AAAI Track

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Controlling Delegations in Liquid Democracy

AAAI Track
Shiri Alouf-Heffetz Tanmay Inamdar Pallavi Jain
Ben-Gurion University Indian Institute Of Technology Indian Institute Of Technology
Beer Sheva, Israel Jodhpur Jodhpur
shirihe@post.bgu.ac.il Jodhpur, India Jodhpur, India
taninamdar@gmail.com pallavijain.t.cms@gmail.com
Nimrod Talmon Yash More Hiren
Ben-Gurion University Indian Institute Of Technology
Beer Sheva, Israel Gandhinagar
talmonn@bgu.ac.il Gandhinagar, India
yash.mh@iitgn.ac.in

ABSTRACT

In liquid democracy, agents can either vote directly or delegate
their vote to a different agent of their choice. This results in a
power structure in which certain agents possess more voting weight
than others. As a result, it opens up certain possibilities of vote
manipulation, including control and bribery, that do not exist in
standard voting scenarios of direct democracy. Here we formalize
a certain kind of election control - in which an external agent
may change certain delegation arcs — and study the computational
complexity of the corresponding combinatorial problem.

KEYWORDS

Computational social choice; proxy voting; liquid democracy; ma-
nipulation; computational complexity; parameterized complexity

ACM Reference Format:

Shiri Alouf-Heffetz, Tanmay Inamdar, Pallavi Jain, Nimrod Talmon, and Yash
More Hiren. 2024. Controlling Delegations in Liquid Democracy: AAAI
Track. In Proc. of the 23rd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 — 10,
2024, ITFAAMAS, 9 pages.

1 INTRODUCTION

Liquid democracy is an innovative approach to democratic gov-
ernance that can be thought of as a middle-point between direct
and representative democracy. It has attracted significant attention
both from practitioners and from academics, mainly as it offers
greater flexibility to voters: essentially, voters participating in liq-
uid democracy can not only choose how to fill their ballot, but they
can choose instead of filling their ballot to delegate their vote to
another voter of their choice.

More elaborately, unlike traditional models where agents either
directly participate in the decision-making process by explicitly

Authors are ordered in the alphabetical order of their last names.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 — 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

This work is licensed under a Creative Commons Attribution
International 4.0 License.

2624

casting their vote — as in direct democracy - or elect representatives
to make decisions on their behalf - as in representative democracy,
liquid democracy offers a hybrid system that allows for both direct
and indirect participation. At its core, liquid democracy enables
individuals to delegate their voting power to trusted proxies while
retaining the option to vote directly on specific issues. This fluidity
of participation holds the potential to enhance democratic engage-
ment, facilitate more informed decision-making, and address the
limitations of existing democratic systems.

One of the key advantages of liquid democracy indeed lies in the
added flexibility it provides to voters. By allowing individuals to
delegate their voting power to trusted proxies, liquid democracy
empowers citizens to actively participate in decision-making even
when they are unable to devote extensive time and effort to every
issue. This flexibility enables individuals to delegate their votes
to experts or representatives they trust on specific subjects, while
still retaining the ability to directly vote on matters that are of
particular importance to them. Importantly, this has the potential
of increasing the quality of the decision making process.

Like any democratic system, however, liquid democracy is not
immune to potential challenges, including the risk of voter manip-
ulation. Given the fluid nature of delegation, there is the natural
concern that influential or malicious actors could exert undue influ-
ence by strategically delegating votes or exploiting the trust placed
in them as proxies. Such manipulation could undermine the princi-
ples of fairness and equality that are fundamental to the democratic
process. The issue of the vulnerability of liquid democracy to cer-
tain different forms of manipulation has yet to receive sufficient
attention from the research community.

Here we consider several forms of manipulation in the context
of liquid democracy. In particular, we concentrate on the computa-
tional complexity of successfully conducting these manipulations.
In particular, we are interested in the situation in which some ex-
ternal agent tries to rig the result of the election by redirecting few
delegation arcs.

We define a corresponding combinatorial problem and study
its computational complexity. We observe cases that allow for
polynomial-time algorithms, cases that allow for XP algorithms, pa-
rameterized (approximation) algorithms, as well as cases for which

https://orcid.org/0000-0002-0184-5932
https://orcid.org/0000-0001-8900-9797
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

AAAI Track

no efficient algorithms exist (assuming certain complexity theoretic
hypothesis, such as P # NP).

We wish to stress that liquid democracy is currently utilized in
practical settings for decisions of varying significance, from polit-
ical realms like the German Pirate Party to financial contexts in
various blockchain ventures. Its appeal lies both in its potential
to enhance democratic participation as well as its promise to im-
prove the quality of the decision making itself. Thus, we argue that,
recognizing the limitations and vulnerability of liquid democracy
to external forms of influence - such as the ones we study in the
current paper — is essential for a better understanding and usage of
liquid democracy.

2 RELATED WORK

By now;, liquid democracy has attracted significant attention from
the research community. In particular, it is studied from a po-
litical science perspective [4, 20]; from an algorithmic point of
view [7, 10, 19]; from a game-theoretic point of view [3, 12, 22]; and
from an agenda aiming at pushing its boundaries by increasing the
expressiveness power that is granted to voters [6, 18].

Here we study election control in liquid democracy; in this con-
text, we mention the extensive survey on control and bribery [14].
Indeed, due to their importance, the problems of control and bribery
are studied thoroughly [2, 5, 21].

To the best of our knowledge, however, the topic of election
control and bribery in the context of liquid democracy was not
yet studied. We do mention the work of [22] and its follow up
paper [9], in which agents may behave strategically. Note, however,
that we are interested not in vote manipulation (by the community
members themselves) but in election control (by an external agent).
Thus, from this point of view, our work extends the vast literature
on control and bribery - that is currently applied to settings such as
single-winner elections and multiwinner elections - to the setting
of liquid democracy. And, as the most distinguishing feature of
liquid democracy is its usage of vote delegations, we study the
natural control action of altering the delegations themselves.

Another related line of research focuses on opinion diffusion in
social networks. Following vote delegation chains in liquid democ-
racy mirrors the process of tracking preferences in opinion diffusion.
Notably, [1, 13] provided insights into opinion propagation using a
voting rule similar to our approach for resolving multi-delegations.

Finally, note that the type of liquid democracy we consider here
is not only the standard type in which a voter may delegate their
vote to a single other voter but also a version in which a voter may
delegate to several other voters, in which case the votes of this
set of voters is aggregated to compute the vote of the delegating
voter. In this context, we are closer to more advanced types of liquid
democracy [8, 17].

3 CONTROL BY REDIRECTING ARCS

Next, we first position our work within the landscape of control
problems for liquid democracy; and then describe our formal model.

3.1 Liquid Democracy and Election Control

Generally speaking, when considering election control in liquid
democracy, there are several orthogonal factors to take into account:

2625

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

o The ballot type: e.g., whether ballots are binary, plurality,
approval, ordinal, cumulative.

e The delegations type: e.g., whether delegations are transi-
tive, coarse-grained or fine-grained [6, 18], whether several
delegations are possible for a single agent.

e The actions at the disposal of the controlling agent: e.g.,
whether the controlling agent can add edges, remove edges,
redirect edges, change the ballots of some voters.

e The goal of the controlling agent: e.g., whether the goal is to
make some predefined preferred candidate win the election.

Following the taxonomy above, it is worthwhile to note that
here we consider: approval ballots; transitive coarse-grained ballots
with possibly more than one delegate to each agent; a controlling
agent that can only redirect edges and whose goal is to make some
predefined preferred candidate a winner of the election after the
controlling actions and the unraveling of the (partially modified)
delegations.

3.2 Formal Model

We describe our formal model. Our formal model contains the
following ingredients:

e Asetof votersV ={vy,...,0n}.
o A delegation graph G = (V,E), which is a directed graph
where the voters are the vertices. If the delegation graph has
an out-degree of at most one, then we sometimes refer to the
situation as a “single-delegation” setting; while, in general, it
is a “multi-delegation” setting. A voter v; with out-degree 0
is said to be an active voter, while a voter v; with out-degree
strictly positive is said to be a passive voter.
A cost function cost: E(G) — N. The cost of an arc in the
delegation graph G is the cost of redirecting this arc.
We consider approval elections, so there is a (global) set of
candidates C = {cy, ..., ¢y} and each active voter v; corre-
sponds to a ballot b; C C.
An unraveling function R that takes several ballots and re-
turns a ballot; it is used in the following way: the ballot
of a passive voter delegation to active voters with ballots
b1,...,b; is unravelled to the ballot R(by,...,b;), as ex-
plained next.) Note that, throughout the paper we consider
several rules R as the unravelling function as described be-
low. In particular, we consider the following rules:
— The union function: here, R returns the union of the
ballots it gets as input: R(b1, ..., bt) = Uze[]bz-
- Approval function: an approval function takes a ballot
and returns the set of candidates approved by the maxi-
mum number of voters.
GreedyMRC function: Under GreedyMRC, we return a
set of candidates obtained by the following method: we
start with an empty set and perform a sequence of itera-
tions, where in each iteration we (a) add to the current set,
a set of candidates S approved by the largest number of
voters (all the candidates in S are approved by the same
number of voters) and (b) remove the voters that approve
candidates in S from further consideration.
Note that the choice of unraveling function is only relevant
for multiple delegation.

AAAI Track

e Given a delegation graph G and an unraveling function R,
we can define the unraveled vote of each passive voter by
following its delegations transitively; in particular, a passive
voter v; with out-arcs to uj, uz, u3 — say, all of which are
active voters — will be assigned the unravelled ballot b;
R (u1, uz, uz); this happens transitively (i.e., at each level). For
simplicity, assume that there are no cycles.From real-world
applications of liquid democracy, in particular in the context
of the LiquidFeedback platform, we know that usually the
number of cycles is rather limited in practice. Let b; be the
ballot of v; if v; is an active voter and its unravelled vote if
v; is a passive voter.

A voting rule ‘W that takes a set of (possibly some of which
are unravelled) ballots and returns a candidate ¢* € C as the
winner of the election. Note that, throughout the paper we
consider ‘W as the Approval voting rule, which returns
the name of the candidate with the highest number of votes;
we discuss other options in the Outlook section towards the
end of the paper.

An external agent — referred to as the controller — who has
a predefined budget of k and who can change a set of arcs,
say S, whose total cost is at most k and whose goal is to
make some predefined preferred candidate c* a winner of
the election where we first redirect the arcs in S, then unravel
all delegations using R, then apply ‘W on the (direct and
unravelled) ballots, and then see whether ¢* is in the winning
committee w.

By redirecting an arc we mean taking an arc (u, v), removing
it from the graph, and inserting a different arc (u,v”).

So, formally, the problem we are considering in this paper can
be defined as follows:

CONSTRUCTIVE CONTROL BY REDIRECTING ARCS

(CCRA)

Input: A delegation graph G = (V, E) with costs function
cost with approval ballots over a set of candidates C, an
unraveling function R, a voting rule ‘W, a preferred can-
didate c*, and a budget k.

Question: Does there exist a delegation graph G’ that is
achieved from G by performing redirections within the
budget k, such that, after unraveling all of the delegations
of G’ using R, ¢* is the unique winner of the resulting
election using ‘W?

We denote the number of delegation as #delegations and the
number of approvals as #approvals.
The following example illustrates our model.

Example 1. Consider the delegation graph in Figure 1 on the voter set
{01, v2,03,04, 05,06} and the candidate set {c1, co, c3, c*}, where c* is
the preferred candidate. Let the cost of every arc be 1. Consider union
function as the unraveling function R and approval voting as the
voting rule ‘W. In Figure 1(a), since vz delegates to vs and v4, the vote
of vz is {c1, ¢z, c*}. Similarly, the vote of vs is {c1, c2} and the vote of
vy is {c1, ¢z, c3,c*}. Since ¢y is approved by the maximum number
of voters, ¢ is the winner in the delegation graph in Figure 1(a). We

2626

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Cy, C Cy, C:
'Ud{ 1,62} 1'3{ 1,02}

Va{cy, "} vg{cr, ¢t}

vgles. ¢’} Us vg {cs ¢'}

(b)

Figure 1: (a) Input delegation graph, (b) Delegation graph
after redirecting arc (v5,v3) to (vs, v6)

redirect the arc (vs, v3) to (vs, v6) as depicted in Figure 1(b). Now, c* is
approved by 5 voters (all but vs approves c*) and no other candidate is
approved by 5 voters. Thus, ¢* is the unique winner in the delegation
graph in Figure 1(b).

Table 1 and Table 2 summarise the classical and parameterized
complexity of our problem, respectively.

REMARK 1. Note that ‘W can be any single-winner voting rule
operating on approval ballots. Similarly, R can be any committee
selection rule with variable number of winners (usually referred to
as a VNW rule) [15]. As such, it means that our model is general
enough to apply any VNW rule to its unravelling procedure and any
single-winner voting rule as its winner selection procedure.

REMARK 2. In many works on liquid democracy there is an under-
lying social graph connecting the voters and voters can only delegate
to their corresponding friends. Note that, in our setting, a voter can
delegate to any other voter; so, put differently, we study the special
case in which the underlying social graph is a clique. Since we study
a special case, our hardness results hold also for the general case with
an arbitrary underlying social graph.

All the missing proofs are in supplementary. We assume the
familiarity with the parameterized and approximation algorithms.
Their definitions are discussed in the supplementary.

4 HARDNESS RESULTS

We begin with our results regarding the computational hardness
of the CCRA problem. Both our NP-hardness results are due to
the polynomial-time reduction from the VERTEX COVER problem
in cubic graphs and the W[2]-hardness results are due to the same
reduction from the HITTING SET problem.

In the VERTEX COVER problem in cubic graphs, given a cubic
graph G = (V,E) (the degree of every vertex is three), and an
integer k, the goal is to find a set S C V(G) of size at most k such
that at least one of the endpoint of every edge is in S. The problem
is known to be NP-hard [16]. In the HITTING SET problem, given a
universe U, a family, ¥, of subsets of U, and an integer I; the goal
isto findaset S C U such that for every set F € F,SNF # 0. Note
that HITTING SET is a generalisation of the VERTEX COVER problem,
and it is known to be W[2]-hard with respect to the parameter
k [11].

We begin with our first hardness result.

Theorem 1. CCRA is NP-hard when R is union function or approval
function or GreedyMRC funtion even when

(1) every vertex in the delegation graph satisfies one of the follow-
ing conditions:

AAAI Track

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Table 1: Computational Complexity of CCRA

#delegations=1

#delegations > 1

#approvals = 1 #approvals > 1 [

#approvals = 1

#approvals > 1

P(Theorem 3)

NP-complete(Theorem 2) | NP-complete(Theorem 1)

NP-complete(Theorem 1)

Table 2: Parameterized Complexity of CCRA. Here, §*(G) is the maximum out-degree of a
vertex in G, 6~ (G) is the maximum in-degree of a vertex in G, and A(G) is the maximum length
of a path in the delegation graph G. ? denote that the complexity is open.

Parameters #delegations=1

#delegations > 1

#approvals > 1

#approvals = 1 #approvals > 1

#voters (n)
#active voters (t)
#candidates (m)
§*(G) + 87 (G) + #approvals
57 (G) + A(G) + #approvals
k + #redirections

FPT(Theorem 4)

paraNP-hard(Theore:

XP(Theorem 5), FPT-ASY{Theorem 6)
XP, FPT-ASYCorollary 1)
paraNP-hard(Theorem 2)

m 2)

W/[2]-hard {(Theorem 2)

FPT(Theorem 4) FPT(Theorem 4)
? ?

? ?
paraNP-hard(Theorem 1) paraNP-hard(Theorem 1)
paraNP-hard(Theorem 1) paraNP-hard(Theorem 1)
W/[2]-hard {Theorem 1) W/[2]-hard {Theorem 1)

2 The parameter is t + €.
b The parameter is m + €.

b For both the results, we assume that there is an active voter who either approves only ¢* or any subset of candidates that excludes

c*

4 The result holds even when 6" (G) + 8~ (G) + #approvals is constant or A(G) + #approvals is constant.
€ The result holds even when 8~ (G) + #approvals is constant or A(G) + #approvals is constant.

(a) out-degree is at most three, the maximum length of a path
in the delegation graph is at most two, and the cost of arcs
belong to {1,2}

(b) out-degree is at most two and in-degree is at most two

(2) size of approval set is one
(3) only one voter approves c*

Furthermore, it is W[2]-hard with respect to k + #redirections with
all the above constraints except that in 1(a) out-degree is not bounded
by a constant.

Proor. We focus the proof for the union function. The proof is
exactly the same for other two unraveling functions as well since
in our gadget the set of candidates obtained by all these unraveling
functions is same.

We give a polynomial time reduction from the VERTEX COVER
problem in cubic graphs. Let (G, k) be an instance of VERTEX COVER
such that G is a cubic graph. We construct an instance of CCRA
that satisfies constraints 1(a), 2, and 3 in the theorem statement.
We will discuss later the required modifications for constraint 1(b).
The construction is as follows.

e For every edge e € E(G), we have a candidate c.. Addition-
ally, we have a candidate c¢* (our preferred candidate).

For every vertex v € V(G), we have two passive voters v
and o/, and v delegates to v’. The cost of this arc is 1.

For every edge e € E(G), we have an active voter e who
approves the candidate c,. If u is an endpoint of e, then u’
delegates to e and the cost of this arc is 2.

We add a special voter v* who approves the candidate c*.
For every edge e € E(G), we add a set of dummy voters
D? ={df,...,d;_.}. Each dummy voter in D° delegates to
the active voter e and the cost of this arc is 2.

The budget k is k.

2627

Let H be the delegation graph that we constructed. Note that in this
graph the score of ¢* is 0 and k for every other candidate. Figure 2
illustrates the construction.

v’}
D
k—4
vertices
2
o1
1 e }
™0
U2 2 k:z}
N O
< e
v
O——=0%:-
DA Codce,}
vertex gadget edge gadget

Figure 2: Illustration of NP-hardness claimed in Theorem 1
with constraints 1(a), 2, and 3. The dotted arcs are to illustrate
that the out-degree of every v’ is three. Here, e; = ujuy is an
edge in G. An approved candidate by an active voter is written
in the blue color next to the voter name. The number on the
top of an edge is the cost of redirection.

Next, we prove the correctness. In the forward direction, suppose
that S is a solution to (G, k). Without loss of generality, we assume
that |S| = k. If v € S, then we redirect the arc (v,0") to (v, ™). Since
the cost of arc (v,0”) is 1 and |S| = k, the total cost of redirection
is k. Now, we prove that ¢* is the unique winner in the delegation
graph H* obtained after redirections. For every vertex v € S, we

AAAI Track

have an arc (v, ™) in H*. Furthermore, since v is the source vertex
(vertex with in-degree zero) in the delegation graph, the vote of ¢*
is k. For every edge e(= uv) € E(G), u’ and o” delegates to e. Since
either u or v is in S, the vote of candidate c, decreases by at least 1,
hence, the score of ¢, in H* is at most k — 1 (k — 5 votes are due to
dummy voters). Thus, ¢* is the unique winner in H.

In the reverse direction, suppose that H* is the delegation graph
obtained after redirecting arcs within the budget such that c* is
the unique winner. Let S be the set of arcs that are redirected in H
to obtain H*. We can safely assume that all the arcs are redirected
to o™ because if an arc is redirected to some other voter say v,
then instead of v, redirecting it to 0* increases the score of ¢* and
decrease the score of other voters. We modify S a bit as follows.
Suppose that an arc (d,e) € S, and (u’,e) ¢ S, where v’ is a voter
corresponding to the vertex u € V(G), which is an endpoint of the
edge e € E(G). Then, delete (d, ¢) from S and add (¢’, €) in S. Note
that the cost of both the arcs is same, so there the total cost remain
same. Redirection of arc (d, e) decreases the score of the candidate
ce by 1 and increase the score of ¢* by 1. However, redirection of
arc (u/, e) decreases the score of the candidate c, by at least 1 and
increase the score of ¢* by at least 1 (“at least" because we might
have already redirected arc (u, e)). Thus, S is still a solution. We
can safely assume that if an arc (u/, e) is redirected, then (u,u”)
is not redirected as it only contributes in the cost, but does not
increase/decrease the score.

We construct a set S’ C V(G) as follows: if an edge incident to
u' ((u,u’) or (v, e)) is in S, add the vertex u € V(G) in S’. Next,
we prove that §’ is a vertex cover of G of size at most k. Let a, §, y
be the number of arcs in S, that are incident on dummy voters, arcs
of type (u/, e), and arcs of type (u,u”). Thus, the cost of redirection
is 2a + 28 + y and the score of c* isa + 25 +y.

Claim 1. By redirecting arcs in S, the score of every candidate c,
where e € E(G), reduces by at least 1.

ProorF. Note that in the delegation graph H, the score of every
candidate c., where e € E(G), is k and the score of ¢* is 0. If there
exists a candidate whose score is k in the delegation graph H*,
then the score of ¢* is at least k + 1. Thus, a + 2 +y > k. Hence,
2a+2f+y > k, a contradiction to the fact that the cost of redirection
is at most k. O

Due to Claim 1 and the modified S, we know that for every voter
e, either (u’,e) € Sor (u,u’) € S (not both), where u is an endpoint
of edge e € E(G). Thus, due to the construction of ', for every edge
e € E(G), at least one of its endpoint is in §’. We next claim that the
size of §’ is at most k. For every vertex u € V(G), either (u,u”) € S
or (u/,e), not both. Thus, |S'| = f+y. Since 2a + 2 +y < k, it
follows that f +y < k. Hence, |S'| < k.

This completes the proof of Theorem 1 with constraints 1(a), 2,
and 3.

Next, we mention the required modification to decrease the in-
degree and out-degree of the delegation graph. Figure 3 illustrates
these modifications. Now, every vertex u € V(G), we add four
passive voters u,u’, 1, and #; u delegates to u’ as earlier, and u’
delegates to @ and @. For every edge e € E(G), we have a passive
voter e and an active voter e/ who votes for the candidate c.. The
passive vote e delegates to e’. Let ey, e, e3 be the edges incident to

2628

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

the vertex u in G. Then, @ delegates to e; and e, and & delegates to
e3. In particular, @ delegates to two passive voters corresponding
to two edges incident to u in G, and @ delegates to the passive
voter corresponding to the third edge incident to u in G. Note
that the score of ¢ in H was k, where e € E(G). Thus, to meet
the same score, we add k — 8 dummy passive voters in D®. Let
D¢ = {d¢,.. ,,d,‘é_s}. Then, for every i € [k — 7], dl.e delegates to
dfﬂ, and dli—s delegates to e’. The budget is same as earlier, i.e.,

k = k. To ensure that the arc (e, ¢’) is not redirected, we set the cost
of this arc as k + 1, for every e € E(G). Furthermore, we set the cost
of arc (u,u’) as 1 and the remaining arcs as k + 1. The correctness
is same as earlier. Note, that now we can only redirect the arcs of
type (u, u”) within the budget.

D

k—38
vertices

O—0O—— —0

T~
T

vertex gadget

edge gadget

Figure 3: Modifications in Figure 2 in the vertex gadget, edge
gadget, and dummy vertices for NP-hardness of Theorem 1
with constraint 1(b). Here, u is an endpoint of e in G.

Instead of VERTEX COVER, if we give the same reduction from the
HrITTING SET problem, we obtain the claimed W[2]-hardness. O

Since the problem is NP-hard even for two delegations, next we
study the problem for single delegation. Unfortunately, we again
have a negative result.

Theorem 2. CCRA is NP-hard when R is union function or approval
function or GreedyMRC function, #delegations =1 even when

(1) the delegation graph satisfies one of the following conditions:
(a) the maximum length of a path in the delegation graph is at
most one and the cost of all the arcs is 1
(b) every vertex in the delegation graph has in-degree at most
one
(2) size of approval set is at most three
(3) only one voter approves c*

Furthermore, it is W[2]-hard with respect to k +#redirections even
when #delegations = 1 and condition 1 and 3 holds.

Proor. We focus the proof for the union function. The proof is
exactly the same for other two unraveling functions as well since
in our gadget the set of candidates obtained by all these unraveling
functions is same.

AAAI Track

We give a polynomial time reduction from the VERTEX COVER
problem in cubic graphs. Let (G, k) be an instance of VERTEX COVER
such that G is a cubic graph. The idea is similar to the one used
to prove Theorem 1. Here, u delegates to u’ and u’ approves all
the candidates corresponding to the edges incident on u. Dummy
voters in D¢ delegate to the voter corresponding to the edge e, who
approves ce. Figure 4 illustrates the construction. Next, we present
the construction, in detail. We first construct an instance of CCRA
that satisfies constraints 1(a), 2, and 3 in the theorem statement.
We will discuss later the required modifications for constraint 1(b).
The construction is as follows.

e For every edge e € E(G), we have a candidate c.. Addition-
ally, we have a candidate ¢* who is our favorite candidate.
For every u € V(G), let E,, be the set of candidates corre-
sponding to the edges incident to u in G.

For every vertex u € V(G), we have a passive voter u and
an active voter u’. The voter u delegates to u’ and the voter
u’ approves all the candidates in E,.

For every edge e € E(G), we have an active voter e who
approves the candidate c.

For every edge e € E(G), we add a set of dummy voters
D ={df,...,d;_,}. Each dummy voter in D° delegates to
the active voter e and the cost of this arc is 1.

e We add a special voter v* who approves the candidate c*.
o The cost of all the arcs is 1.

e The budget k is k.

Let H be the delegation graph that we constructed. Note that in
this graph the score of ¢* is 0 and k for every other candidate.

Oel{cﬂl } Oem{cem}
! 1
D
—
k—4
vertices vertices
1 1
/O p !
Uy uy [, Un, Up, By,

O’U*{C*}

Figure 4: Illustration of NP-hardness claimed in Theorem 2.
E, is the set of candidates corresponding to the edges incident
to u in G. The set of approved candidates by an active voter is
written in the blue color next to the voter name. The number
on an edge is the cost of redirection.

To prove the result for the constraint 1(b), 2, and 3, we do the
same modification as in Theorem 1. Note that the only active voters
e, for every e € E(G) has large in-degree. All the other vertices
have in-degree (out-degree) at most 1. Thus, to decrease the out-
degree of e, we add a path on the dummy voters. That is, for every
i € [k—5],e € E(G), d{ delegates to df, ; and d£74 delegates to the
voter e. Figure 5 illustrates the modification. The cost of arc of type

2629

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

(u,u’) is 1 and for the remaining arcs, it is k + 1. The correctness is
same as earlier. Now, we can only redirect the arcs of type (u,u’).

Qemfee,}
€1 DGm
— — N —
v~ o

k—4 k—4
vertices vertices
1 1

O——0 Oo——0

g, U By,

OU*{C*}

Figure 5: Modifications in Figure 5 for NP-hardness of Theo-
rem 1 with constraint 1(b).

Instead of VERTEX COVER, again if we give the same reduction
from HITTING SET, we obtain the claimed W[2]-hardness with
respect to k + #redirections, but the size of approval set is no
longer a constant.

o

The complexity of CCRA when #delegations =1 and
#approvals = 2 elude us so far.

5 ALGORITHMIC RESULTS

In this section, we design exact, parameterized, and approximation
algorithms for CCRA in various settings.

Preprocessing. We perform the following simple preprocessing
step on the given CCRA instance. We partition the active voters
into equivalence classes based on their approval sets, i.e., for each
subset C’ C C of candidates, let Scv be the set of active voters
whose approval set is equal to C’. Then, for each C’ such that S¢ is
non-empty, we add a virtual active voter vy —who does not have an
actual vote, i.e., does not add to the resulting scores— and add arcs
from each original active voter v € S¢r to v of cost co. It is easy to
see that this results in an equivalent instance of CCRA wherein the
number of active voters is upper bounded by the number of subsets
C’ C C such that S¢v # 0, which is at most 2™. In the following
algorithms, we work with the instances of CCRA preprocessed in
this manner.

5.1 Polynomial-Time Algorithm

In the following theorem, we give a polynomial-time algorithm for
CCRA in the single-delegation, single-approval setting.

Theorem 3. CCRA is polynomial-time solvable when #delegations
1 and #approvals = 1.

ProoF. Due to preprocessing and #approvals = 1, we know
that each active voter votes for a distinct candidate and t = m.
Let us arbitrarily number the active voters as vg, v1, 02, . ..,0; such
that each v; votes for candidate c;, where ¢; = ¢*, our preferred

AAAI Track

candidate. Since #delegations = 1, the set of vertices currently
voting for c;, by the virtue of the active voter v; forms a tree, say T;.
First, we prove the following lemma that is used as a subroutine in
the main algorithm.

Lemma 1. There exists a polynomial-time algorithm that returns,
foreach 1 < i < t, an array A; of length |V (T;)| + 1, such that for
each 0 < j < |V(Ty)|, AilJj] is equal to the minimum-cost of a subset
of arcs from T;, whose redirection yields at least j votes for ¢*. One
can also compute in polynomial-time, as the corresponding subsets of
arcs realizing the minimum cost.

Proor. We perform a bottom-up dynamic programming on the
T;, which we root at the active voter v;. Thus, every arc (u,0) is
directed from a child u to its parent v. For each vertex v with parent
w, we associate two arrays, namely A, and B, — since the root v;
does not have a parent, we only define By, for it, which is also the
final output of the algorithm.

Let £, denote the number of nodes in the subtree rooted at v
(denoted by Ty), then A, has length £, + 1 and B, has length ¢,,
these two arrays represent the computational primitives for the
dynamic steps in the algorithm. For 0 < j < £, — 1, By[j] is the
minimum cost of arcs from E(T,), whose redirection yields at least
Jj votes from V(T,) \ {v}; whereas for 0 < j < £, Ay[j] is the
minimum cost of arcs from E(T,) U {(v, w)}, whose redirection
yields at least j votes from V(T;).

Leaf case. If u is a leaf, then By, is an array of length 1, with
B, [0] = 0.

Computing A, given By. Let v be a vertex (other than the
root v;) with parent w. Suppose we have already correctly com-
puted the array By, of length ¢ = |V(T,)|. Then, we define A, [¢] =
cost((v, w)), since redirection of edge (v, w) is the only way to ob-
tain ¢ votes. For all other 0 < j < £ — 1, define

Ao[j] = min {By[j], cost((v, w))}. (1)

Computing B, given the arrays A for the children. Consider
a vertex v with children uy, uy, ..., u, (numbered arbitrarily), and
foreach1 < q<r,let eq = (uq, v) be the edge between v and g-th
child. Suppose that we have computed the arrays A, for every vq.
For simplicity, we denote Ay, by Ag. We compute the array B, by
iteratively merging the arrays for the children, as follows. First, we
merge A<1 = A; and Ay to compute B<y (discussed next). Then,
we merge A<y with A3 to compute A<3, and so on. The final output
B, is equal to A<; computed in this manner.

Now we discuss how to compute A< 41, given an array A<y of
length t’; + 1, where {’; =|U1<q<y V(Tu,)l, and an array Ay, of
length £41+1. This is done as follows. For each 0 < j < t’; +y1+1,
define

min
OSxSmin{j,t’;}

A<yrilil = {Acylx] +Aynli-x1} (@)

The correctness of the dynamic program is argued in the supple-
mentary.]

We use the algorithm in Lemma 1 to compute the arrays A;[-]
for each 0 < i < t (since v; votes for c*, we will not redirect any
arcs out of tree T;). We use these arrays to perform another level of
dynamic programming, to solve CCRA optimally. Our DP table is

2630

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

parameterized by a tuple, (i, k, x), where 0 < i < t,and0 < x, k < n,
and the corresponding entry T[i, k, x] is equal to the minimum cost
of arcs redirected from Ty U... UT; to get at least k votes for ¢* (i.e.,
the arcs will be redirected into v;), and leaving at most x votes for
the first i candidates, cq, ..., c;.

For the base case, we define T[0,k,x] = 0iff k = x = 0 and
T[0, k, x] = +oo otherwise. Suppose we have already computed all
the entries of the form T[i — 1, k, x]. Let [; = |V(T;)| + 1 denote the
number of voters in the i-th tree. We compute the entries in the
i-th row using the following recurrence.

Tli,k,x] = min {A;[j]+T[i-1,k—-j,x]}
li—x<j<l;

i

®)

The correctness of this recurrence is argued in the supplementary.
The final output of the algorithm is the minimum value T[t, k, x|
overall0 < x <k < n.

m}

5.2 Parameterized Algorithms

We design the fixed-parameter tractable (FPT) algorithms with re-
spect to the parameters, number of vertices (n), the number of
active voters (t), and number of candidates (m). First, we have the
following result.

Theorem 4. CCRA is FPT w.r.t. the parameter n.

Proor. The proof is by enumerating solutions and returning a
minimum-cost solution found wherein our preferred candidate c*
is the unique winner. Note that the number of redirected arcs in any
solution is at most n2, and for each redirected arc, there are at most
n choices for the new destination. Thus, the number of solutions is
upper bounded by an’ . pn’ = 20(n*logn) I the single-delegation
scenario (i.e., #delegations = 1), note that the number of edges in
the graph is upper bounded by n, and thus the running time of the

algorithm improves to 20(n10gn) O

Now we turn to CCRA when #delegations = 1and #approvals >
1, and first design an XP algorithm for CCRA parameterized by the
number of active voters (Theorem 5). Subsequently, we show that
in the special case of this setting, one can obtain an FPT approxi-
mation scheme (FPT-AS) for CCRA parameterized by the number
of active voters (Theorem 6), i.e., a (1 + €)-approximation for the
minimum cost that runs in time f(t,€) - (m + 1)) where t is the
number of active voters.

Theorem 5. CCRA is XP with respect to t, the number of active
voters when #delegations = 1.

Proor skeTCH. For each active voter v;, 1 < i < t, let T; be the
corresponding tree and let /; = |[V(T;)| denote the number of voters
in the tree.

Fix 1 < i < t. We generalize the dynamic programming algo-
rithm from Lemma 1 to first compute the answers to the subprob-
lems of the following form. Let S = {v1, 02, ...,vy } be a multiset of
size 1 < t' < t (with repetitions) such that v; € {1,2,...,1;}. Then,
let T[i, S] denote the minimum cost of deleting a subset of arcs
A from T; such that, A can be decomposed into A W Ap W ... Ap,
where the total number of votes obtained from the set A; is at least
v;. In the supplementary, we generalize the algorithm from Lemma

1, and show that table can be computed in time n@).

AAAI Track

Suppose that we have computed the tables T[i, S] for each i and
each multiset S. Now, fix an optimal solution. Foreach 1 < i # j < t,
let n(i, j) denote the number of votes redirected by the optimal
solution from T; into v ;. We guess the numbers n(i, j) - note that the

number of guesses is upper bounded by n”. Fix one such guess. For
each 1 < i < t, define the multiset S; = {n(i,j): 1 < j < t,j # i},
and we look up the optimal cost of redirecting a subset of arcs
from T; to get the votes as given in S; using the entry T[i, S;]. The
total cost corresponding to this guess is defined as Zle T[i, S;].
Finally, we return the minimum solution found over all guesses.
It follows that the algorithm runs in time n©(*) and returns an
optimal solution. O

Now we consider the special case of CCRA in the single dele-
gation, multi-approval setting, where our preferred candidate ¢*
appears separately from the rest of the candidates. More specifi-
cally, we assume that there exists an active voter, say v;, whose
approval set is equal to {c¢*}, and the approval sets of other active
voters do not contain ¢* - note that they may be arbitrary subsets
of C\ {c*}. At an intuitive level, this setting is easier to handle
due to the fact that, in an optimal solution, each redirected edge is
redirected into v;. We proceed to the following theorem that gives
an FPT approximation scheme (FPT-AS).

Theorem 6. CCRA with #delegations = 1 and #approvals > 1,
admits an FPT-AS parameterized by t and € in the special setting,
where c* appears separate from the rest of the candidates. That is, in
this setting, for any 0 < € < 1, there exists an algorithm that runs in
time (t/e)om -(m+ n)o(l) and returns a solution of cost at most
(1 + €) times the optimal redirection cost.

Proor. First, by iterating over all edges, we “guess” the most
expensive edge in the optimal solution. Consider one such guess
corresponding to edge e with cost w. In the following, we describe
the algorithm assuming this guess is correct, i.e., w is indeed the
weight of the most expensive edge in the optimal solution. Then,
we want to find a solution that only contains edges of cost at most
w, which implies that OPT, the cost of the optimal solution is at
least w and at most n - w (recall that #delegations = 1, so the total
number of edges in G is at most n).

Next, for each active voter v; # v1, let w; denote the total cost of
the edges redirected from the tree T; into v7 in the optimal solution.
Note that }\; w; = OPT. Let w; = max {w;, ew/2n}. Note that
ew/n < w] < wn, and Zf:z w] < (1+¢€/2) - OPT, where OPT
denotes the cost of an optimal solution. Next, let p; = [log,, . (w)],
i, (1+€/3)P is the smallest power of 1+ ¢ that is at least w]. Note
that for each 2 <i < 1, log; . j3(ew/2n) < p; < logy ¢ /5(nw) +1,
which implies that all the value of p; lies in the interval of range

logn
r= log1+€/3 (—61'4’)}”2”) =0(>).
Next, we guess the value of p; for each 2 < i < t - note that the
number of guesses is at most r' 1. Let p). p}. ..., p} be the guessed
values. Then, we use the polynomial-time algorithm in Lemma 1

to find, for each 2 < i < t, the largest number of votes that can

be obtained from the tree T; using cost at most (1 + €/3)P%, and
redirect such edges to v1. After doing this for all 2 < i < t, we
check whether ¢* is the unique winning candidate. We return the
minimum-cost solution found over all guesses for w and all guesses

2631

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

for p]. Note that when we correctly guess the values of p;, it holds
w; < (1+ ¢/3)Pi, thus, the maximum number of votes from T; that
can be obtained using a budget of (1 +¢/3)?! is at least the number
of votes that can be obtained using a budget of w;. Thus, in the
iteration corresponding to the correct guess, when each guessed
value is indeed equal to p; , the number of votes obtained for c* is
no fewer than that in the optimal solution (since from each tree T;,
the number of votes obtained by a solution of cost (1 + €/ 3)1’; is no
fewer than that of cost w;). Furthermore, the cost of the combined
solution thus obtained, is at most (1 +€/2) - (1+¢/3) < (1+¢)
times the cost of an optimal solution.

Finally, we argue about the running time, which is dominated
by the number of guesses for the values of p;. The total number
logn) o(t)

= . Now we consider two cases. If

1 Oo(1
O,

of guesses is at most (

r < logn

< Toglogn® then the previous quantity is at most

o(t)
logn logn +\O(1) .
w, then € < (E) . Thus, m

either case, we can upper bound the number of guesses, and in turn
the running time of the algorithm by (/)90 . (m+n)°PW),

Otherwise, if t >

[m]

Recall that our preprocessing step bounds the number of active
voters t by the number of distinct approval sets, which is at most
2. Thus, Theorem 5 and Theorem 6 immediately result in the
following corollary.

Corollary 1. Consider CCRA when #delegations 1 and
#approvals > 1. In this setting, the problem is XP w.r.t. m (the
number of candidates), and admits an FPT-AS parameterized by m
and € in the special case when c¢* appears separate from the rest of
the candidates.

6 OUTLOOK

As liquid democracy is gaining more attention in different applica-
tions — as well as more real-world usage, including in high-stakes
ones — it is important to study different aspects of it, including
the possibility of external agents controlling and rigging elections
performed using liquid democracy. In this context, here we consid-
ered a particular form of election control for liquid democracy by
redirecting arcs. Below we describe few future research directions
that we view as important and promising: (1) A natural expansion
of our work may be to consider not only single-winner elections
but also multiwinner elections; and, related, to consider other un-
raveling functions R and other voting rules ‘W. (2) A different
generalization of our work is to consider general underlying social
graphs, as described in Remark 2. (3) An immediate future research
direction is to consider other forms of election control and bribery,
e.g. do not redirect arcs but change the delegation graph in other
ways. (4) Another future research direction would be to study the
type of control we study here but from a more practical point of
view, e.g., by performing computer-based simulations to estimate
the feasibility of successfully controlling a real world election by
redirecting liquid democracy arcs.

AAAI Track AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

REFERENCES [12] Bruno Escoffier, Hugo Gilbert, and Adéle Pass-Lanneau. 2019. The convergence

[1] Mohammad Abouei Mehrizi and Gianlorenzo D’Angelo. 2020. Multi-winner of iterative delegations in liquid democracy in a social network. In Proceedings of
election control via social influence. In Proceedings of SIROCCO °20. 331-348. S{AGT 19: 284_297' i X . X

[2] John] Bartholdi III, Craig A Tovey, and Michael A Trick. 1992. How hard is it to [13] PIOFr AFahs}zews“.kl, Rica Goner}, Martm KouFecky, and Nimrod TaImon.‘ 2022.
control an election? Mathematical and Computer Modelling 16, 8-9 (1992), 27-40. Opinion 4lﬁu51°n and campaigning on society graphs. Jjournal of Logic and

[3] Daan Bloembergen, Davide Grossi, and Martin Lackner. 2019. On rational dele- C'omputa.tzon 32"6 (202?)’ 1162-1194. X i i
gations in liquid democracy. In Proceedings of AAAI ’19’, Vol. 33. 1796-1803. [14] Piotr Faliszewski and Jorg Rothe. 2016. Control and Bribery in Voting. In Hand-

[4] Christian Blum and Christina Isabel Zuber. 2016. Liquid democracy: Potentials, bgok of C“omp utqtzonal S?F’a? Choice. Cambndge University Press, .14§_168'
problems, and perspectives. Journal of political philosophy 24, 2 (2016), 162-182. [15] Plptr Fal}szewskl, Arkadii Slmko, and N1mr0§ Talmon. 2020. Multiwinner rules

[5] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon. 2016. with variable number of winners. In Proceedings of ECAI '20. 108 Press, 67-74.
Complexity of shift bribery in committee elections. In Proceedings of AAAI '16, [16] M.R. Garey, David S. Johnson, and_ LarryJ. Stoc?meyer. 1974. Some Simplified
Vol. 30. NP-Complete Problems. In Proceedings of STOC *74. ACM, 47-63.

[6] Markus Brill and Nimrod Talmon. 2018. Pairwise Liquid Democracy. In Proceed- [17] Paul Golz, Anson Kahng, Simon Mackenzie, and Ariel D Procaccia. 2021. The fluid
ings of IJCAI "18, Vol. 18. 137-143. mechanics of liquid democracy. ACM Transactions on Economics and Computation

[7] Toannis Caragiannis and Evi Micha. 2019. A Contribution to the Critique of 9,4 (2921_)’ 1-39.)))
Liquid Democracy. In Proceeedings of IJCAI ’19. 116-122. [18] Pallavi Jain, Krzysztof Sornat, and Nimrod Talmon. 2022. Preserving consistency

[8] Rachael Colley, Umberto Grandi, and Arianna Novaro. 2022. Unravelling multi- for liquid knapsack voting. In Proceedings of ECAI "22. 221-238.

agent ranked delegations. Autonomous Agents and Multi-Agent Systems 36, 1 [19] Anson Kahng, Simon Mackenzie, and Ariel Procaccia. 2021. Liquid democracy:
(2022), 9. An algorithmic perspective. Journal of Artificial Intelligence Research 70 (2021),
[9] Gianlorenzo d’Angelo, Esmaeil Delfaraz, and Hugo Gilbert. 2022. Computation 1223,71252‘_ . L
and bribery of voting power in delegative simple games. In Proceedings of AAMAS [20] Alois li’auhn. 2020. An overview of ten years of liquid democracy research. In
22, Vol. 1. 336-344. DG.0 "20. 116-121. ‘ ' o
[10] Palash Dey, Arnab Maiti, and Amatya Sharma. 2021. On parameterized complex- [21] AI‘EIAD Procaccia, Jeffrey S Rgsenslchem, and Aviv ZO}}M 2007. Mu}tl’wlﬂﬂef
ity of liquid democracy. In Proceedings of CALDAM ’21. 83-94. Elections: Complexity of Manipulation, Control and Winner-Determination.. In
[11] Rodney G. Downey and Michael R. Fellows. 1995. Fixed-Parameter Tractability Proceedings of [JCAI l?7, Vol. 7.'1476—1481A o A
and Completeness I: Basic Results. SIAM Journal of Computing 24, 4 (1995), [22] Yuzhe Zhang and Davide Grossi. 2021. Power in liquid democracy. In Proceedings

873-921. AAAI 21, Vol. 35. 5822-5830.

2632

	Abstract
	1 Introduction
	2 Related Work
	3 Control by Redirecting Arcs
	3.1 Liquid Democracy and Election Control
	3.2 Formal Model

	4 Hardness Results
	5 Algorithmic Results
	5.1 Polynomial-Time Algorithm
	5.2 Parameterized Algorithms

	6 Outlook
	References

