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ABSTRACT
While research on software agents has long focused on explicit

agent communication, there is comparatively less effort on im-

plicit communication between agents via recognising each other’s

intentions and desires for understanding their decision-making rea-

soning process. Since most human communication is not explicit,

we aim to outline a research agenda to help endow autonomous

agents with analogous coordination capabilities. In this paper, we

formalise a framework that empowers the decision-making pro-

cess of BDI agents in adversarial and cooperative environments by

casting them as generalised planners using Theory of Mind. Our
formalisation uses the fundamental philosophical properties of the

BDI model and its reasoning process to outline a broad research

agenda in agents’ research.
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1 INTRODUCTION
Research on autonomous agents has long been concerned with

reasoning about an agent’s actions within an environment [35],

regardless of the underlying agent architecture [15]. Indeed, the

agent architecture based on Beliefs, Desires, and Intentions (BDI) [5],
explicitly distinguishes the kind of reasoning about the state of

the world (theoretical reasoning) from reasoning towards actions

(practical reasoning). This separation of reasoning concerns allows

BDI-type agents to engage in a type of introspective reasoning

about an agent’s goals and its relation with feasibility as part of

the agent’s reasoning cycle. Automated Planning [20], by contrast,

reasons about how sequential decisions about actions lead to de-

sired outcomes over time. Being able to formally model an agent’s

internal mechanism not only allows an individual agent to reason

about its own goals, it allows agents to build models of other agents

in the environment. Such capability creates the possibility of im-

proving an agent’s interaction with others by anticipating each
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other’s behaviours, minimising the need for explicit communica-

tion. Thus, since planning is a key capability for autonomous agent

architectures [15, 35, 42], we argue for renewed impetus on the

study of the interplay between agent and planning formalisms.

While recent work on planning has started to bridge the gap be-

tween automated planning and agents [42], such work often ignores

the contributions from the agent’s research altogether. One key gap

area between research on agent systems and on planning lies in

generalised planning [25] as a means-ends reasoning mechanism.

Generalised Planning is a type of planning problem that encodes

multiple different individual goals, the solution of which offers

maximal coverage. Finding such generalised plans corresponds to

intention-selection in BDI agents with declarative goals [35].

This paper lays the foundations of formal underpinnings for BDI

agents as generalised planners, paving the way for a number of new

research directions on the interaction between planning techniques

and agent reasoning in two key ways. First, our formalisation of

generalised planning as BDI means-ends reasoning allows an agent

to reason about its own goals (desires) as a generalised planning

problem. Such reasoning about goals is a critical requirement for

agents driven by declarative goals, since it allows agents to reason

about contingencies for agent synthesis [3]. Second, our formalisa-

tion of Intent (Goal) Recognition in the generalised planning setting

using Theory of Mind [46], together with our first contribution,

allows agents to reason and understand the intentions of other

agents [24, 61]. This also allows us to cast the problem of under-

standing the decision-making of autonomous agents, employing

the concept of Theory of Mind to allow our generalised BDI agents

to simulate an approximate recognition process in order to estimate

the behaviour of other agents, as it would be able to identify if the

other agents in the environment are acting in an adversarial or

cooperative way. Our vision for research on BDI agents provides an

ambitious road-map for research in the agents community, leading

to a number of challenges, which we refine throughout the paper.

2 BACKGROUND AND RELATEDWORK
2.1 Planning
The environment in which our autonomous agents act and operate

for achieving their goals follows the formalism of Classical Plan-
ning. Here, a domain model representing the environment is fully
observable, has discrete properties, and the actions’ outcomes (i.e.,

effects) are deterministic [20, Chapter 2].
A planning domain model Ξ is a ⟨F ,A⟩ where: F is a set of flu-

ents (i.e., environment properties); and𝐴 is a set of actions where ev-
ery action 𝑎 ∈ A has a positive cost, denoted as 𝑐𝑜𝑠𝑡 (𝑎), and its own
set of preconditions, add and delete lists: 𝑃𝑟𝑒 (𝑎), 𝐴𝑑𝑑 (𝑎), 𝐷𝑒𝑙 (𝑎). A
state 𝑆 is a finite set of positive fluents 𝑓 ∈ F that follows the closed
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world assumption so that if 𝑓 ∈ 𝑆 , then 𝑓 is true in 𝑆 . We assume

a simple inference relation |= such that 𝑆 |= 𝑓 iff 𝑓 ∈ 𝑆 , 𝑆 ̸ |= 𝑓 iff

𝑓 ∉ 𝑆 , and 𝑆 |= 𝑓0 ∧ ... ∧ 𝑓𝑛 iff {𝑓0, ..., 𝑓𝑛} ⊆ 𝑆 . An action 𝑎 ∈ A is

applicable to a state 𝑆 if and only if 𝑆 |= Pre(𝑎), and generates a

new state 𝑆 ′ such that 𝑆 ′ ← (𝑆 ∪ Add (𝑎))/Del(𝑎).
A planning problem P is a ⟨Ξ, 𝑠0, 𝑠𝑔⟩ where: Ξ is a planning

domain as described above; 𝑠0 ⊆ F is the initial state; and 𝑠𝑔 ⊆ F
is a goal state. A solution to the planning problem P is a plan
𝜋 = [𝑎0, ..., 𝑎𝑛] that maps 𝑠0 into a state 𝑆 |= 𝑠𝑔 , that is, in which

the goal state 𝑠𝑔 holds. The cost of a plan 𝜋 = [𝑎0, 𝑎1, ..., 𝑎𝑛] is
𝑐𝑜𝑠𝑡 (𝜋) = Σ 𝑐𝑜𝑠𝑡 (𝑎𝑖 ); we say that a plan 𝜋∗ is optimal if there exists
no other plan 𝜋 ′ for P such that 𝑐𝑜𝑠𝑡 (𝜋 ′) < 𝑐𝑜𝑠𝑡 (𝜋∗). The main

purpose of a planning algorithm planner(Ξ, 𝑠0, 𝑠𝑔) is to find such

plans. We say a planner is optimising if it guarantees to find one of

the optimal plans, and satisficing otherwise.

2.2 Generalised Planning
We define generalised planning problems following [8, 25]. A gen-
eralised planning problem GP is defined as ⟨P0,P1, ...,P𝑁 ⟩, and
represents the problem of solving a set of planning problems that

share some common structure (also known as sharing the agent),
i.e., the action scheme and the environment properties. Namely,

a generalised planning problem is a finite set of 𝑁 planning prob-
lems, so we define a generalised planning problem GP with 𝑁 ≥ 2.

A solution to a generalised planning problem GP is a generalised
plan Π that solves a GP. We define 𝑒𝑥𝑒𝑐 (Π,P) = [𝑎0, ..., 𝑎𝑛] as
an analogy to a plan 𝜋 , which is a sequence of actions that solves

a planning problem P. Thus, for every P𝑖 ∈ GP, 1 ≤ 𝑖 ≤ 𝑁 ,

𝑒𝑥𝑒𝑐 (Π,P𝑖 ) solves P𝑖 . Like Section 2.1, we call GPlanner(GP) an
algorithm that solves such problems. Recent work develops differ-

ent types of generalised planning approaches (i.e., planners), such as

generalised planning approaches that rely on off-the-shelf Classical
Planning [54], heuristic search [55, 57], and landmarks [56].

2.3 Goal Recognition as Planning
Goal Recognition is the task of discerning the intended goal agent

aims to achieve given a sequence of observations, whereas Plan
Recognition consists of identifying/recognising the plan (i.e., se-

quence of actions) that achieves such intended goal [41]. Model-

based Goal Recognition (also known as Goal and Plan Recognition as
Planning) was formally defined by Ramírez and Geffner in [49, 50],

where they formally define the task of recognising goals and plans

over a planning domain theory. Such formalism allows specifying

agents’ possible behaviours using action schemes and declarative

goals, and it usually follows well-known planning formalisms in

the literature, such as STRIPS [7] and PDDL [34].

A recognition problem P𝐺𝑅 [37] is a tuple ⟨Ξ, 𝑠0,𝐺,Ω𝜋 ⟩ where:
Ξ = ⟨F ,A⟩ is planning domain, F is a set of fluents, and A is a

set of actions; 𝑠0 is the initial state; 𝐺 is the set of possible goals,

which includes the correct intended goal1 𝑠∗𝑔 (i.e., 𝑠∗𝑔 ∈ 𝐺), and Ω𝜋 =

[𝑜1, ..., 𝑜𝑛] is a sequence of observations 𝑜𝑖 ∈ A. Ω𝜋 represents a

valid plan (i.e., achievable, given the initial state 𝑠0), and it usually

represents a partial sequence of actions (with possibly missing

observed actions) that aims to achieve 𝑠∗𝑔 .

1
Note that the correct intended goal 𝑠∗𝑔 is unknown for the recogniser.

The solution to a recognition problem P𝐺𝑅 is a goal (or a set of

goals) which the recognition approach determines to be the correct

intended goal (s). As a way to interpret the recognition process and

rank/categorise the goal(s) that the observed agents (most likely)

aim to achieve [33], existing recognition approaches often return ei-

ther a probability distribution over the set of goals [50, 63], or scores
associated with each goal in the set of possible goals [17, 43, 52]. In

this paper, recognition techniques return a probability distribution
over the possible agent intentions. Existing model-based recogni-

tion approaches rely on a range of techniques, such as planning
and adapted heuristic functions [49, 50], planning graphs [17], top-k
and diverse planning [63], landmarks [43, 62], learning and sym-
bolic planning [1, 44, 67], linear programming [52] and goal/plan
mirroring [64, 65], and multiple-goal heuristic search [19].

3 BDI AGENTS AS GENERALISED PLANNERS
Research on BDI agents has yielded a number of formalisms of

varying complexities [5, 6, 15]. These often cater to agent pro-

gramming languages such as AgentSpeak(L) [51]. We focus on the

more general type of BDI architecture, in which the agent designer

only specifies declarative goals [14] coupled with a particular en-

vironment specification that follows a STRIPS-style [18] planning

formalism
2
. We can formalise this architecture at a very basic level

as a tuple ⟨B,D,I⟩, such that each element of the tuple represents

the key components of a BDI agent, as illustrated in Figure 1. Beliefs

Beliefs

Generalised
Planner

Desires

Intentions

Generalised
Plan

Figure 1: BDI Agent as Generalised Planning.

B represent the agent’s internal representation of the state of the

environment. Much like the states in planning domains, beliefs

correspond to a set of fluents F , which the agent updates via a

sensing function. This corresponds to the initial state from which

the agent plans and compares the results of its actions. Desires D
correspond to the set of potential goals 𝐺 that the agent can (but

does not necessarily) pursue at any given time. In our formalisation,

desires are sets of tuples ⟨𝜑𝑖 , 𝐷𝑖 , 𝜎𝑖 ⟩, containing conjunctive formu-

las representing potential goals (𝐷𝑖 ), as well as a context condition

(𝜑𝑖 ) indicating when a goal becomes relevant, and a preference

value 𝜎 . Such relevance condition helps the agent filter intentions

and facilitates connecting BDI-style agents to generalised plan-

ners. Indeed, the set of desires is analogous to a set of generalised

planning problems GP, which we leverage next. The preference

ordering 𝜎 allows an agent to prioritise certain goals. To simplify

notation, when all goals have the same priority, we represent a

desire tuple as ⟨𝜑𝑖 , 𝐷𝑖 ⟩, omitting the priority. Since desires need not

be internally consistent, the agent’s reasoning cycle selects a subset

of desires toward the achievement of which it commits to. Once

2
Our vision is not limited to deterministic and fully observable environments, since

the reasoning process relies on off-the-shelf solvers.
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Algorithm 1 Abstract BDI Reasoning Cycle

1: procedure reasoningCycle(B,D, I,Ξ)
2: loop
3: B ← B ∪ sense( )
4: while I is not empty do
5: Pick an intention ⟨⟨𝜑,𝐷 ⟩, 𝜋 ⟩ ∈ I s.t. B |= 𝜑 ∧ ¬𝐷
6: act(𝜋 )
7: Find {⟨𝜑1, 𝐷1 ⟩ . . . ⟨𝜑𝑛, 𝐷𝑛 ⟩} ∈ D2

s.t. ∃Π, Π = GPlanner({⟨Ξ, B, 𝐷1 ⟩ . . . ⟨Ξ, B, 𝐷𝑛 ⟩} )
8: I ← {⟨⟨𝜑1, 𝐷1 ⟩,Π⟩, ⟨⟨𝜑𝑛, 𝐷𝑛 ⟩,Π⟩}

the agent commits to such desires, these become the intentions I,
towards which the agent plans. An intention consists of a tuple

⟨⟨𝜑 𝑗 , 𝐷 𝑗 ⟩, 𝜋 𝑗 ⟩ comprising a desire and a plan to which the agent

has committed. Intentions are desires and associated plans towards

which the agent commits to act. At each point in time, the agent

then can run a planning process using ⟨Ξ,B,I⟩ as its problem.

From these components, we can define a simplified reasoning

cycle in the pseudocode of Algorithm 1 that encapsulates the basic

conceptual operation of a BDI agent. In this case, the agent uses

a generalised planning algorithm as the means-ends reasoner for

an agent driven entirely by declarative goals. This reasoning cycle

corresponds to the conceptual work of Bratman [5] more closely

than common implementations of BDI programming languages [13,

27, 51]. While we are aware of no contemporary implementation of

BDI agents using this kind of reasoning cycle, we posit that current

progress on planning technology and AI in general will yield novel,

more powerful BDI interpreters along these lines. Ultimately, this

reasoning cycle allows one to reason about an observed agent’s

intentions using the formal machinery of Section 2.3.

This formalisation has a number of desirable properties within

our vision. First, generalised planning naturally represents that

other agents in the environment might have multiple goals in paral-

lel. This is entirely independent of a plan library, thus relaxing the

assumption that the local recogniser knows about the plan libraries

of other agents in competitive settings. Second, it is agnostic to

either adversarial or cooperative settings, as we elaborate further.

4 GENERALISED INTENT RECOGNITION
Using the basic machinery of a generic goal-driven BDI agent, we

can formalise the problem of recognising such an agent’s intent

by reasoning over its assumed desires and observed actions in an

environment. Thus, we define a generalised recognition problem as

⟨G,ΩΠ⟩, where G = ⟨GP
0
,GP

1
, ...,GP𝑁 ⟩ is a set of generalised

planning problems with different goal states (i.e., desires), and ΩΠ

is a sequence of observations that represent a generalised plan Π
to solve the intended generalised planning problem GP∗ ∈ G. Fig-
ure 2 illustrates the generalised recognition process when observing

BDI agents as generalised planners. Following the recognition ap-

proaches in the literature, a recogniser takes as input a sequence of

observations ΩΠ , representing a generalised plan Π that a BDI agent

is executing to achieve its intentions I filtered from the agent’s de-

siresD, returning a probability distribution over the set of possible

agent’s desires (committed to as intentions), defined as G.
Solving a generalised recognition problem consists of computing

posterior probabilities over G given ΩΠ . Inspired by the work of

Agent

Recogniser

Desires

Intentions

Environment Generalised Plan

Observations

Execution of

...

Beliefs

Probability Distribution

Generalised
Planner

Figure 2: BDI Generalised Recognition process.

Ramírez and Geffner in [50], we define a probability distribution for

every possible intention GP in the set of intentions G, and the se-

quence of observations ΩΠ to be the Bayesian posterior conditional

probability, as follows:

P(GP | ΩΠ) = 𝜂 ∗ P(ΩΠ | GP) ∗ P(GP) (1)

where P(GP) is a prior probability to an intention GP, 𝜂 is a

normalizing factor (𝜂 = [∑GP∈G P(ΩΠ | GP) ∗ P(GP)]−1), and
P(ΩΠ | GP) is the probability of observing ΩΠ when the inten-

tion is GP. P(ΩΠ | GP) expresses the probability of observing ΩΠ

when the BDI agent’s intention is GP. This formulation allows us

to incorporate knowledge of an agent’s preferences over desires

as the prior probability P(GP): the more preferred a desired state

is, the more likely the agent is to select it as an intention. When

the priors are uniform (e.g., no information about preferences),

the most likely intention(s) are precisely the ones that maximise

P(ΩΠ | GP). Namely, with equal priors, the higher P(ΩΠ | GP)
is, the likelier the desire GP is to be part of the intentions of the

observed BDI agent. Solving this problem efficiently creates a sub-

stantial challenge for research in agent systems.

5 APPROACHES AND CHALLENGES
With our visionary ideas of Generalised BDI Agents and Generalised
Intent Recognition in place, we lay out different avenues for further

research and promising approaches in the decision-making for BDI

agents. This includes a discussion of hurdles and potential solutions

to deal with adversarial and cooperative contexts/settings, as well as

links to research on BDI agents, AI Planning, and Intent Recognition.

Agent

Desires

Intentions

Beliefs

Generalised
Plan

(Behaviour)

Theory of Mind

CooperativeAdversarial

 - Goal Obfuscation
 - Deception
 - Privacy Planning

 - Transparency
 - Adaptability
 - Collaboration

Generalised
Planner

Figure 3: BDI Agent employing Theory of Mind.
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Within our formalisation, the key initial challenge is computing

P(ΩΠ | GP), which is key to recognising other agents’ intentions.

In line with current recognition approaches, one can compute what

we call as general recognition score 𝜖 . We define the general recogni-
tion score 𝜖 as way to compute P(ΩΠ | GP) in Equation 2.

P(ΩΠ | GP) = [1 + (1 − 𝜖)]−1 (2)

The general recognition score 𝜖 is a value between 0 and 1, i.e.,

0 ≤ 𝜖 ≤ 1, and represents how compliant the sequence of observa-

tions ΩΠ is to a generalised plan Π for achieving GP. The closer 𝜖 is
to 1, the greater P(ΩΠ | GP) is, and therefore, the more likely GP
is to be the intention that the observed agent BDI aims to achieve.

Whereas the closer 𝜖 is to 0, the lower P(ΩΠ | GP) is, and thus,

less likely GP is to be the current intention. Given the effectiveness

of the existing approaches to Goal and Plan Recognition, the compu-

tation of the general recognition score 𝜖 could be done by adapting

well-known recognition approaches in the literature [43, 50, 64],

making this type of recognition process more general.

5.1 Promising Approaches
The ability to perform goal recognition within our Generalised
BDI agents constitutes a practical Theory of Mind as part of their

decision-making process. This is an effective mechanism for an

agent to reason over other agents’ actions to predict the actions,

desires, and intentions of others acting in the same environment.

There are two key ways in which generalised BDI agents can

make their decisions: either taking into account, or ignoring other

agents’ behaviour. First, Decision-Making that is agnostic (or inde-
pendent) of other agents is often the norm in BDI agent research.

This makes their decision-making process based solely on their

own beliefs, desires, and intentions without considering the larger

context of the environment or the presence of other agents [51]. In

this case, our generalised BDI agents would follow the reasoning

cycle presented in Section 3, also shown in Figure 1, having their

decision-making process general, in contrast to existing BDI agent

reasoning processes [26, 38]. Second, decision-making that is fully
aware of other agents is critical for BDI agents that make decisions

considering cooperative [10, 21], adversarial [48], or both types of

agents (or environment contexts/settings) [29]. Such awareness of

other agents, in turn, entails understanding two different stances

towards other agents in the environment.

In a cooperative context, agents endowed with Generalised
Intent Recognition as part of their Theory of Mind [24, 59–61] can

identify when other agents are acting in a cooperative way. The

interactions (e.g., via executions of plans) of other agents in an

environment allow our approach to return a probability distribution

over their goals (desires), and if their intended goals (desires) align

with the goals of our BDI agent, then it may indicate that the

other agents are acting cooperatively. Therefore, in order to make

the decision-making more cooperative, transparent, and clearer,

we envision a decision-making reasoning process in which the

agents deliberately plan to achieve their goals using a Cooperative
Planning technique as part of its Generalised Planning process, such
Transparent [31], Legible [9, 16], or Adaptable planning processes
(Figure 3, Theory of Mind – light-yellow box, Cooperative).

By contrast, in an adversarial context, a BDI agent may have

to act privately for self-preservation [30, 58], to make their actions

as private as possible, obfuscating other agents [2]. Alternatively,

agents can deliberately deceive other agents due to strategic pur-

poses for protecting their goals [53], surprise and ambush other

agents, or thwart their intentions [45]. Thus, to facilitate adversarial

decision-making within our BDI agent, we envision using Theory of
Mind approaches [24, 59–61] to recognise and comprehend the de-

sires of adversarial agents, and then turn the generalised planning

process of our BDI plans consciously in a non-cooperative way,

using non-cooperative planning techniques as part of their decision-

making process, such as deception [47], privacy planning [28], etc,

see (Figure 3, Theory of Mind – light-red box, Adversarial).

5.2 Challenges and Opportunities
While the potential approaches to reasoning about other agents

outlined in Section 5.1 are ambitious in pushing agents research

ahead, they also entail various challenges. First, solving planning

problems in general are computationally hard. Thus, in practice,

the entire reasoning cycle with planning and recognition might

be costly in terms of computation time. Second, one of the key

assumptions of all recognition approaches is knowledge of the goal

hypothesis space. Thus, the challenge remains of recognising other

agents’ goals when the possible goals are unknown. Agents’ goals

might change over time and they will certainly not inform the

observers when changing their goals, especially in adversarial (non-

cooperative) environment settings. Third, how to determine the

level of rationality of the other agents’ behaviour to have successful

and efficient reasoning and decision-making cycles. We argue that

the rationality measure of Masters and Sardiña [32] could be used

in the recognition process to deal with both rational and irrational

agents. Fourth, our reasoning cycle abstracts away issues of dealing

deal with failures, desire reconsideration, and re-planning. This ne-

cessitates further progress in the design of planning-driven, purely

declarative agent interpreters. Fifth, predicting the actions of an

agent with multiple objectives is hard (as shown in [12]).

Here, our vision of generalised planning paves the way to do

that, by attempting to recognise general desires. Finally, while

recognising the behaviour of other agents by observation has been

studied in the context of inferring social norms [11, 36, 40], and

its violations [39], our richer formalisation of the problem and its

solutions should also expand research on normative reasoning.

6 DISCUSSION
This paper offers a research vision for Intent Recognition over BDI

agents capable of Generalised Planning. To the best of our knowl-
edge, only Xu et al. [66] attempts to formalising intent recognition

in the context of BDI agents. This approach, however, uses a very

limited notion of BDI agency, that of BDI agents driven by plan

libraries. Our research vision, by contrast, provides a more complex

conceptualisation of BDI agents, which is arguably more faithful

to the philosophical formalisation of BDI [5], and in line with re-

cent advances in BDI architectures [4]. Such a conceptualisation

is technically possible as a result of substantial recent progress on

automated planning [22, 23, 25]. Nevertheless, fully incorporating

such progress into agent architectures requires substantial work on

BDI agent architectures that can effectively use these capabilities.
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