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ABSTRACT
Deep Reinforcement Learning (DRL) policies are vulnerable to ad-

versarial noise in observations, which can have disastrous conse-

quences in safety-critical environments. For instance, a self-driving

car receiving adversarially perturbed sensory observations about

traffic signs (e.g., a stop sign physically altered to be perceived

as a speed limit sign) can be fatal. Leading existing approaches

for making RL algorithms robust to an observation-perturbing ad-

versary have focused on (a) regularization approaches that make

expected value objectives robust by adding adversarial loss terms;

or (b) employing “maximin” (i.e., maximizing the minimum value)

notions of robustness. While regularization approaches are adept

at reducing the probability of successful attacks, their performance

drops significantly when an attack is successful. On the other hand,

maximin objectives, while robust, can be extremely conservative.

To this end, we focus on optimizing a well-studied robustness ob-

jective, namely regret. To ensure the solutions provided are not

too conservative, we optimize an approximation of regret using

three different methods. We demonstrate that our methods outper-

form existing best approaches for adversarial RL problems across a

variety of standard benchmarks from literature.
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1 INTRODUCTION
Harnessing the power of Deep Neural Networks in DRL [22] allows

RL models to achieve outstanding results on complex and even

safety-critical tasks, such as self-driving [16, 32]. However, DNN
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performance is known to be vulnerable to attacks on input, con-

sequently impacting DRL models which rely on them [10, 25, 33].

In such perturbations, adversaries only alter the observations re-

ceived by an RL agent and not the underlying state or the dynamics

(transition function) of the environment. Even with limited per-

turbations, high-risk tasks such as self-driving yield opportunities

for significant harm to property and loss of life. One such exam-

ple is presented by [7], in which a stop sign is both digitally and

physically altered to attack an object recognition model.

Although the effectiveness of known adversarial examples can

be mitigated by adversarial training (supervised training against

adversarial examples) [10, 11, 25, 34], this does not guarantee the

ability to generalize to unseen adversaries. Additionally, it has been

shown that naive adversarial training in RL leads to unstable train-

ing and lowered agent performance, if effective at all [38]. Thus,

we need algorithms that are not tailored to specific adversarial per-

turbations but are inherently robust. Rather than develop a policy

that is value-optimal for as many known examples as possible, we

want to determine what behavior and states involve risk and reduce

them across the horizon. To achieve this, maximin methods operate

to maximize the minimum reward of a policy [8, 19], which can be

robust but often trades unperturbed solution quality to improve

the lower bound. Regularization methods construct adversarial loss

terms to ensure actions remain unchanged across similar inputs

[19, 24, 38], reducing the probability of a successful adversarial at-

tack. However, as we empirically show later, they remain vulnerable

when attacks are successful.

To these ends, we provide a regret-based adversarial defense

approach that aims to reduce the impact of a successful attack

without being overly conservative.

Through our contributions, we:

• Formally define regret in settings where an observation-

perturbing adversary is present. Broadly, regret is the differ-

ence of value achieved in the absence versus in the presence

of an observation-perturbing adversary.

• Derive an approximation of regret, named Cumulative Con-

tradictory Expected Regret (CCER), which is amenable to

scalable optimization due to satisfying the optimal sub-structure

property. We provide a value iteration approach to minimize

CCER, named RAD-DRN (Regret-based Adversarial Defense

with Deep Regret Networks). Using CCER, our approach can

balance robustness and nominal solution quality.
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• Provide a policy gradient approach tominimize CCER, named

RAD-PPO. We derive the policy gradient w.r.t the regret mea-

sure and utilize it in the PPO framework.

• Provide a CognitiveHierarchy Theory based approach named

RAD-CHT that generates potential adversarial policies and

computes a regret-based robust response, to demonstrate an

application of CCER in adversary-reactive frameworks.

• Finally, we provide detailed experimental results on mul-

tiple benchmark problems (MuJoCo, Atari, and Highway)

to demonstrate the utility of our approaches against sev-

eral leading approaches in adversarial RL. Like previous ap-

proaches, we demonstrate the performance of our approach

against strong greedy attacks (e.g., PGD). Unlike existing

work, we also show effectiveness against multi-step attack

strategies that are directly computed against victim policy.

2 RELATEDWORK
Adversarial Attacks in RL. Deep RL has shown to be vulnerable

to attacks on its input, whether from methods with storied success

against DNNs such as an FGSM attack [11, 12], tailored attacks

against the value function [17, 33], or adversarial behavior learned

by an opposing policy [8, 10, 24, 38]. We compile attacks on RL

loosely into two groups of learned adversarial policies: observation

poisonings [10, 20, 33] and direct ego-state disruptions [26, 27].

Each category has white-box counterparts that leverage the vic-

tim’s network gradients to generate attacks [8, 11, 12, 24]. While

previous methods focus on robustness against one or the other, we

demonstrate that the proposed methods are comparably robust to

both categories of attacks.

Adversarial Training. In this area, adversarial examples are

found or generated and integrated into the set of training inputs

[2, 9, 21, 30, 31, 37]. For a comprehensive review, we refer readers

to [3]. In RL, research efforts have demonstrated the viability of

training RL agents against adversarial examples [4, 10, 14, 26, 35].

Naively training RL agents against known adversaries is a suffi-

cient defense against known attacks; however, new or more general

adversaries remain effective [10, 15] and therefore we focus on

proactively robust defense methods instead of reactive (react to

known adversaries) defense methods.

Robustness throughRegularization.Regularization approaches [8,
24, 38] take vanilla value-optimized policies and robustify them

to minimize the loss due to adversarial perturbations. These ap-

proaches utilize certifiable robustness bounds computed for neural

networks when evaluating adversarial loss and ensure the proba-

bility of success of an attack is reduced using these lower bounds.

Despite lowering the likelihood of a successful attack, an attack that
does break through will still be effective (as shown in Table 1). Note
that for RADIAL (a regularization approach), even though the suc-

cess percentage of attacks is the least, it has the largest drop in

performance.

Regret Optimization in MDPs.Measuring and optimizing a re-

gret value to improve the robustness has been studied previously

in uncertain Markov Decision Processes (MDPs)[1, 28]. In RL, [13]

established Advantage-Like Regret Minimization (ARM) as a policy

gradient solution for agents robust to partially observable envi-

ronments. While the properties and optimization of regret are in

Algo. Num. Atks % Success Score

RADIAL 6 5% 4.16

WocaR 6 12% 6.63

RAD-DRN 6 40% 9.9

RAD-PPO 7 10% 18

RAD-CHT 8 60% 20.1

Table 1: The impact and frequency of successful attacks on
an example set of the Strategically Timed Attack [20] on
highway-fast-v0. The Num. Atks column shows the num-
ber of attempted attacks; the % Success column indicates the
rate at which an attempted attack changed the selected ac-
tion. When unperturbed, all methods reach approximately
22 points.

Environment Algorithm Unperturbed Random Pert.

Hopper

PA-ATLA-PPO 3449 1564

WocaR-PPO 3136 3242

RAD-PPO 3473 3415

HalfCheetah

PA-ATLA-PPO 6289 3414

WocaR-PPO 3993 4128

RAD-PPO 4426 4387

Table 2: Adversary-specific robustness methods (forms of
adversarial retraining) are robust only to the adversarial
behavior they specifically train against. PA-ATLA-PPO is
the SoTA adversarial retraining method, and WocaR-PPO
is the SoTA adversary-agnostic method. RAD-PPO is our
best-performing adversary-agnostic approach. Note that the
adversary-specific models perform poorly against even ran-
dom adversarial perturbations, which are weaker than other
attacks. Attacks use perturbation radius 𝜖 = 0.15.

general well-studied, current applications in RL focus on utilizing
regret as a robustness tool against natural environment variance; to
the best of our knowledge, this is the first application of regret to
defend against strategic adversarial perturbations.
Adversary-Agnostic Approaches Unlike adversary-specific ro-
bustness training, the methods we term as "adversary-agnostic"

do not interact with a perturbed MDP during training. While the

various forms of adversarial retraining do have merit, they often

take longer to train (needing to train both victim and adversary poli-

cies). PA-ATLA-PPO [34], a SoTA adversarial retraining technique,

reports needing 2 million training frames for MuJoCo-Halfcheetah.

For comparison, both our proposed RAD-PPO andWocaR-PPO [19],

another SoTA adversary-agnostic method, require less than 40%

of the training frames. Furthermore, adversary-specific methods

may have subpar performance against novel adversaries, in addi-

tion to well-known drawbacks such as catastrophic forgetting. [38]

demonstrates how naive adversarial retraining is in general a poor

solution; we further demonstrate in Table 2 that even advanced

retraining frameworks are not as generally robust.
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3 RL WITH ADVERSARIAL OBSERVATIONS
In problems of interest, we have an RL agent whose state/observa-

tion and action space are 𝑆 and 𝐴 respectively. There is an under-

lying transition function 𝑇 : 𝑆 ×𝐴 × 𝑆 → [0, 1] and reward model

𝑅 : 𝑆 ×𝐴 → R which are not known a priori to the RL agent. The

behavior of the agent is governed by a policy 𝜋 : 𝑆 → 𝐴 that maps

states to actions. The typical objective for an RL agent is to learn

a policy 𝜋∗ that maximizes its expected value without knowing

the underlying transition and reward model a priori. This can be

formulated as the following optimization problem:

𝜋∗ ∈ argmax𝜋 𝑉
𝜋 (𝑠0)

where 𝑉 𝜋 (𝑠0) is the expected accumulated value the RL agent ob-

tains starting from state 𝑠0 for executing policy 𝜋 . The policy com-

puted is not robust in the presence of an adversary who can strate-

gically alter the observation received by the agent at any time step.

This is because the agent could be executing the wrong action for

the underlying state.
1

For the rest of this paper, we will use 𝑧𝑡 to represent the observed

(possibly perturbed) state and 𝑠𝑡 to refer to the true underlying state

at step 𝑡 . Formally, on taking action 𝑎𝑡 in state 𝑠𝑡 , the environment

transitions to a new state 𝑠𝑡+1. However, the adversary can alter

the observation received by the RL agent to another state 𝑧𝑡+1
instead of 𝑠𝑡+1 to reduce the expected value of the RL agent, where

𝑧𝑡+1 ∈ 𝑁 (𝑠𝑡+1) — a set of neighbors of 𝑠𝑡+1, defined as follows:

𝑁 (𝑠𝑡 ) = {𝑧𝑡 : ∥𝑧𝑡 − 𝑠𝑡 ∥∞ ≤ 𝜖}

Often, it is not possible to discern if the observation is perturbed or

not. For example, given a highway speed limit sign, a perturbation

showing a different speed limit may be undetectable for an agent

and hence would be within the neighborhood. However, this is

within a reasonable constraint; perturbing the speed limit sign to

be a stop sign may be easy to heuristically distinguish and hence

would not be part of the neighborhood.

We now can represent the observation-altering adversarial policy
as 𝜇 : 𝑆 → 𝑆 . The notion of neighborhoods translates to adversarial

policies 𝜇 such that 𝜇 (𝑠) ∈ 𝑁 (𝑠). When the adversarial policy is

deterministic and bijective, for a given observed state 𝑧, we will

employ 𝜇−1 (𝑧) to retrieve the underlying unperturbed state 𝑠 ∈
𝑁 (𝑧). In the following, we focus on computing policies that are

inherently robust, even without knowing the adversary policy.

4 REGRET-BASED ADVERSARIAL DEFENSE
(RAD)

Our approach to computing inherently robust policies is based on

minimizing the maximum regret the agent receives for taking the
wrong action assuming there was a perturbation in states. We first

introduce the notions of regret and max regret for the RL agent

to play a certain policy 𝜋 . The regret-based robust policy is then

formulated accordingly.
2

1
It should be noted that an adversary is assumed to alter only the agent observations

and not the model dynamics or the real states.

2
Our regret and minimax regret policy are defined w.r.t deterministic policies 𝜋 and 𝜇,

for the sake of representation. Extending these definitions for stochastic policies is

straightforward.

Definition 1 (Regret). Given an adversary policy 𝜇, the regret
at each observed state 𝑧𝑡 for the RL agent to play a policy 𝜋 is defined
as follows:

𝛿𝜋,𝜇 (𝑧𝑡 ) = 𝑉 𝜋 (𝑧𝑡 ) −𝑉 𝜋,𝜇 (𝑧𝑡 ) (1)

Intuitively, it is the difference between the expected value 𝑉 𝜋 (·)
(assuming no adversary) and the value 𝑉 𝜋,𝜇 (·) (assuming states

are being perturbed by the adversary policy 𝜇) while the RL agent

takes actions according to a policy 𝜋 . In particular, the value for

an agent with a policy 𝜋 in the absence of an adversary, 𝑉 𝜋 (·), is
given by:

𝑉 𝜋 (𝑧𝑡 ) = 𝑅(𝑧𝑡 , 𝜋 (𝑧𝑡 )) + 𝛾E𝑧𝑡+1
[
𝑉 𝜋 (𝑧𝑡+1)

]
(2)

where 𝑧𝑡+1 ∼ 𝑇 (·|𝑧𝑡 , 𝜋 (𝑧𝑡 )). Note that when the adversary is not

present, the observed states 𝑧𝑡 = 𝑠𝑡 and 𝑧𝑡+1 = 𝑠𝑡+1.
On the other hand, the𝑉 𝜋,𝜇 (.) function for an agent with policy

𝜋 in the presence of such an adversary 𝜇 is given by:

𝑉 𝜋,𝜇 (𝑧𝑡 )=𝑅(𝑠𝑡 , 𝜋 (𝑧𝑡 ))+𝛾E𝑧𝑡+1
[
𝑉 𝜋,𝜇 (𝑧𝑡+1)

]
(3)

where 𝑠𝑡=𝜇
−1(𝑧𝑡 ), 𝑧𝑡+1=𝜇 (𝑠𝑡+1) with 𝑠𝑡+1∼𝑇 (·|𝑠𝑡 , 𝜋 (𝑧𝑡 )). Note that

our regret is defined based on observed states, as the agent will

only have access to observed states (and not the true states) when

making test-time decisions.

Definition 2 (Minimax Regret Policy). The regret-based robust
policy for the RL agent is the policy that minimizes the maximum re-
gret at the initial observed state 𝑧0 over all possible adversary policies,
formulated as follows:

𝜋∗ ∈ argmin𝜋 max𝜇 𝛿𝜋,𝜇 (𝑧0) (4)

Intuitively, a minimax regret policy minimizes the maximum

regret by avoiding actions that have high variance across neighbor-

ing states. Unfortunately, there are multiple issues with optimizing

minimax regret. First, optimizing regret requires iterating over

different adversary policies, which can be infinite depending on

the state and action spaces. If we assume specific types of adver-

saries, robustness may not extrapolate to other adversary policies.

Second, the minimax regret expression does not exhibit optimal

substructure property, thus rendering value iteration approaches

(e.g., Q-learning, DQN) theoretically invalid. Third, deriving pol-

icy gradients w.r.t. regret is computationally challenging, requiring

combinatorial perturbed trajectory simulations. As a result, employ-

ing policy gradient approaches to optimize regret is also infeasible.

We address the above issues by using an approximate notion of

regret referred to as Cumulative Contradictory Expected Regret

(CCER) and then proposing two types of approaches (adversary

agnostic
3
and adversary dependent):

• Adversary agnostic approach for optimizing approximate

regret: CCER has multiple useful properties: (i) It satisfies the

optimal substructure property, thereby allowing for usage

of a DQN type approach; and (ii) It is possible to compute a

policy gradient with regards to CCER, thereby allowing for

a policy gradient approach.

• Adversary dependent approach for optimizing approximate

regret: We utilize an iterative best-response approach based

on Cognitive Hierarchical Theory (CHT) to ensure defense

3
Agnostic methods do not receive perturbations while training.
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against a distribution of “good” adversarial policies. This

approach is referred to as RAD-CHT.

4.1 Regret Approximation: CCER
We introduce a new notion of approximate regret, referred to as

CCER. CCER accumulates contradictory regret at each epoch; we

refer to this regret as contradictory as the observed state’s optimal

action may contradict the true state’s action. The key intuition is

that we accumulate the regret (maximum difference in reward) in

each time step regardless of whether the state is perturbed or not

perturbed.

For the underlying transition function, 𝑇 , and reward model, 𝑅,

CCER w.r.t a policy 𝜋 is defined as follows:

𝛿𝜋CCER (𝑧𝑡 ) = 𝑅(𝑧𝑡 , 𝜋 (𝑧𝑡 )) −min𝑠𝑡 ∈𝑁 (𝑧𝑡 ) 𝑅(𝑠𝑡 , 𝜋 (𝑧𝑡 ))

+ 𝛾E𝑧𝑡+1
[
𝛿𝜋CCER (𝑧𝑡+1)

]
(5)

where 𝑧𝑡+1 ∼ 𝑇 (·|𝑧𝑡 , 𝜋 (𝑧𝑡 )). Our goal is to compute a policy that

minimizes CCER, i.e.,

𝜋⊥ ∈ argmin𝜋 𝛿𝜋CCER (𝑧0)
This is a useful objective, as CCER accumulates the myopic regrets

at each time step and we minimize this overall accumulation. Im-

portantly, CCER has the optimal substructure property, i.e., the

optimal solution for a sub-problem (from step 𝑡 to horizon 𝐻 ) is

also part of the optimal solution for the overall problem (from step

0 to horizon 𝐻 ).

Proposition 1 (Optimal Substructure property). At time
step 𝑡 , the CCER corresponding to a policy, 𝜋 at 𝑧𝑡 , i.e., 𝛿𝜋CCER (𝑧𝑡 )
is minimum if it includes the CCER minimizing policy from 𝑡 + 1,
i.e.,𝜋⊥[𝑡+1,𝐻 ] from 𝑡 + 1. Formally,

𝛿

〈
𝜋𝑡 ,𝜋

⊥
[𝑡+1,𝐻 ]

〉
CCER (𝑧𝑡 ) ≤ 𝛿

⟨𝜋𝑡 ,𝜋 [𝑡+1,𝐻 ]⟩
CCER (𝑧𝑡 )

All proofs are in Appendix A. Similar to the state and state-
action value function, 𝑉 (𝑠) and 𝑄 (𝑠, 𝑎), we also have state regret,

𝛿𝜋CCER (𝑧𝑡 ) and state-action regret, 𝛿𝜋CCER (𝑧𝑡 , 𝑎𝑡 ). Specific definitions
are provided in the following sections.

4.2 Approach 1: RAD-DRN
We first provide a mechanism similar to DQN [23] to compute a

robust policy that minimizes CCER irrespective of any adversary.

Briefly, we accumulate the regret over time steps (rather than re-

ward) and act on the minimum of this estimate (rather than the

maximum, as a DQN would). Intuitively, minimizing CCER ensures

the obtained policy avoids taking actions that have high variance,

therefore avoiding volatile states that have high regret. In our ad-

versarial setting, this roughly corresponds to behavior that avoids

states where false observations have q-values vastly different from

the underlying state. In a driving scenario, for example, this could

mean giving vehicles and obstacles enough berth to account for

errors in distance sensing. Let us denote by:

𝛿𝜋CCER (𝑧, 𝑎) = 𝑅(𝑧, 𝑎) −min𝑠∈𝑁 (𝑧 ) 𝑅(𝑠, 𝑎)
+ 𝛾E𝑧′

[
min𝑎′ 𝛿

𝜋
CCER (𝑧

′, 𝑎′)
]

as the q-value associated with CCER in our setting. We provide

the pseudocode of our algorithm, named RAD-DRN, employing

Algorithm 1: RAD-DRN

1 Initialize replay memory 𝐷 to capacity 𝑁 ;

2 Initialize q-regret 𝛿CCER with random weights𝑤 ;

3 Initialize target q-regret 𝛿CCER with weights𝑤− = 𝑤 ;

4 for episode = 1 → 𝑀 do
5 Get initial state 𝑧0;

6 for 𝑡 = 0 → 𝐻 do
7 With prob. 𝜖 , select a random action 𝑎𝑡 ;

8 Else, select 𝑎𝑡 ∈ argmin𝑎 𝛿CCER (𝑧𝑡 , 𝑎,𝑤);
9 Execute action 𝑎𝑡 , get observed state 𝑧𝑡+1;

10 Observe regret 𝑟𝑡 =𝑅(𝑧𝑡 , 𝑎𝑡 )− min

𝑠𝑡 ∈𝑁 (𝑧𝑡 )
𝑅(𝑠𝑡 , 𝑎);

11 Store transition (𝑧𝑡 , 𝑎𝑡 , 𝑧𝑡+1, 𝑟𝑡 ) → 𝐷 ;

12 Sample mini-batch (𝑧𝑖 , 𝑎𝑖 , 𝑧𝑖+1, 𝑟𝑖 ) ∼ 𝐷 ;
13 for each (𝑧𝑖 , 𝑎𝑖 , 𝑧𝑖+1, 𝑟𝑖 ) in mini-batch do
14 Set target 𝑦𝑖 ={

𝑟𝑖 , if episode terminates at step 𝑖 + 1

𝑟𝑖 + 𝛾 min𝑎′ 𝛿CCER (𝑧𝑖+1, 𝑎′;𝑤−), otherwise
15 Perform a gradient descent to update𝑤 based on

loss:

[
𝑦𝑖 − 𝛿CCER

(
𝑧𝑖 , 𝑎𝑖 ,𝑤

) ]
2

;

16 Every 𝐾 steps reset𝑤− = 𝑤 ;

a neural network to predict 𝛿CCER (𝑧, 𝑎) in Alg. 1. This network’s

parameter𝑤 is trained based on minimizing the loss between the

predicted and observed 𝛿CCER values.

Given the conservative nature of regret, RAD-DRN can provide

degraded nominal (unperturbed) performance, especially in settings

with very few high-variance states. We propose a heuristic opti-

mization trick to reduce unnecessary conservatism in RAD-DRN.

We consider using weighted combinations of value and CCER esti-

mates to determine the utility of employing each policy at a given

observation. Intuitively, we want to apply a value-maximizing pol-

icy in low-variance state neighborhoods and a regret-minimizing

policy in high-variance neighborhoods; as such, the utility of using

a regret-minimizing policy in a high-regret neighborhood will, in

turn, be high. Specifically, we train a DQN to maximize the utility

function:

𝑈𝑡𝑖𝑙 (𝑧, 𝜋) = 𝑉 𝜋 (𝑧) − 𝛽𝛿𝜋CCER (𝑧)
where 𝛽 is a caution-weight constant decimal. This final step re-

quires a minimal amount of training (500 episodes) and interacts

directly with the non-adversarial environment. We constrain the

available actions of the utility-maximizing policy to either be the

value-optimal action argmax𝑎 𝑄
𝜋 (𝑧, 𝑎) or the CCER-optimal ac-

tion argmin𝑎 𝛿
𝜋
CCER (𝑧, 𝑎), avoiding actions that are sub-optimal to

both measures. These two optimal DQN and RAD-DRN policies are

obtained in advance before training the above utility-maximizing

policy.

4.3 Approach 2: RAD-PPO
Approach 1 provides a regret iteration approach (along the lines

of value iteration in Deep Q Learning). In this section, we provide

a policy gradient approach that minimizes CCER. Proximal Policy
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Optimization (PPO), and any policy gradient (PG) method, can

be extended with contradictory regret. The key contribution is

defining/deriving the policy gradient based on the long-term CCER

of a policy:

𝛿𝜋CCER (𝑧) =
∑︁

𝑎
𝜋 (𝑧, 𝑎)𝛿𝜋CCER (𝑧, 𝑎)

Proposition 2. The gradient of a CCER-minimizing policy 𝜋𝜃
parameterized by 𝜃 can be computed as follows:

𝜕𝛿
𝜋𝜃
CCER (𝑧)
𝜕𝜃

=
∑︁

𝑠
𝑃 (𝑧 |𝜋𝜃 )

∑︁
𝑎

𝜕𝜋𝜃 (𝑧, 𝑎)
𝜕𝜃

𝛿
𝜋𝜃
CCER (𝑧, 𝑎) (6)

where 𝑃 (𝑧 |𝜋𝜃 ) is the stationary distribution w.r.t 𝜋𝜃 .

This can also be rewritten along similar lines as the traditional

policy gradient using an expectation (instead of 𝑃 (𝑧 |𝜋𝜃 )):

∇𝜃𝛿
𝜋𝜃
CCER (𝑧0) = E𝜋𝜃

[
𝛿
𝜋𝜃
CCER (𝑧, 𝑎)∇𝜃 log𝜋𝜃 (𝑎 | 𝑧)

]
CCER-based Advantage. Furthermore, we can replace 𝛿

𝜋𝜃
CCER (𝑧, 𝑎)

on the right side of the gradient with a CCER advantage function

defined as follows:

𝐴CCER (𝑧𝑡 , 𝑎) = −[𝛿𝜋𝜃CCER (𝑧𝑡 , 𝑎) − 𝛿
𝜋𝜃
CCER (𝑧𝑡 )] (7)

The positive value of |𝐴CCER | can be understood as the increase

in regret associated with increasing 𝜋𝜃 (𝑎 |𝑧𝑡 ), as the value of the
selected action relative to others will be lower when a perturba-

tion occurs. Thus, we invert the sign so that regret and 𝐴CCER
are

inversely related, i.e. selecting the action with the highest 𝐴CCER

will minimize regret.

4.4 Approach 3: RAD-CHT
The previous RAD-DRN and RAD-PPO approaches are agnostic

to specific adversarial policies. Here, we provide a reactive frame-

work that identifies strong adversarial policies and computes a best-

response (minimum CCER) policy against them. This approach

builds on the well-known behavior model in game theory and eco-

nomics referred to as Cognitive Hierarchical Theory (CHT) [6]. In

CHT, players’ strategic reasoning is organized into multiple levels;

players at each level assume others are playing at a lower level (i.e.,

are less strategic).

Our approach, named RAD-CHT, is an iterative algorithm that

proceeds as follows:

• Iteration 0 (Level 0): Both the RL agent and the adversary

play completely at random, with the random policies for

agent and adversary given by 𝜋 (0)
and 𝜇 (0) respectively.

• Iteration 1 (Level 1): The RL agent assumes a level 0 adversary

and wants to find a new policy 𝜋 (1)
that minimizes the regret

given 𝜇 (0) , formulated as follows:

𝜋 (1) = argmin𝜋 𝛿
𝜋,𝜇 [ (0) ]

CCER (𝑧0)

𝛿
𝜋,𝜇 [ (0) ]

CCER (𝑧𝑡 ) = 𝑅(𝑧𝑡 , 𝜋 (𝑧𝑡 )) − 𝑅(𝑠𝑡 , 𝜋 (𝑧𝑡 ))

+ 𝛾E𝑧𝑡+1
[
𝛿
𝜋,𝜇 [ (0) ]

CCER (𝑧𝑡+1)
]

where 𝑠𝑡 is the true state given the observed state is 𝑧𝑡 and

the attack policy is 𝜇 (0) , i.e., 𝜇 (0) (𝑠𝑡 ) = 𝑧𝑡 . On the other

hand, the level-1 adversary assumes the RL agent is at level

0 and attempts to find a perturbation policy that minimizes

the agent’s expected return:

𝜇 (1) ∈ argmin𝜇 𝑉
𝜋 (0) ,𝜇 (·)

• Iteration 𝑘 > 1 (Level 𝑘): The agent assumes the adversary

can be at any level below𝑘 . Like in CHT, the adversary policy

is assumed to be drawn from a Poisson distribution over the

levels 0, 1, · · · , 𝑘 − 1 with a mean 𝑘 − 1. The RL agent then

finds a new policy 𝜋 (𝑘 )
that minimizes the regret formulated

as the following:

𝜋 (𝑘 ) ∈ argmin𝜋 𝛿
𝜋,𝜇 [ (𝑘−1) ]
CCER (𝑧0 )

𝛿
𝜋,𝜇 [ (𝑘−1) ]
CCER (𝑧𝑡 ) = 𝑅 (𝑧𝑡 , 𝜋 (𝑧𝑡 ) ) −

∑︁𝑘−1
𝑖=0

𝑃 (𝑘 )(𝑖 )𝑅 (𝑠 (𝑖 )𝑡 , 𝜋 (𝑧𝑡 ) )

+ 𝛾E𝑧𝑡+1
[
𝛿
𝜋,𝜇 [ (𝑘−1) ]
CCER (𝑧𝑡+1 )

]
where 𝑃 (𝑘 ) (𝑖) ∝ 𝜆𝑖𝑒−𝜆

𝑖!
(aka. Poisson distribution) is the

probability the adversary is at level 𝑖 with 0 ≤ 𝑖 ≤ 𝑘 − 1. The

notation [(𝑘 − 1)] represents the range (0), . . . , (𝑘 − 1). In
addition, the true state is 𝑠

(𝑖 )
𝑡 , the observed state is 𝑧𝑡 and

the attack policy is 𝜇 (𝑖 ) , i.e., 𝜇 (𝑖 ) (𝑠 (𝑖 )𝑡 ) = 𝑧𝑡 .
Similarly, the adversary at this level assumes the RL agent is

at a level below 𝑘 , following the Poisson distribution. The

adversary then optimizes the perturbation policy as follows:

𝜇 (𝑘 ) ∈ argmin𝜇

∑︁𝑘−1
𝑖=0

𝑃 (𝑘 ) (𝑖)𝑉 𝜋 (𝑖 ) ,𝜇 (·)

At each iteration, the CCER minimization problem given the adver-

sary distribution exhibits optimal substructure. Therefore, we can

adapt Approach 1 and 2 to compute the CCER-minimizing policy

given the adversarial distribution.

On the adversary’s side, we provide the policy gradient given

the victim policies at previous levels. Let’s denote

𝑉𝜇𝜃 (·) =
∑︁𝑘−1

𝑖=0
𝑃 (𝑘 ) (𝑖)𝑉 𝜋 (𝑖 ) ,𝜇𝜃 (·)

where 𝜃 is the parameter of the adversary policy 𝜇.

Proposition 3. The gradient of the objective function of the ad-
versary 𝑉𝜇𝜃 (·) w.r.t 𝜃 can be computed as follows:

∇𝜃𝑉𝜇𝜃 =E𝑖∼𝑃 (𝑘 ) (𝑖 ),𝜏∼(𝜇𝜃 ,𝜋 (𝑖 ) ,𝑇 )
[
𝑅(𝜏)

∑︁
𝑡
∇𝜃 log 𝜇𝜃 (𝑧𝑡 |𝑠𝑡 )

]
where 𝜏 = (𝑠0, 𝑧0, 𝑎0, 𝑠1, 𝑧1, 𝑎1, · · · ) with 𝑧𝑡 ∼ 𝜇𝜃 (𝑠𝑡 ) is the perturbed
state created by the adversary policy 𝜇𝜃 . In addition, the reward of a
trajectory 𝜏 is defined as follows:

𝑅(𝜏) =
∑︁

𝑡
𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )

Based on Proposition 3, finding an optimal adversarial policy

at each level can be handled by a standard policy optimization

algorithm such as PPO.

5 EXPERIMENTS
We provide empirical evidence to answer key questions:

• How do RAD approaches (RAD-DRN, RAD-PPO, RAD-CHT)

compare against leading methods for Adversarially Robust

RL on well-known baselines from MuJoCo, Atari, and High-

way libraries?
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(a) Score vs. Percentile Perturbation Frequency with Strategically Timed Attack

(b) Score vs. Percentile Perturbation Magnitude with Critical Point Attack

Figure 1: The performance of robust RL methods against strategic adversaries. The y-axis represents the score and the x-axis
represents the intensity of the attack.

• For multi-step strategic attacks, how do RAD methods com-

pare to leading defenses?

• Does RAD mitigate the value/robustness trade-off present

in maximin methods?

• How does the performance of our approaches degrade as the

intensity of attacks (i.e., # of attacks) is increased?

5.1 Experimental Setup
We evaluate our proposedmethods on the commonly used Atari and

MuJoCo domains [5, 36], and a suite of discrete-action self-driving

tasks [18]. For the driving environments, each observation feature

of the agent corresponds to the kinematic properties (coordinates,

velocities, and angular headings) of the ego-vehicle and nearby ve-

hicles. The task for each environment is to maximize the time spent

in the fast lane while avoiding collisions. The road configurations

for the highway-fast-v0, merge-v0, roundabout-v0, and intersection-
v0 tasks are, in order: a straight multi-lane highway, a two-lane

highway with a merging on-ramp, a multi-lane roundabout, and

a two-lane intersection. We use a standard training setup seen in

[19, 24], detailed in Appendix C.

We compare RAD-DRN, RAD-PPO, and RAD-CHT to the follow-

ing baselines: vanilla DQN [22] and PPO [29]; a simple but robust

minimax method, CARRL [8]; a leading regularization approach,

RADIAL [24]; and the current SoTA defense, WocaR [19]. We test

all methods against both trained policy adversaries and gradient

attacks, as well as the Strategically-Timed attack and Critical-Point

attack, two leading multi-step strategic attacks [20, 33]. For RA-

DIAL and WocaR, we use the best-performing methods for each

environment (their proposed DQNs for discrete actions, and PPOs

for MuJoCo).

Table 3: Results onHighway. Each row shows themean scores
of each RL method against different attacks. Further tasks
are shown in Appendix B.

Algorithm Unperturbed WC Policy PGD, 𝜖= 3

255

highway-fast-v0

DQN 24.91±20.27 3.68±35.41 15.71±13
PPO 22.8±5.42 13.63±19.85 15.21±16.1
CARRL 24.4±1.10 4.86±15.4 12.43±3.4
RADIAL 28.55±0.01 2.42±1.3 14.97±3.1
WocaR 21.49±0.01 6.15±0.3 6.19±0.4
RAD-DRN 24.85±0.01 22.65±0.02 18.8±24.6
RAD-PPO 21.01±1.23 20.59±4.10 20.02±0.01
RAD-CHT 21.83 ± 0.35 21.1 ± 0.24 21.48 ± 1.8

5.2 Worst Case Policy Attack
Each Worst-Case Policy (WC) adversary is a Q-learning agent that

minimizes the overall return of the targeted agents by learning

perturbed observations from a neighborhood distribution of sur-

rounding states 𝑁 (𝑠𝑡 ). Note that 𝑁 (𝑠𝑡 ) is not necessarily equal to

the training neighborhood that DRN samples; in our experiments,

we increase the attack neighborhood radius by twenty percent

(approximately). During the training of the adversary, it is permit-

ted to perturb the victim’s observations at every step. Each tested

method has a corresponding WC Policy attacker. In the Highway

environments, the perturbations correspond to a small shift in the

position of a nearby vehicle; in the Atari domains, the input tensor

is shifted up or down several pixels. For MuJoCo, we instead apply

the Maximal Action Difference attack with 𝜖 = 0.15 [38].
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Table 4: Results on MuJoCo.

Algorithm Unperturbed MAD 𝜖=0.15 PGD 𝜖= 5

255

Hopper

PPO 2741 ± 104 970±19 36±156
RADIAL 3737±75 2401±13 3070±31
WocaR 3136±463 1510 ± 519 2647 ±310
RAD-PPO 3473±23 2783±325 3110±30
RAD-CHT 3506±377 2910± 699 3055 ±152

HalfCheetah

PPO 5566 ± 12 1483±20 -27±1308
RADIAL 4724±76 4008±450 3911±129
WocaR 3993±152 3530±458 3475±610
RAD-PPO 4426±54 4240±4 4022±851
RAD-CHT 4230±140 4180±37 3934±486

Walker2d

PPO 3635 ± 12 680±1570 730±262
RADIAL 5251±10 3895±128 3480±3.1
WocaR 4594±974 3928±1305 3944±508
RAD-PPO 4743±78 3922±426 4136±639
RAD-CHT 4790±61 4228±539 4009±516

Table 5: Results on Atari, with the same metrics as Table 3.
Additional results in Appendix B.

Algorithm Unperturbed WC Policy PGD 𝜖= 5

255

Pong

PPO 21.0±0 -20.0± 0.07 -19.0±1.0
CARRL 13.0 ±1.2 11.0±0.010 6.0±1.2
RADIAL 21.0±0 11.0±2.9 21.0± 0.01
WocaR 21.0±0 18.7 ±0.10 20.0 ± 0.21

RAD-DRN 21.0±0 14.0 ± 0.04 14.0 ± 2.40

RAD-PPO 21.0±0 20.1±1.0 20.8±0.02
BankHeist

PPO 1350±0.1 680±419 0±116
CARRL 849±0 830±32 790±110
RADIAL 1349±0 997±3 1130±6
WocaR 1220±0 1207±39 1154±94
RAD-DRN 1340±0 1170±42 1211±56
RAD-PPO 1340±0 1301±8 1335±52

5.3 Results
In each table, we report the mean return over 50 random seeds. The

most robust score is shown in boldface.
Highway Domains: We report scores under PGD and WC attacks

in Table 3. We observe that although the unperturbed performance

of RAD- methods is lower than that of the vanilla solutions, all three

approaches (RAD-DRN, RAD-PPO, and RAD-CHT) are extremely

robust under different attacks and have higher performance than

all other robust approaches in all of the Highway environments.

We see that even though maximin methods (CARRL, WocaR) are

clearly suited for some scenarios, RAD- methods still outperform

them.

MuJoCo Domains: Table 4 reports the results on MuJoCo, playing

three commonly tested environments seen in comparison literature

[19, 24]. As the MuJoCo domains have continuous actions, we

exclude value iteration-based methods (DQN, CARRL, and RAD-

DRN). We directly integrated our proposed techniques into the

implementation from [19]. Our assessment covers the MAD attack

[38] with a testing 𝜖 = 0.15, which marks the value at which we

start observing deviations in the returns of the robustly trained

agents. In addition, we subject the agents to PGD attacks with

𝜖 = 5

255
.

Even in these problem settings, while RAD approaches do not

provide the highest unperturbed performance (but are reasonably

close), they (RAD-PPO and RAD-CHT) provide the best overall

performance of all approaches.

Atari Domains: We report results on four Atari domains used in

preceding works [19, 24] in Table 5. RAD-PPO outperforms other

robust methods under nearly all attacks. RAD-DRN performs simi-

larly to RAD-PPO, though faces some limitations in scenarios where

rewards are sparse or mostly similar, such as in Pong. Regret mea-

sures the difference between outcomes, so the quality of training

samples degrades when rewards are the same regardless of action.

Interestingly, RAD-PPO does not suffer in this way, which we at-

tribute to the superiority of the PPO framework over value iterative

methods.

We exclude RAD-CHT from the Atari experiments, as the mem-

ory requirements to simultaneously hold models for all levels are

outside the limitations of our hardware.

Strategic Attacks:Unlike previous works in robust RL, we also test
our methods against attackers with a longer planning horizon than

the above-mentioned greedy adversaries. In Figure 1, we test under

a) the Strategically Timed Attack [20] and b) the Critical Point

attack [33]. We observe that across all domains, regret defense

outperforms other robustness methods. Particularly, regularization

methods fail with increasing rates as the strength or frequency of

the attacks increases, even as maximin methods (CARRL) retain

some level of robustness. This is one of the main advantages of our

proposed methods, as the resulting policies seek robust trajectories

to occupy rather than robust single-step action distributions.

6 CONCLUSION
We show that regret can be used to increase the robustness of RL

to adversarial observations, even against stronger or previously

unseen attackers. We propose an approximation of regret, CCER,

and demonstrate its usefulness in proactive value iterative and

policy gradient methods, and reactive training under CHT. Our

results on a wide variety of problems (more in Appendix B) show

that regret-based defense significantly improves robustness against

strong observation attacks from both greedy and strategic adver-

saries. Specifically, RAD-PPO performs the best on average across

all (including Appendix B) of our experimental results.
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