time horizon, we generate the tree describing the potential

paths the user traverses according to a probability distribution

over the successors of every scene. We remark that, when adopt-

ing history-dependent ad-allocation policies, different ads can be

displayed at different traversals of the same scene of the graph de-

pending on the specific history. To better capture history-dependent

policies, we treat all the tree nodes corresponding to the same scene

in the graph as different scenes. Formally, the tree of scenes is repre-
sented with 𝑇 = (𝑆, 𝜌), where 𝑆 is the set of scenes in which a user

can be, 𝑠 ∈ 𝑆 is a scene, and 𝜌 : 𝑆 → P(𝑆) is the successor function
taking as input a scene 𝑠 ∈ 𝑆 and returning the subset 𝜌 (𝑠) of 𝑆
composed of all the scenes that are immediate successors of 𝑠 in

the tree; P(𝑆) denotes the powerset of 𝑆 . We say that scenes 𝑠 such

that 𝜌 (𝑠) = ∅ are terminal. We denote with 𝜋𝑠,𝑠′ ∈ [0, 1], where
𝑠 ∈ 𝑆, 𝑠′ ∈ 𝜌 (𝑠), the transition probability that a user in scene 𝑠

moves to immediate successor scene 𝑠′. Furthermore, for every

non-terminal scene 𝑠 ∈ 𝑆 , it holds∑𝑠′∈𝜌 (𝑠 ) 𝜋𝑠,𝑠′ = 1. We can model

a user who leaves the platform with a non-null probability from

scene 𝑠 by using an immediate successor of 𝑠 that is terminal. In

the case of search advertising, this corresponds to stop observing

further slots. We denote with 𝝈 a generic ordered sequence of scenes
such that 𝜎𝑖 is the 𝑖-th scene of 𝝈 . In particular, 𝝈𝑠

is the sequence

of scenes from the root node to scene 𝑠 ∈ 𝑆 , with |𝝈𝑠 | the length
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of 𝝈𝑠
, and 𝜎𝑠

𝑖
is the 𝑖-th element of 𝝈𝑠

, where 𝑖 ∈ [ |𝝈𝑠 | ].1 Hence,
for every 𝑠 ∈ 𝑆 , the root scene corresponds to 𝜎𝑠

1
and scene 𝑠 to

𝜎 |𝝈𝑠 | . The reach probability of 𝑠 is Π𝑠 =
∏ |𝝈𝑠 |−1

𝑖=1
𝜋𝜎𝑠

𝑖
,𝜎𝑠

𝑖+1
, stating

the probability that a user reaches 𝑠 starting from root 𝜎𝑠
1
.

Ads, Qualities, and Externalities. We denote with 𝐴 the set of ads
and with 𝑎 ∈ 𝐴 an ad. For simplicity, we assume that at most one

ad can be displayed in every scene. In particular, we denote with

𝑥 : 𝑆 → 𝐴∪ {𝑎∅} the allocation function taking as input scene 𝑠 ∈ 𝑆
and returning ad 𝑎 ∈ 𝐴 or 𝑎∅ allocated to scene 𝑠 . Ad 𝑎∅ is fictitious,
meaning that no ad is allocated in that scene. Every ad 𝑎 ∈ 𝐴

allocated in scene 𝑠 ∈ 𝑆 is characterized by a quality 𝑞𝑎,𝑠 ∈ [0, 1],
that is the user’s conversion probability conditioned to the event

that scene 𝑠 has been reached by the user and that no other ad has

been displayed before 𝑠 . For the sake of presentation, whenever we

focus on settings in which the quality is scene-independent, we

use 𝑞𝑎 in place of 𝑞𝑎,𝑠 . Since an empty slot produces no conversion,

we set 𝑞𝑎∅ ,𝑠 = 0, for every 𝑠 ∈ 𝑆 . Furthermore, ads are subject

to forward externalities, such that the display of ad 𝑎 allocated in

scene 𝑠 affects the quality of ad 𝑎′ allocated in scene 𝑠′ when 𝑠

precedes 𝑠′ in the tree. Formally, we model such an externality with

𝛾𝑎,𝑎′ ∈ [0, 1], where 𝑎, 𝑎′ ∈ 𝐴 and 𝑎 is allocated in a scene of the

tree preceding (immediately or not) the scene where 𝑎′ is allocated.
We assume that 𝛾𝑎,𝑎′ ≤ 1 for every 𝑎 ≠ 𝑎′ ∈ 𝐴, while 𝛾𝑎,𝑎 = 1

for every 𝑎 ∈ 𝐴. Notice that, when 𝛾𝑎,𝑎′ < 1, the externality is

negative, meaning that the display of 𝑎 before 𝑎′ negatively affects

the quality of 𝑎′, while, when 𝛾𝑎,𝑎′ = 1, the externality is neutral,
meaning that the display of 𝑎 before 𝑎′ does not affect the quality of
𝑎′. By convention, the absence of ads in a scene does not introduce

any externalities and therefore 𝛾𝑎∅ ,𝑎′ = 1 for every 𝑎′ ∈ 𝐴. In the

no-externalities settings, we assume 𝛾𝑎,𝑎′ = 1 for every 𝑎, 𝑎′ ∈ 𝐴.
Furthermore, we assume that the user may forget the past ads,

thus alleviating the negative effects due to externalities. More pre-

cisely, we assume that the user’s behavior only depends on the ads

seen in the previous 𝑘 ∈ N scenes. Notice that, when 𝑘 = 0, the user

forgets every previous ad, while setting 𝑘 = ∞ implies that the user

perfectly recalls all the observed ads. The externality to which ad 𝑎

in scene 𝑠 is subject to is Γ(𝑥, 𝑠) = ∏ |𝝈𝑠 |−1

𝑖=max{1, |𝝈𝑠 |−𝑘 } 𝛾𝑥 (𝜎𝑠
𝑖
),𝑥 (𝑠 ) and

depends on all the ads displayed in the 𝑘 scenes preceding 𝑠 in the

sequence 𝝈𝑠
, whose are min{𝑘, | 𝝈𝑠 | − 1}. The probability that a

user converts on an ad 𝑎 in scene 𝑠 conditioned to the reach of

scene 𝑠 is Γ(𝑥, 𝑠) 𝑞𝑠,𝑎 . This holds whenever ad 𝑎 is not displayed in

scenes preceding 𝑠 , since we handle differently the case in which

an ad is displayed multiple times along the same path.

Many works on search advertising allow an ad to be displayed

only once in the allocation e.g., [14]. However, we think that a more

accurate model would exploit the opportunity of showing the same

ad multiple times, as it happens in real-world advertising scenarios,

since users could convert after having observed the ad several times.

Formally, we assume that, if a user converts on ad 𝑎 in scene 𝑠 , then

that user will never convert again on 𝑎 when displayed in a scene 𝑠′

following 𝑠 . On the other hand, if a user does not convert on ad 𝑎

in scene 𝑠 , then the user can convert on the same 𝑎 in a scene 𝑠′

following 𝑠 . This assumption requires adjusting the quality of an ad

when displayed multiple times along a single path. In particular, we

1
We denote with [𝑛] the set {1, . . . , 𝑛}, where 𝑛 ∈ N.

Figure 1: Example of the tree of scenes.

denote with𝐻 (𝑥, 𝑠) ⊆ 𝑆 the subset of scenes 𝑠′ along sequence𝝈𝑠
in

which ad 𝑎 = 𝑥 (𝑠) = 𝑥 (𝑠′) is allocated, excluded scene 𝑠 . We define

Ξ(𝑥, 𝑠) = ∏
𝑠′∈𝐻 (𝑥,𝑠 ) (1 − Γ(𝑥, 𝑠′) 𝑞𝑥 (𝑠′ ),𝑠′ ) as the probability that

the user never converts on ad 𝑎 = 𝑥 (𝑠) when allocated in scenes 𝑠′

strictly before scene 𝑠 conditioned to the reach of 𝑠′. Finally, we
denote with 𝑞(𝑥, 𝑠) = Γ(𝑥, 𝑠) 𝑞𝑥 (𝑠 ),𝑠 Ξ(𝑥, 𝑠) the adjusted quality
of the ad allocated in 𝑠 given the ads allocated in the previous

scenes. Thus, given an ad 𝑎 allocated in scene 𝑠 , its conversion rate
is Π𝑠 𝑞(𝑥, 𝑠). Moreover, its expected value is Π𝑠 𝑞(𝑥, 𝑠) 𝜃𝑥 (𝑠 ) , where
𝜃𝑎 ∈ [0, 1] is the value per conversion of ad𝑎. We can finally compute

the allocation expected value of 𝑥 as

∑
𝑠∈𝑆

(
Π𝑠 𝑞(𝑥, 𝑠) 𝜃𝑥 (𝑠 )

)
.

In this paper, we study the ad allocation problem under different

flavors of our user model. As in Table 1, the acronyms SI and SD are
used to denote the cases where qualities are scene-independent and

scene-dependent, respectively. Similarly, NE and E denote settings
with no externalities and with externalities among ads, respectively.

We provide an example to clarify the functioning of our model.

Example 2.1. Figure 1 shows a setting described by a tree with

set of scenes 𝑆 = {𝑠1, . . . , 𝑠8} and set of ads 𝐴 = {𝑎1, 𝑎2, 𝑎3} ∪ 𝑎∅ .
The quality of the ads is 𝑞𝑎,𝑠 = 0.1 for all 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆 , the

externalities are 𝛾𝑎1,𝑎2
= 𝛾𝑎1,𝑎3

= 𝛾𝑎1,𝑎3
= 0.8, and the values per

conversion are 𝜃𝑎1
= 0.5, 𝜃𝑎2

= 0.6 and 𝜃𝑎3
= 0.7. The transition

probabilities are 𝜋𝑠1,𝑠2
= 𝜋𝑠2,𝑠6

= 𝜋𝑠4,𝑠7
= 0.7, 𝜋𝑠1,𝑠3

= 0.1, 𝜋𝑠1,𝑠4
=

0.2, 𝜋𝑠2,𝑠5
= 𝜋𝑠4,𝑠8

= 0.3. Moreover, we set 𝑘 ≥ 2. Consider, for

instance, scene 𝑠7: the total externality is Γ(𝑥, 𝑠7) = 𝛾𝑎1,𝑎1
𝛾𝑎1,𝑎2

=

0.8, the adjusted quality is 𝑞(𝑥, 𝑠7) = Γ(𝑥, 𝑠7) 𝑞𝑎1,𝑠7
Ξ(𝑥, 𝑠7) = 0.072,

the expected value is Π𝑠7 𝑞(𝑎1, 𝑠7) 𝜃𝑎1
= 5 · 10

−3
. The allocation

expected value is

∑
𝑠∈𝑆

(
Π𝑠 𝑞(𝑥, 𝑠) 𝜃𝑥 (𝑠 )

)
= 107.76 · 10

−3
. Notice

that if 𝑘 = 1, the value increases to 117.14 · 10
−3

as the negative

effect due to the externalities is mitigated further.

Myerson’s Weak Monotonicity. When designing allocation algo-

rithms in the following sections, we investigate whether they satisfy

Myerson’s weak monotonicity property. Indeed, since our history-

dependent advertising model is a single-parameter (i.e., 𝜃𝑎) linear
environment, Myerson’s weak monotonicity is necessary and suffi-
cient for the design of a truthful mechanism in dominant strategies

[16]. In our case, the property reads as follows.

Definition 2.2. In the single-parameter environment of the history-

dependent advertisingmodel, an allocationmechanismM that maps

a type profile (𝜃𝑎)𝑎∈𝐴 to an allocation 𝑥 is weakly monotone if for

every ad 𝑎 ∈ 𝐴 and types 𝜃𝑎′ of the other ads 𝑎
′ ∈ 𝐴\{𝑎}, the alloca-

tionmechanismM is such that the term

∑
𝑠∈𝑆 :𝑥𝜃�̂� (𝑠 )=𝑎

(
Π𝑠 𝑞(𝑥𝜃�̂� , 𝑠)

)
is non-decreasing in 𝜃𝑎 , where 𝑥

𝜃�̂� = M((𝜃𝑎)𝑎∈𝐴) is the allocation
returned by the mechanism with type profile (𝜃𝑎)𝑎∈𝐴 .
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Algorithm 1 Greedy

1: Inputs: set of scenes 𝑆 , set of ads 𝐴

2: Initialize 𝑅 ← 𝑆 , 𝑥 (𝑠 ) ← 𝑎∅ ∀𝑠 ∈ 𝑆
3: while 𝑅 ≠ ∅ do
4: (𝑠∗, 𝑎∗ ) ← argmax𝑠∈𝑅,𝑎∈𝐴 Π𝑠 �̃� (𝑥, 𝑠 ) 𝜃𝑎

⊲ Ties are broken according to Definition 3.1

5: 𝑥 (𝑠∗ ) ← 𝑎∗

6: 𝑅 ← 𝑅\𝑠∗

7: return 𝑥

3 POLY-TIME ALGORITHM FOR AD

ALLOCATION IN THE SI-NE SETTING

We focus on the basic SI-NE case with no externalities and scene-

independent quality. This case differs from the allocation problem in

ad auctions for two reasons: the allocation may be on a tree instead

of a line, and an ad can be displayed multiple times along a single

path of the tree. We show that we can design a polynomial-time

greedy algorithm facing this setting. Furthermore, this algorithm

plays a central role when solving more general settings. The pseu-

docode is reported in Algorithm 1. We denote with 𝑅 the subset of

scenes that have not been filled yet with an ad in𝐴∪{𝑎∅}. The algo-
rithm works iteratively and, at each step, it chooses a scene-ad pair

(𝑠∗, 𝑎∗) ∈ 𝑆 ×𝐴 which maximizes the expected value of allocating

an ad in an available scene. We define the following tie-breaking

rule to identify the unique pair chosen at each iteration (Line 4)

among all the possible value-maximizing pairs.

Definition 3.1. Let 𝑃 be the set of pairs (𝑠, 𝑎) returned by

argmax

𝑠∈𝑆,𝑎∈𝐴
Π𝑠 𝑞(𝑥, 𝑠) 𝜃𝑎 .

Whenever 𝑃 is not a singleton, ties are broken by assigning to

(𝑠∗, 𝑎∗) any pair (𝑠′, 𝑎′) such that |𝝈𝑠′ | is the minimum among all

|𝝈𝑠 | where (𝑠, 𝑎) ∈ 𝑃 , for some 𝑎 ∈ 𝐴.
After selecting the value-maximizing pair (𝑠∗, 𝑎∗), Algorithm 1

allocates ad 𝑎∗ to scene 𝑠∗ (Line 5). Then, scene 𝑠∗ is removed from

the set 𝑅 which contains the available scenes (Line 6). The algorithm

iterates until every scene has been filled with one ad. Finally, it

returns the allocation function 𝑥 . The following theorem shows

that Algorithm 1 returns an optimal allocation.

Theorem 3.2. Algorithm 1 computes an optimal solution to the
ad allocation problem in the SI-NE setting.

Proof. As a first step, we show that the value of an allocation 𝑥

can be decomposed into a component for each possible path.∑︁
𝑠∈𝑆

(
Π𝑠 𝑞(𝑥, 𝑠) 𝜃𝑥 (𝑠 )

)
=

∑︁
𝑠∈𝑆 :𝜌 (𝑠 )=∅

Π𝑠𝑉𝑠 (𝑥),

where 𝑉𝑠 (𝑥) =
∑
𝑠′∈𝝈𝑠 𝑞𝑥,𝑠𝜃𝑥 (𝑠 ) . To see that, it is sufficient to ob-

serve that given an 𝑠 , it holds

Π𝑠 𝑞(𝑥, 𝑠) 𝜃𝑥 (𝑠 ) =
©«

∑︁
𝑠′ :𝑠∈𝝈𝑠′ ,𝜌 (𝑠 )=∅

Π𝑠′ª®¬𝑞𝑥,𝑠𝜃𝑥 (𝑠 )
=

∑︁
𝑠′ :𝑠∈𝝈𝑠′ ,𝜌 (𝑠 )=∅

Π𝑠′𝑞𝑥,𝑠𝜃𝑥 (𝑠 )

and hence∑︁
𝑠∈𝑆

(
Π𝑠 𝑞(𝑥, 𝑠) 𝜃𝑥 (𝑠 )

)
=
∑︁
𝑠∈𝑆

∑︁
𝑠′ :𝑠∈𝝈𝑠′ ,𝜌 (𝑠 )=∅

Π𝑠′𝑞𝑥,𝑠𝜃𝑥 (𝑠 )

=
∑︁

𝑠∈𝑆 :𝜌 (𝑠 )=∅
Π𝑠

∑︁
𝑠′∈𝝈𝑠

𝑞𝑥,𝑠𝜃𝑥 (𝑠 )

=
∑︁

𝑠∈𝑆 :𝜌 (𝑠 )=∅
𝑉𝑠

Then, we observe that thanks to the tie breaking rule in Defi-

nition 3.1, the algorithm assigns ads to nodes from the top to the

bottom of the tree. Suppose by contradiction that Algorithm 1 as-

signs an ad 𝑎 to a node 𝑠1
such that there exists a node 𝑠2 ≠ 𝑠1

in

𝝈𝑠1

that is not assigned, i.e., with 𝑥 (𝑠2) = 𝑎∅ . Then, we have that
Π𝑠2

𝑞(𝑥, 𝑠2)𝜃𝑎 ≥ Π𝑠1

𝑞(𝑥, 𝑠1)𝜃𝑎 and by the tie breaking rule the ad

is assigned to node 𝑠2
. Let 𝑥∗ be the allocation returned by Algo-

rithm 1. Moreover, given a node 𝑠 , let 𝑥 ′ be a different allocation
with 𝑥 ′ (𝑠′) = 𝑥∗ (𝑠′) for all 𝑠′ that are predecessors of 𝑠 . Then, the
assignment rule in Line 4 of the algorithm implies that

𝑞(𝑥∗, 𝑠) 𝜃𝑥∗ (𝑠 ) ≥ 𝑞(𝑥 ′, 𝑠) 𝜃𝑥 ′ (𝑠 ) , (1)

where the inequalities follows since the value of assigning any ad

to 𝑠 does not change from the partial allocation 𝑥 considered by the

algorithm and the final allocation 𝑥∗ (and 𝑥 ′) since all the scenes
that precede 𝑠 have already been assigned. Let 𝑥∗ be the allocation
returned by Algorithm 1. We show that this allocation is optimal for

each possible path. Formally, given a terminal node 𝑠 , i.e., such that

𝜌 (𝑠) = ∅, and an optimal allocation 𝑥0 for the path that terminates

in 𝑠 , i.e., 𝑥0 ∈ argmax𝑥 𝑉𝑠 (𝑥), we show that 𝑉𝑠 (𝑥∗) ≥ 𝑉𝑠 (𝑥0). This
is sufficient to prove the theorem since it implies∑︁

𝑠∈𝑆

(
Π𝑠 𝑞(𝑥∗, 𝑠) 𝜃𝑥∗ (𝑠 )

)
=

∑︁
𝑠∈𝑆 :𝜌 (𝑠 )=∅

Π𝑠𝑉𝑠 (𝑥)

≥
∑︁

𝑠∈𝑆 :𝜌 (𝑠 )=∅
Π𝑠

max

𝑥
𝑉𝑠 (𝑥)

≥ max

𝑥

∑︁
𝑠∈𝑆 :𝜌 (𝑠 )=∅

Π𝑠𝑉𝑠 (𝑥)

= max

𝑥

∑︁
𝑠∈𝑆

(
Π𝑠 𝑞(𝑥, 𝑠) 𝜃𝑥 (𝑠 )

)
Given a terminal node 𝑠 , let 𝑥0 be the optimal allocation for the

path terminating in 𝑠 . We show how to modify iteratively 𝑥0 into 𝑥
∗

without decreasing the value of the allocation. This directly implies

that 𝑉𝑠 (𝑥∗) ≥ 𝑉𝑠 (𝑥0) and the optimality of 𝑥∗. We iterate over all

the 𝑖 ∈ {1, . . . , | 𝝈𝑠 |} and for each 𝑖 , we build an allocation 𝑥𝑖 such

that the expected value of 𝑥𝑖 is at least the expected value of 𝑥𝑖−1.

Moreover, the procedure guarantees that for each 𝑖 it holds 𝑥𝑖 (𝜎𝑠𝑗 ) =
𝑥∗ (𝜎𝑠

𝑗
) for all 𝑗 ≤ 𝑖 , implying 𝑥 |𝑆 | = 𝑥∗. The procedure works as

follows. We iterate over all the 𝑖 and given an 𝑖 we consider three

cases. Let 𝑆𝑖 be the set of scene 𝑠 in 𝝈𝑠 \𝝈𝑠𝑖
such that 𝑥𝑖−1 (𝑠) =

𝑥∗ (𝑠𝑖 ).
Case 1. Suppose that 𝑥∗ (𝜎𝑠

𝑖
) = 𝑥𝑖−1 (𝜎𝑠𝑖 ). Then, setting 𝑥𝑖 = 𝑥𝑖−1

we trivially satisfy the required conditions.

Case 2. Suppose 𝑥∗ (𝜎𝑠
𝑖
) ≠ 𝑥𝑖−1 (𝜎𝑠𝑖 ) and 𝑆𝑖 = ∅. Let 𝑥𝑖 (𝑠𝑖 ) =

𝑥∗ (𝑠𝑖 ) while the allocation 𝑥𝑖 is equivalent to 𝑥𝑖−1 in all the other

nodes. Then, the difference between the values of the allocations
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𝑥𝑖 and 𝑥𝑖−1 is 𝑞(𝑥𝑖 , 𝜎𝑠𝑖 )𝜃𝑥𝑖 (𝜎𝑠
𝑖
) −𝑞(𝑥𝑖−1, 𝑠

′)𝜃𝑥𝑖−1 (𝑠′ ) , where 𝑠
′
is the

last node in the path 𝝈𝑠
with 𝑥𝑖−1 (𝑠′) = 𝑥𝑖−1 (𝜎𝑠𝑖 ) (it may be 𝜎𝑠

𝑖
).

Moreover,

𝑞(𝑥𝑖 , 𝜎𝑠𝑖 )𝜃𝑥𝑖 (𝜎𝑠
𝑖
) = 𝑞(𝑥∗, 𝜎𝑠𝑖 ) 𝜃𝑥∗ (𝜎𝑠

𝑖
)

≥ 𝑞(𝑥𝑖−1, 𝜎
𝑠
𝑖 ) 𝜃𝑥𝑖−1 (𝜎𝑠

𝑖
)

≥ 𝑞(𝑥𝑖−1, 𝑠
′)𝜃𝑥𝑖−1 (𝑠′ ) ,

where the equality comes from the equivalence between 𝑥𝑖 and

𝑥∗ for all the scenes 𝜎𝑠
1
, . . . , 𝜎𝑠

𝑖
, the first inequality follows from

Eq. (1) and the second inequality from the fact that the quality

decreases when an ad is displayed multiple times. This proves that

the expected value of the allocation 𝑥𝑖 is at least the expected value

of the allocation 𝑥𝑖−1.

Case 3. Suppose 𝑥∗ (𝜎𝑠
𝑖
) ≠ 𝑥𝑖−1 (𝜎𝑠𝑖 ) and 𝑆𝑖 ≠ ∅. Let 𝑥𝑖 (𝜎𝑠𝑖 ) =

𝑥∗ (𝜎𝑠
𝑖
) and 𝑥𝑖 (𝑠′) = 𝑥∗ (𝜎𝑠

𝑖
), where 𝑠′ is an arbitrary scene in 𝑆𝑖 .

Moreover, let 𝑥𝑖 be equivalent to 𝑥𝑖−1 in all the other scenes. Then,

every ad appears the same number of times in the path 𝝈𝑠
in 𝑥𝑖

and 𝑥𝑖−1 and hence the expected value of the allocation does not

change from 𝑥𝑖−1 to 𝑥𝑖 . This concludes the proof. □

Note that, since the greedy algorithm returns an optimal alloca-

tion, it can be used with the Vickrey-Clarke-Groves mechanism [18]

to obtain a truthful mechanism in dominant strategies which runs

in efficiently (Myerson’s weak monotonicity is satisfied). Hence,

such mechanism can scale up to real-world settings.

4 THE SD-NE SETTING: DEALINGWITH

SCENE-DEPENDENT QUALITIES

In this section, we focus on the setting in which the quality of the

ads depends on the scene and there are no externalities. Initially,

we show that the allocation problem is APX-Hard. Our reduction is

based on the satisfiability problem 3-SAT-5 defined as follows.

Definition 4.1. A 3-SAT-5 instance is a 3-SAT instance in which

each variable appears in exactly 5 clauses.

As shown by [8], the following theorem holds.

Theorem 4.2. For some constant 0 < 𝑐 < 1, it is NP-Hard to
distinguish whether a 3-SAT-5 instance is satisfiable or there is no
assignment satisfying a 𝑐 fraction of the clauses.

Now, we can prove the following.

Theorem 4.3. The ad allocation problem in the SD-NE setting is
APX-Hard.

Proof. Let 𝜂 = max{𝑐, (1 − 1

5
5
)}, where 𝑐 is the constant factor

approximation in Theorem 4.2. Notice that Theorem 4.2 holds even

if we replace the approximation factor 𝑐 with the constant 𝜂 ≥ 𝑐 .

Given an instance of 3-SAT-5 with clauses 𝐶 and variables 𝑉 ,

we build an instance of the SD-NE problem as follows. The tree

of scenes is composed by a line with a scene 𝑠𝑣 for each 𝑣 ∈ 𝑉

in an arbitrary order. Then, it follows a line that includes a scene

𝑠𝑐 for each clause 𝑐 ∈ 𝐶 in an arbitrary order. All the transition

probabilities 𝜋𝑠,𝑠′ are set to 1. The set of ads 𝐴 includes two ads

𝑎𝑣 and 𝑎∼𝑣 for each variable 𝑣 . Let 𝜖 = 1 − 𝜂1/5
, and let 𝑙 denote a

literal, i.e., 𝑙 is a variable or its negation. The qualities of ads are
defined as follows: 𝑞𝑎𝑣 ,𝑠𝑣 = 𝑞𝑎∼𝑣 ,𝑠𝑣 = 1 for each 𝑣 ∈ 𝑉 , and for each

clause 𝑐 ∈ 𝐶 the quality is 𝑞𝑎𝑙 ,𝑠𝑐 = 𝜖 if the literal 𝑙 belongs to the

clause. Every other quality is 0. Finally, let 𝜃𝑎 = 1 for each 𝑎 ∈ 𝐴.
In the following, we show that if there exists an assignment that

satisfies all the clauses the utility is at least |𝑉 | + |𝐶 |𝜂4/5 (1 − 𝜂1/5),
while if no assignment satisfies a 𝜂 fraction of the clauses the utility

is at most |𝑉 | + (1 − 𝜂1/5)𝜂 |𝐶 |. To conclude the proof notice that

|𝐶 | = 3

5
|𝑉 |. Hence,

|𝑉 | + (1 − 𝜂1/5)𝜂 |𝐶 |
|𝑉 | + 𝜂4/5 (1 − 𝜂1/5) |𝐶 |

=
|𝑉 | + 3

5
(1 − 𝜂1/5)𝜂 |𝑉 |

|𝑉 | + 3

5
𝜂4/5 (1 − 𝜂1/5) |𝑉 |

=
1 + 3

5
(1 − 𝜂1/5)𝜂

1 + 3

5
𝜂4/5 (1 − 𝜂1/5)

,

which is a constant strictly smaller than 1.

Soundness. Consider an assignment 𝐿, i.e., a set of literals in-
cluding 𝑣 or ∼ 𝑣 for each variable 𝑣 ∈ 𝑉 , that satisfies all the clauses.

We build an assignment 𝑥 of ads to scenes as follows. For each

variable 𝑣 , let 𝑥 assigns the ad 𝑎𝑙 to the scene 𝑠𝑣 , where 𝑙 ∈ {𝑣,∼ 𝑣}
is the literal not in the assignment 𝐿, i.e., such that 𝑙 ∈ {𝑣,∼ 𝑣} \ 𝐿.
Finally, let assign to each scene 𝑠𝑐 , where 𝑐 ∈ 𝐶 , an ad 𝑎𝑙 such that

the literal 𝑙 ∈ 𝐿 satisfies the clause and belongs to 𝐿. This clause

exists since the assignment satisfies all the clauses. Then, for each

scene 𝑠𝑣 , 𝑣 ∈ 𝑉 , the value from the scene is 1. Moreover, for each

scene 𝑠𝑐 , where 𝑐 ∈ 𝐶 , we have that the quality 𝑞𝑠𝑐 ,𝑥 (𝑠𝑐 ) = 𝜖 , while

Ξ(𝑥, 𝑠𝑐 ) is at least (1 − 𝜖)4 since each literal appears in at most five

clauses. Hence, the value of the allocation is at least

|𝑉 | + |𝐶 | (1 − 𝜖)4𝜖 = |𝑉 | + |𝐶 |𝜂4/5 (1 − 𝜂1/5) .

Completeness. Consider an assignment of ads to nodes 𝑥 . Let

𝑉 ∗ ⊆ 𝑉 be the set of variables 𝑣 ∈ 𝑉 such that 𝑞(𝑥, 𝑠𝑣) = 1. Then,

notice that the expected value of each scene 𝑠𝑣 , 𝑣 ∈ 𝑉 \ 𝑉 ∗ is 0.

Let 𝐶∗ ⊆ 𝐶 be the set of clauses 𝑐 such that an ad is assigned to

𝑠𝑐 and 𝑞𝑥 (𝑠𝑐 ),𝑠𝑐 = 𝜖 . Then, notice that the expected value of each

scene 𝑠𝑐 , 𝑐 ∈ 𝐶 \ 𝐶∗ is 0. We can split 𝐶∗ in two subsets. The set

𝐶2 = {𝑐 ∈ 𝐶∗ : 𝑥 (𝑠𝑐 ) ∈ {𝑎𝑣, 𝑎∼𝑣}𝑣∈𝑉 ∗ }, while the set 𝐶1 = 𝐶∗ \𝐶2.

Then, we show that there exists a feasible assignment 𝐿 that satisfies

at least 𝐶2 clauses, implying that |𝐶2 | ≤ 𝜂 |𝑉 |. To see that, consider

the assignment 𝐿 = {𝑙 : 𝑎𝑙 ∈ {𝑥 (𝑠𝑐 )}𝑐∈𝐶2
}. As a first step, we show

that the partial assignment is feasible. Suppose by contradiction

that there exist two literals 𝑣,∼ 𝑣 belonging to 𝐿. Since 𝑎𝑣 ∈ 𝐿,

then there exists a clause 𝑐 ∈ 𝐶2 such that 𝑥 (𝑠𝑐 ) = 𝑎𝑣 . Moreover,

since 𝑐 ∈ 𝐶∗, the scene 𝑠𝑐 has positive quality and 𝑥 (𝑠𝑣) ≠ 𝑎𝑣 . Then,

since 𝑣 ∈ 𝑉 ∗, we have that 𝑥 (𝑠𝑣) = 𝑎∼𝑣 . By the definition of 𝐶∗, 𝐶2

does not include any clause 𝑐 such that 𝑥 (𝑠𝑐 ) = 𝑎∼𝑣 since they have
0 utility (the ad has been converted in scene 𝑠𝑣 and Ξ(𝑥, 𝑠𝑐 ) = 0).

Moreover, it is easy to see that the assignment satisfies all the

clauses in 𝐶2 by the definition of 𝐶∗ and the qualities of the scenes.

Now, we bound the cardinality of 𝐶1. Note that since each vari-

able 𝑣 ∈ 𝑉 appears in 5 clauses (considering 𝑣 and its negation), for

each variable 𝑣 ∉ 𝑉 ∗ there exist at most 5 clauses 𝑐 ∈ 𝐶 such that

𝑞𝑥 (𝑠𝑐 ),𝑠𝑐 = 𝜖 and 𝑥 (𝑠𝑐 ) ∈ {𝑎𝑣, 𝑎∼𝑣}. Then, for each 𝑐 ∈ 𝐶1 there

is a literal 𝑣 such that 𝑥 (𝑠𝑐 ) = 𝑎𝑣 or 𝑥 (𝑠𝑐 ) = 𝑎∼𝑣 , 𝑥 (𝑠𝑣) ≠ 𝑎𝑣 , and

𝑥 (𝑠𝑣) ≠ 𝑎∼𝑣 . Recall that 𝑉 \𝑉 ∗ is the set of 𝑣 such that 𝑥 (𝑠𝑣) ≠ 𝑎𝑣
and 𝑥 (𝑠𝑣) ≠ 𝑎∼𝑣 . Since each variable appears in at most 5 clauses,

we have that |𝐶1 | ≤ 5( |𝑉 | − |𝑉 ∗ |). Moreover, by the definition of 𝜂
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it holds 5𝜖 = 5(1 − 𝜂1/5) = 1. Hence, the total utility is at most

|𝑉 ∗ | + 𝜖
[
|𝐶2 | + |𝐶1 |

]
≤ |𝑉 ∗ | + 𝜖 [|𝐶2 | + 5( |𝑉 | − |𝑉 ∗ |)]
= |𝑉 |∗ + (|𝑉 | − |𝑉 ∗ |) + 𝜖 |𝐶2 |
= |𝑉 | + 𝜖 |𝐶2 |
≤ |𝑉 | + 𝜖𝜂 |𝐶 |

= |𝑉 | + (1 − 𝜂1/5)𝜂 |𝐶 |.
This concludes the proof. □

More interestingly, we can show that the ad allocation problem in

the SD-NE setting is APX-Complete by designing a polynomial-time

algorithm that works in a greedy fashion providing a constant ap-

proximation factor. To provide the algorithm, we need to introduce

some preliminary steps. Initially, we establish a relation between

ad allocations and matroids. A matroidM B (𝐺,I) is defined by a
ground set 𝐺 and a collection I of independent sets, i.e., subsets of
𝐺 satisfying some characterizing properties (see [19] for a detailed

formal definition). We denote with B(M) the set of the bases ofM,

which are the maximal sets in I. We show that feasible allocations

can be represented by the matroidM B (𝐺,I) such that:

• the ground set is𝐺 B {(𝑎, 𝑠) | 𝑎 ∈ 𝐴 ∪ {𝑎∅}, 𝑠 ∈ 𝑆},
i.e, the set of all the possible assignments of ads to

scenes;

• a subset 𝐼 ⊆ 𝐺 belongs to I if and only if 𝐼 contains

at most one pair in {(𝑎, 𝑠) | 𝑎 ∈ 𝐴 ∪ {𝑎∅}} for each
scene 𝑠 ∈ 𝑆 , i.e., each scene is assigned at most one ad

(while an ad can be allocated to multiple scenes).

Intuitively, an element (𝑎, 𝑠) of the ground set 𝐺 belongs to the

independent set 𝐼 if the ad 𝑎 is allocated to scene 𝑠 . However, sets

𝐼 ∈ I do not characterize allocations, as they may not specify an

ad for each scene. Indeed, allocations are captured by the basis

set B(M) of the matroid M. Let us recall that B(M) contains
all the maximal sets in I and, thus, a subset 𝐼 ⊆ I belongs to

B(M) if and only if 𝐼 contains exactly one pair for each scene 𝑠 ∈ 𝑆 .
Intuitively, a basis 𝐼 ∈ B(M) defines an allocation such that, each

scene 𝑠 ∈ 𝑆 is assigned the ad 𝑎 such that (𝑎, 𝑠) ∈ 𝐼 . This ad is

unique by construction as discussed above.

Then, the utility function 𝑓 on a subset of 𝐺 is as follows.

Definition 4.4. Let 𝑓 : 2
𝐺 → R+ be the function such that, given

a subset 𝐷 ∈ 2
𝐺
, 𝑓 (𝐷) denotes the expected value of assigning to a

scene 𝑠 the ad such that (𝑎, 𝑠) ∈ 𝐷 without externalities.
2
Formally:

𝑓 (𝐷)B
∑︁
𝑠∈𝑆

∑︁
𝑎∈𝐴:(𝑎,𝑠 ) ∈𝐷

Π𝑠𝑞𝑎,𝑠𝜃𝑎

∏
𝑠′∈𝝈𝑠 \{𝑠 }:(𝑎,𝑠′ ) ∈𝐷

(1 − 𝑞𝑎,𝑠′ ) .

Function 𝑓 satisfies a crucial property: it provides a decreasing
marginal return. In particular, we show that the utility function

𝑓 : 2
𝐺 → R+ is monotone submodular. Formally, a function is

monotone if for every pair of subsets𝐷1, 𝐷2 such that𝐷1 ⊆ 𝐷2 ⊆ 𝐺 ,

the property 𝑓 (𝐷1) ≤ 𝑓 (𝐷2) holds. Moreover, we say that 𝑓 is

submodular if, for every pair of subsets 𝐷1, 𝐷2 such that 𝐷1 ⊆
𝐷2 ⊆ 𝐺 and (𝑎, 𝑠) ∈ 𝐺 , the following property holds:

𝑓 (𝐷1 ∪ {(𝑎, 𝑠)}) − 𝑓 (𝐷1) ≥ 𝑓 (𝐷2 ∪ {(𝑎, 𝑠)}) − 𝑓 (𝐷2) .
Now, we provide a characterization of the function 𝑓 (·).

2
Notice that this defines a feasible allocation only if 𝐷 ∈ I.

Lemma 4.5. Given a subset 𝐷 ∈ 2
𝐺 , 𝑓 (𝐷) can be written as:

𝑓 (𝐷) =
∑︁

𝑠∈𝑆 :𝜌 (𝑠 )=∅
Π𝑠

∑︁
𝑎∈𝐴

𝜃𝑎 𝑓𝑠,𝑎 (𝐷),

where

𝑓𝑠,𝑎 (𝐷) =
∑︁

𝑠′∈𝝈𝑠
:(𝑎,𝑠′ ) ∈𝐷

𝑞𝑎,𝑠′
∏

𝑠′′∈𝝈𝑠′ \{𝑠′ }:(𝑎,𝑠′′ ) ∈𝐷
(1 − 𝑞𝑎,𝑠′′ ).

Exploiting this characterization, we can show that function 𝑓 (·)
is monotone submodular. The possibility to allocate an ad multiple

times along the same path is necessary for submodularity.

Lemma 4.6. Function 𝑓 (·) is monotone submodular.

Given the submodularity of 𝑓 (·), we can resort to standard tools

of submodular maximization to provide an efficient algorithm to

optimize 𝑓 over I. In particular, we can use the continuous greedy
algorithm to provide a (1−1/𝑒)-approximation [3]. Then, to provide

an approximation to the optimal ad allocation, we consider the

equivalence between independent sets 𝐼 ∈ I and ad allocations 𝑥 .

Theorem 4.7. The ad allocation problem in the SD-NE setting
admits a polynomial-time algorithm that provides a (1 − 1/𝑒) ap-
proximation.

The impossibility of designing polynomial-time algorithms find-

ing an optimal allocation in the SD-NE setting (unless P = NP) rules
out the possibility of using the Vickrey-Clarke-Groves mechanism

and poses the question whether we can design a truthful mecha-

nism in dominant strategies running in polynomial time. Moreover,

the analysis of the weak monotonicity of the continuous greedy

approach is elusive. An intriguing idea is to use Algorithm 1. In-

deed, to maximize monotone submodular functions we can use the

simpler greedy approach instead of the more complex continuous

greedy with a small loss in the approximation factor. In particular,

the greedy algorithm provides a
1

2
-approximation to monotone sub-

modular maximization on a matroid [17]. However, even though

Algorithm 1 exhibits weak monotonicity in the SI-NE setting, we
show with the following proposition that this property does not

hold in the SD-NE setting. Therefore, it cannot be used for designing
a truthful mechanism.

Proposition 4.8. Algorithm 1 does not satisfy Myerson’s weak
monotonicity in the SD-NE setting.

5 THE SI-E SETTING: DEALINGWITH

EXTERNALITIES

In this section, we focus on the setting in which there are exter-

nalities among ads and the quality of the ads does not depend on

the scene. We start our analysis by providing a strong impossibility

result. We show that the allocation problem is hard to approximate

and that the hardness of the approximation depends on the mem-

ory length 𝑘 . Our reduction is from the following promise problem

related to the problem of finding cliques in graphs [12, 21].

Theorem 5.1. For every 𝜖 > 0, it isNP-Hard to distinguish whether
a graph 𝐺 = (𝑉 , 𝐸) with vertexes 𝑉 and edges 𝐸 has a clique of size
|𝑉 |1−𝜖 or all the cliques have a size of at most |𝑉 |𝜖 .
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Algorithm 2 Greedy–si–e

1: Inputs: set of scenes 𝑆 , set of ads 𝐴, memory length 𝑘

2: 𝑆1 ← {𝑠 ∈ 𝑆 : | 𝝈𝑠 | ∈ {1 + 𝑗 (𝑘 + 1) } 𝑗 ∈N}
3: 𝑥∗ ← Greedy(𝑆1, 𝐴)
4: return 𝑥∗

We can show that it is NP-Hard to provide an approximation to

the ad allocation problem in the SI-E setting which is sublinear in

the memory length 𝑘 . Formally, we can state the following:

Theorem 5.2. For any 𝜖 > 0, it is NP-Hard to approximate the ad
allocation problem in the SI-E setting to within a factor |𝑘 + 1|1−𝜖 ,
where 𝑘 is the memory length.

We can show that the problem admits a polynomial-time approx-

imation algorithm that provides a
1

𝑘+1 -approximation, matching

the lower bound stated above. The pseudocode is provided in Algo-

rithm 2. It extends the greedy algorithm in Section 3 as follows.

Algorithm 2 allocates ads only to scenes at depth {1+𝑖 (𝑘+1)}𝑖∈N,
i.e., it allocates ads only to the scenes 𝑠 ∈ 𝑆 such that | 𝝈𝑠 | ∈
{1 + 𝑖 (𝑘 + 1)}𝑖∈N. In this way, the allocated ads are not subject to

any externalities. Moreover, as we show in the following theorem,

we allocate ads to a subset of scenes sufficiently large to guarantee

a
1

𝑘+1 -approximation of the optimal utility. Then, Algorithm 2 com-

putes the optimal allocation resorting to Algorithm 1. The following

theorem formally states the guarantees of the algorithm.

Theorem 5.3. Algorithm 2 provides a 1

𝑘+1 -approximation to the ad
allocation problem in the SI-E setting. Moreover, it runs in polynomial
time.

Finally, we focus on Myerson’s weak monotonicity, and we show

that Algorithm 2 is monotone.

Proposition 5.4. Algorithm 2 satisfies Myerson’s weak mono-
tonicity property.

Therefore, the resulting mechanism in which the allocation func-

tion is given by Algorithm 2 and the payments are defined as in

Myerson’s Lemma [16] is truthful in dominant strategies.

6 THE SD-E SETTING: APPROXIMATING THE

GENERAL PROBLEM

In this section, we deal with the general ad allocation problem in

which there are both externalities among ads and scene-dependent

qualities. As Theorems 4.3 and 5.2 show, the problem in the SD-E
setting is Poly-APX-Hard. In particular, Theorem 5.2 rules out the

possibility of providing an approximation sublinear in 𝑘 in poly-

nomial time. In this section, we show that the problem in the SD-E

setting admits a polynomial-time algorithm that provides a ( 1−1/𝑒
𝑘+1 )-

approximation, thus matching the inapproximability lower bound

provided by Theorem 5.2.

Let the matroid (𝐺,I) and the function 𝑓 be defined as in Sec-

tion 4. We show that we can apply Algorithm 3 to find a
1−1/𝑒
𝑘+1 -

approximation to the problem in the SD-E setting. In particular,

the algorithm follows the approach of Section 5, except that it

needs to evaluate all the sets of scenes {1 + 𝑗 (𝑘 + 1)} 𝑗∈N, {2 +
𝑗 (𝑘 + 1)} 𝑗∈N, . . . , {𝑘 + 𝑗 (𝑘 + 1)} 𝑗∈N as the qualities depend on the

Algorithm 3 Greedy–sd–e

1: Inputs: set of scenes 𝑆 , set of ads 𝐴, memory length 𝑘

2: for 𝑖 ∈ {1, . . . , 𝑘 } do
3: 𝑆𝑖 ← {𝑠 ∈ 𝑆 : | 𝝈𝑠 | ∈ {𝑖 + 𝑗 (𝑘 + 1) } 𝑗 ∈N}
4: 𝑥𝑖 ← ContinuousGreedy(𝑆𝑖 , 𝐴, 𝑓 )
5: 𝑖∗ ← argmax𝑖∈{1,...,𝑘}

∑
𝑠∈𝑆

(
Π𝑠 �̃� (𝑥𝑖 , 𝑠 ) 𝜃𝑥𝑖 (𝑠 )

)
6: return 𝑥𝑖∗

scene. Intuitively, the rationale is to enumerate these sets of scenes

and, for each of them, to approximate the optimal allocation that

employs only those scenes with the continuous greedy algorithm

used in the SD-NE setting. This is necessary because the quali-

ties are scene-dependent, and therefore, we have to include each

scene in at least one of the considered allocations. We denote with

ContinuousGreedy(𝑆,𝐴, 𝑓 ) the continuous greedy algorithm that

works with thematroid defined in Section 4. It considers only scenes

in 𝑆 and ads in 𝐴 and optimize the monotone submodular function

𝑓 defined is Section 4. Finally, we take the best allocation among

those evaluated by the algorithm. The resulting approximation fac-

tor combines the approximation factors retrieved in the SD-NE and

in the SI-E settings. The pseudocode is provided in Algorithm 3.

The following theorem states the guarantees of the algorithm.

Theorem 6.1. Algorithm 3 provides a 1−1/𝑒
𝑘+1 -approximation to

the ad allocation problem in the SD-E setting. Moreover, it runs in
polynomial time.

We conclude by showing that neither Algorithm 1 nor its exten-

sion Algorithm 2 are weakly monotone in the SD-E setting. This

result follows from the non-monotonicity of Algorithm 1 in the

simpler SD-NE setting (see Proposition 4.8).

Proposition 6.2. Neither Algorithm 1 nor Algorithm 2 satisfies
Myerson’s weak monotonicity in the SD-E setting.

Remark 1. We can derive an algorithm similar to Algorithm 3 by
replacing the continuous greedy algorithm (Line 4) with the greedy
Algorithm 1, obtaining a 1/2

𝑘+1 -approximation factor. This algorithm
does not satisfy Myerson’s weak monotonicity in the SD-E setting.

7 THE ADVANTAGE OF ALGORITHMS

LEVERAGING AN ACCURATE USER MODEL

In this section, we underline the importance of adopting an accu-

rate user model. Specifically, under the assumption that our model

captures real-world users’ behavior, we compare the performance

of algorithms disregarding basic user features (i.e., the externalities,
the sequential traversal of scenes, or the quality dependence on

scenes) with the performance of our approximation algorithms.

Proposition 7.1. An algorithm disregarding scene-dependent
qualities or externalities or sequential traversal of scenes can lead
to solutions arbitrarily worse than those returned by Greedy–sd–e,
even in simple instances.

In the following example we show that algorithms disregarding

externalities achieve an allocation value arbitrarily smaller than

that provided by our approximation algorithms. In particular, we
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consider a setting in which user’s behavior is influenced by exter-

nalities and ad qualities are scene dependent. In the Supplemental

Material we provide further examples supporting Proposition 7.1.

Example 7.2. Consider a setting with 2𝑛 scenes {𝑠1, . . . , 𝑠𝑛}, with
𝑛 ∈ N, where 𝑠𝑖+1 ∈ 𝜌 (𝑠𝑖 ) and 𝜋𝑠𝑖 ,𝑠𝑖+1 = 1 for every 𝑖 < 𝑛, while

any other 𝜋𝑠,𝑠′ = 0. There are 2𝑛 ads with 𝑞𝑎 = 1, 𝜃𝑎 = 1, and

𝛾𝑎,𝑎′ = 0 for every other 𝑎′. The memory length is 𝑘 = 1. Algo-

rithm 2 guarantees at least 1/2 of the optimal value. It allocates

ads in the odd scenes, providing a value of 𝑛, which is the optimal

allocation. A greedy algorithm similar to Algorithm 2, that disre-

gards externalities, allocates one ad per scene, providing a value of

1, which corresponds to a 1/𝑛-ratio of the optimum.

8 EXPERIMENTAL EVALUATION

In the SD-E setting, we compare our algorithms Greedy (Algo-

rithm 1) and Greedy–sd–e (Algorithm 3 in which we replace the

continuous greedy algorithm at Line 4 with Algorithm 1) with opt,

a baseline algorithm which returns the optimal solution to the ad

allocation problem. To compute opt, we formulate the ad allocation

problem as an Integer Linear Program (ILP). Being the objective

funciton nonlinear, we apply linearinzation techniques and then, we

compute the optimal solution using Gurobi solver. Further details

on opt are provided in the Supplemental Materials.

Figure 2 shows the allocation expected value and the execution

time of the algorithms averaged over 20 instances, which are perfect

binary trees. The colored area represents the standard deviation.

The dependence on the scene is simulated by sampling the ad quali-

ties from Beta distributions with a spike on a scene, while the exter-

nalities among different ads are randomly generated. We set user

memory 𝑘 = 1 and we consider the set of ads𝐴 = {𝑎∅ , 𝑎1, 𝑎2, 𝑎3, 𝑎4}
with value per conversion 𝜃𝑎 = 1 for all 𝑎 ∈ 𝐴. The algorithms are

tested on trees of varying depth, spanning from 1 to 5.

Figure 2 (top) shows the allocation expected value, which grows

in the depth of the tree. The value is determined by summing the

contributions of an increasing number of ads as the depth increases.

We run algorithm opt until depth 4 because of the exponential

growth of its execution time. We observe that the performance of

algorithm Greedy is comparable to that of opt, while its execution

time scales up to larger instances, as shown in Figure 2 (right).

Moreover, Greedy outperforms Greedy–sd–e. This behavior is

expected since Greedy–sd–e is robust to worst-case instances in

which externalities push ads value towards zero. In particular, each

time it selects an ad𝑎𝑖 , with 𝑖 ≠ ∅, it allocates𝑎∅ to the𝑘 consecutive
slots to avoid the effect of potentially strong externalities. However,

on average instances, Greedy results more profitable, by collecting

the value coming from a larger number of allocated ads. In Figure 2

(bottom), we observe that at depth 5, the execution time of Greedy–

sd–e is approximately the 10% of that of Greedy. This suggests

that Greedy–sd–e could be a valuable choice for large instances.

9 CONCLUDING REMARKS AND FUTURE

WORKS

We initiate the investigation of advertisingmodels for self-contained

environments, such as augmented-reality platforms. Users experi-

ence a continuous experience over time. Hence, it becomes possible

for platforms to control which ads show during their traversal

Figure 2: Performance of algorithmsGreedy (blue),Greedy–

sd–e (green) and opt (orange).

of scenes. We exploit the structure of this environment to maxi-

mize ad allocations value through efficient algorithms by taking

into account externalities among ads and the dependence of their

performance on the visited scene. We provide tight computational

complexity results and show that a simple greedy algorithm guaran-

tees a constant approximation when the length of the user memory

𝑘 is fixed. We also discuss whether the provided allocations satisfy

Myerson’s weak monotonicity so as to be adopted in truthful mech-

anisms. Interesting future directions would be to further investigate

the design of truthful mechanisms and to develop online learning

algorithms to estimate the parameters of our model.
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