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ABSTRACT
Reinforcement Learning (RL) is a widely employed technique in
decision-making problems, encompassing two fundamental oper-
ations – policy evaluation and policy improvement. Actor-critic
algorithms dominate the field of RL, but there is a challenge in
improving their learning efficiency. To address this, ensemble crit-
ics are often employed to enhance policy evaluation efficiency.
However, when using multiple critics, the actor in the policy im-
provement process can obtain different gradients. Previous studies
have combined these gradients without considering their disagree-
ments. Therefore, optimizing the policy improvement process is
crucial to enhance the learning efficiency of actor-critic algorithms.
This study focuses on investigating the impact of gradient dis-
agreements caused by ensemble critics on policy improvement. We
introduce the concept of uncertainty of gradient directions as a
means to measure the disagreement among gradients utilized in the
policy improvement process. Through measuring the disagreement
among gradients, we find that transitions with lower uncertainty
of gradient directions are more reliable in the policy improvement
process. Building on this analysis, we propose a method called von
Mises-Fisher Experience Resampling (vMFER), which optimizes
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the policy improvement process by resampling transitions and as-
signing higher confidence to transitions with lower uncertainty of
gradient directions. Our experiments on Mujoco robotic control
tasks and robotic arm tasks with sparse rewards demonstrate that
vMFER significantly outperforms the benchmark and is particularly
well-suited for ensemble structures in RL.
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1 INTRODUCTION
Recent advancements in reinforcement learning (RL) have shown
remarkable progress, notably in complex task handling [1–3]. Yet,
the challenge of enhancing learning efficiency in RL remains.

At its core, RL involves policy evaluation and improvement [4].
Methods like Double Q-learning [5], SAC [6, 7], TD3 [8], and REDQ
[9] have optimized policy evaluation using ensemble critics. How-
ever, these critics can lead to disagreements during policy improve-
ment. Typically, methods aggregate multiple gradients into one,
∗The corresponding authors.
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Figure 1: A simple example to demonstrate the the uncer-
tainty of gradients in policy improvement. Left: The ensem-
ble Q-values; Right: The uncertainty of gradients caused by
the ensemble structure in policy improvement process.

overlooking these disagreements. Alternatives like delayed policy
update in REDQ and TD3, while ensuring more reliable gradients,
ignore discrepancies among transitions.

We propose an approach to optimize policy improvement by
selectively avoiding delayed updates for transitions with reliable
gradients under current ensemble critics. We introduce a metric
to measure the gradients’ reliability and identify appropriate tran-
sitions for policy improvement. As ensemble critics become more
accurate, the concentration of policy gradient directions increases.
We define the uncertainty of gradient directions to assess the reli-
ability of transitions under the current ensemble structure. From
a directional statistics view [10], we model these directions as a
distribution, using the von Mises-Fisher distribution [11] for com-
putational efficiency.

Our novel von Mises-Fisher Experience Resampling (vMFER) al-
gorithm uses gradient direction uncertainty to resample transitions,
enhancing policy improvement efficiency by favoring transitions
with lower uncertainty.

Our contributions include:

(1) Introducing an uncertainty metric for assessing transition re-
liability in policy improvement, analyzing gradient direction
discrepancies caused by ensemble critics.

(2) Proposing the vMFER algorithm, improving learning effi-
ciency and optimality in actor-critic algorithms by resam-
pling based on gradient uncertainty, applicable tomost ensemble-
structured actor-critic algorithms.

(3) Demonstrating vMFER’s effectiveness in complex control
tasks [12, 13], highlighting its broad applicability.

2 MOTIVATION & APPROACH
Figure 1 elucidates the challenges faced during the policy improve-
ment phase. To further underscore the importance of accounting for
gradient uncertainty in this process, we use a straightforward shoot-
ing task as an illustrative example, presented in Figure 2. All three
methods employ identical ensemble critics, ensuring no variation in
the policy evaluation phase. However, during policy improvement
process, the ‘Uniform’ approach randomly samples transitions, the
‘Uncertainty’ approach selects transitions with lower uncertainty
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Figure 2: In a one-step MDP shooting scenario, we assess the
impact of gradient uncertainty on performance. Left: Various
methods’ policy trajectories in action space, optimal action
denoted by a green star. Right: Episode returns comparison.

of gradient directions, and the ‘Oracle’ approach uses transitions
that directly advance the action towards the optimum.

To further extend our methodology into practical RL applications
and enhance the policy improvement process, we approach from
a directional statistics perspective [14–16]. We employ the von
Mises-Fisher distribution [17–19] to model the gradient directions
corresponding to each transition during policy improvement. This
method quantifies the uncertainty of gradient directions for each
transition under the current ensemble critics. The formulations are
presented in Eq. (1) and Eq.(2), which correspond to resampling
probabilities based on uncertainty and rank, respectively.

𝑃 ( 𝑗 |𝑥 (𝑠 𝑗 ),D) =
exp(R(𝑠 𝑗 )𝜇T (𝑠 𝑗 )𝑥 (𝑠 𝑗 ))
𝑀∑
𝑖
exp(R(𝑠𝑖 )𝜇T (𝑠𝑖 )𝑥 (𝑠𝑖 ))

(1)

𝑃 ( 𝑗 |𝑥 (𝑠 𝑗 ),D) =
𝑟𝑎𝑛𝑘 (exp(R(𝑠 𝑗 )𝜇T (𝑠 𝑗 )𝑥 (𝑠 𝑗 )))

−1

𝑀∑
𝑖
𝑟𝑎𝑛𝑘 (exp(R(𝑠𝑖 )𝜇T (𝑠𝑖 )𝑥 (𝑠𝑖 )))−1

. (2)

3 EXPERIMENTS & CONCLUSION
We conducted experiments across six MuJoCo tasks (Hopper, Ant,
Swimmer, HalfCheetah, Humanoid,Walker), evaluating the average
performance improvement our method brings compared to baseline
algorithms, as shown in Table 1.

The results consistently indicate performance enhancements
from our method, demonstrating compatibility with most algo-
rithms using the Actor-Critic framework. Overall, vMFER proves
to be an effective scheme for optimizing the policy improvement
process, offering significant performance gains with a marginal
additional computational cost.

SAC TD3 SAC+PER

baseline 100% 100% 100%
vMFER (rank) 106.84% 111.62% 102.09%
vMFER (uncertainty ) 113.78% 117.75% 107.17%

Table 1: Average performance improvement of vMFER over
baseline, calculated by aggregating performance gains across
all tasks.
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