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ABSTRACT
In order to endow a conversational agent with sophisticated social
intelligence, machine learning (which is prominent in LLM-based
systems like Chat-GPT) is not enough. Logic-based reasoning and
decision-making is needed. We need formal languages as well as
reasoning and planning algorithms based on them for modeling
and endowing the agent with intentional communication, theory
of mind, explanatory capability and norm compliance. We iden-
tify some requirements that such languages should satisfy as well
as a number of challenges regarding their combination and their
integration with machine learning methods.
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1 INTRODUCTION
We are living in an era of profound technological changes in which
AI systems are becoming increasingly powerful and pervasive. It is
the era of machine learning in which deep neural architectures and
reinforcement learning models can be trained on huge amounts
of data and, consequently, achieve performances and carry out
tasks in a way that was unimaginable until a few years ago. It is
the era of conversational agents based on Large Language Models
(LLMs): without the need for explicit background knowledge, they
are capable of conversation that is highly informative and fully
understandable to humans. The ability of such systems to generate
satisfactory answers to complex questions, based solely on the
correlations learned from a massive dataset, is impressive. However,
we are still far from having a statistical machine that learns how
to reason generally and accurately so that it can effectively solve
problems not encountered during the learning phase.

General problem solving relies, among other things, on an intel-
ligent system’s inferential, planning and decisional capabilities that
allow it to creatively perform new tasks in a goal-directed manner.
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These capabilities cannot be fully acquired through statistical learn-
ing or reinforcement learning. Rather, they are hardwired in the
system itself. This is true for both human and artificial agents. In
the case of humans, they are the product of biological evolution
which has effectively combined and harmonized them with the
learning capabilities. In the case of artificial agents, we have nowa-
days a rich toolbox of logic-based models and automated reasoning
procedures. They are the result of decades of research in the area
of so-called symbolic AI. Notable examples are efficient solvers for
propositional logic and more complex logics, formal verification
methods, planning models and algorithms. It is one of the main
challenges to integrate them with machine learning models, both
at the theoretical and the algorithmic level.

The importance of this challenge is perfectly exemplified by a
dialogue system such as Chat-GPT that, as emphasized by exist-
ing regulations of AI systems like the AI Act, is expected to be
trustworthy. For such system to interact with a human not only
effectively and informatively, but also in a reliable, socially appro-
priate and normatively irreprochable way, it must be augmented
with sophisticated reasoning and decision-making capabilities. The
latter include, among other things, the capacity i) to communicate
in a goal-directed way; ii) to represent and reason about the inter-
locutor’s cognitive state, also called a theory of the interlocutor’s
mind, and to tailor communication to it; iii) to provide satisfactory
explanations to the interlocutor; iv) to take legal and moral norms
into consideration and choose a communicative action or plan ac-
cording to them. The first two capacities are essential aspects of
intentional communication. We think that it is not possible to en-
dow an agent with such capabilities without the help of formal logic.
We need expressive languages for representing: the agent’s goal in
communication; the agent’s model of the interlocutor’s cognitive
state; the explanations that the agent has to provide to the inter-
locutor; and the norms with which the agent is expected to comply
during interaction. Moreover, we have to develop automated rea-
soning procedures and algorithms based on these languages to be
implemented in the system. To make the system more flexible and
adaptable to different contexts of interaction is key to integrate
such languages and algorithms with machine learning models.

In this paper, we identify some requirements that such languages
should satisfy (e.g., which expressiveness they should have, which
concepts they should capture) and some solutions to automate them.
Furthermore, we single out a number of challenges we deem crucial
regarding their combination and their integration with machine
learning methods. Our analysis is relevant for any AI application in-
volving an artificial agent that must communicate with the humans
and exhibit social intelligence. We use the generic term conversa-
tional agent to denote this category of agents. It includes not only
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text-based dialogue systems but also embodied agents with a mul-
timodal component (e.g., verbal, facial and bodily expressions). We
put aside the natural language processing (NLP) aspects involved in
communicative interaction. We only focus on its social reasoning
aspects. The choice of separating the reasoning aspects from the
NLP aspects is perfectly in line with existing computational models
of dialogue developed in the HMI domain [24].

The paper is organized in twomain sections. Section 2 introduces
the concept of intentional communication and clarifies how to
formalize and automate it in a conversational agent by means of
formal logic. In Section 3 we identify some challenges: how to learn
the theory of the interlocutor’s mind; how to combine intentional
communication with norm compliance, one the hand, and with
explanation, on the other hand. In Section 4 we conclude.

2 INTENTIONAL COMMUNICATION
Is a system like Chat-GPT based on a LLM able to communicate with
its human interlocutor? If communicating just means exchanging
information meaningfully, then the answer tends to be affirma-
tive. Indeed, it has been successfully trained through reinforcement
learning to perform the right dialogue move depending on the mul-
tiple states of conversation it might face. It exhibits good adherence
to Grice’s four maxims of conversation [35] by being as informa-
tive as is required, by providing information which is relevant to
context of interaction and by perspicuously engaging in conversa-
tion. More generally, it has acquired a remarkable competence to
exchange information in a meaningful and comprehensible way.
But, if communicating means exchanging information knowingly
and purposively, the answer is negative. A dialogue system like
Chat-GPT has no goal guiding its decision-making and behavior.
Furthermore, it has no understanding of the intention behind the
interlocutor’s utterance or expectation about the consequences of
its actions on the interlocutor’s mind. More generally, it cannot
engage in intentional communication.

As designers of a dialogue systemwewould like it to be customiz-
able: we would like to specify its goals in a top-down manner, de-
pending on the functionalities it is expected to deliver. Moreover, we
would like it to be capable to anticipate the potential consequences
of its actions on the mind of the interlocutor so that it has control
over these effects and can decide to promote them, if it appraises
them as positive, or to prevent them, if it appraises them as negative.
For example, we would like the system to be able to evaluate the
satisfaction, positive emotions as well as the frustration, negative
emotions and stress it could induce in the interlocutor and to take
these aspects into consideration in its decision-making. These are
the reasons why intentional communication is paramount.

2.1 Requirements
For an agent to communicate intentionally two conditions must
be satisfied. First of all, it must have one or more goals, — also
called perlocutionary goals in speech act theory [18, 68, 72]—, that
motivate it to exchange information with the interlocutor. That
is, it must decide to and consequently intend to inform the inter-
locutor about something in order to achieve such goals. The agent’s
intention to inform the interlocutor that a fact 𝜑 is true can be seen
as the intention to see to it that the interlocutor believes that 𝜑 .

Secondly, it must have a representation of the interlocutor’s
actual cognitive state, including her actual cognitive attitudes (e.g.,
beliefs, desires, preferences, intentions) and emotions as well as a
model of the causal relations between the interlocutor’s cognitive
attitudes, emotions and behavior. This is commonly called Theory
of Mind (ToM) [32] and relies on the so-called intentional stance
[23] through which we view and explain the behaviors of others
and our own behaviors in terms of mental properties.

The perlocutionary goal of the communicating agent can be of
various types. For example, it can be a persuasive goal aimed at in-
ducing the interlocutor to form a certain belief (persuasion-targeted
intentional communication) or an influencing goal aimed at induc-
ing a certain behaviour in the interlocutor (influence-targeted inten-
tional communication). It can be of explanatory type, aimed at help-
ing the interlocutor to understand why a certain event took place
or why a certain fact is true (explanation-targeted intentional com-
munication). The following example illustrates persuasion-targeted
intentional communication.

Example 2.1. Imagine Ann is interacting with her conversational
agent Rob. Rob wants to convince Ann to adopt a more environ-
mentally sustainable lifestyle by stopping driving to work. Rob’s de-
cision of what information to give Ann depends on its knowledge’s
of Ann’s cognitive state and, in particular, of Ann’s preference over
the different outcomes (e.g., money, health, environment protec-
tion). If Rob thinks that Ann’s main concern is money, it will decide
to inform Ann that using the car is significantly more expensive
than using the bike in order to convince her to stop using her car.

Speech act theory (SAT) distinguishes perlocutionary goals/acts
from illocutionary ones such as assertions, requests and commands
that are achieved/performed in saying something. According to
SAT, an agent achieves its perlocutionary goal (e.g., to persuade or
influence the interlocutor) by the performance of an illocutionary
act (e.g., an assertion, a command). The hearer’s recognition of
the illocutionary force of the speaker’s act is based on the hearer’s
inferential capability and on their sharing of a set of conventional
rules [31]. Here we consider a broader notion of intentional com-
munication that does not necessarily require the performance of
an illocutionary act by the speaker or the recognition of an illocu-
tionary force by the hearer. Moreover, following [12], we assume
it does not necessarily require a language shared by them. It can
be purely behavioral. When we base intentional communication
on the notion of perlocutionary goal, it also becomes natural to
distinguish cooperative communication, in which the participants’
goals coincide, from strategic communication, in which they differ.

2.2 Logical Specification
To be able to formalize and automate the reasoning and decision-
making of a conversational agent engaged in intentional communi-
cation with a human we need a formal language for specifying the
agent’s perlocutionary goal and theory of the human’s mind. As
pointed out above, the latter includes the agent’s beliefs about the
human’s current cognitive attitudes and emotions as well as the
agent’s beliefs about the causal relations between the human’s cog-
nitive attitudes, emotions and behavior. Such causal relations can
be specified in a top-down manner by grounding them either i) on
weak rationality assumptions, or ii) on principles of well-established
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psychological theories of human motivation and emotion. Exam-
ples of the former are the epistemic rationality assumption that a
person will believe something if she believes to be a necessary con-
sequence of what she learns to be true; or the practical rationality
assumption that a person will not decide to perform an action if she
believes it will produce some undesirable effect without producing
any desirable effect. Examples of the latter are self-efficacy theory
(SET) [7], regulatory focus theory (RFT) [40], and appraisal theories
of emotion (ATEs) [29, 45, 60, 65]. For instance, SET stipulates that
a person will not be motivated to engage in an activity unless she
believes that she is capable of carrying it out. Thus, by exploiting
its knowledge of SET, the conversational agent may try to convince
its human interlocutor that she is capable of completing a certain
task in order to get her to commit to carrying it out. According to
ATEs, the emotion of a person is triggered by a specific pattern of
cognitive attitudes (appraisal phase) and, after being triggered, it
induces a specific behavioral response (action tendency) or cogni-
tive reinterpretation of the situation (coping strategy). For example,
a person is fearful to the extent that she believes a undesirable
event will likely occur which gives her the urge to flee away from it.
The agent could exploit this theory to influence its interlocutor. In
particular, it could bypass the interlocutor’s rationality by leverag-
ing the causal chain “belief ∧ desire

cause
=====⇒ emotion

cause
=====⇒ action”

through communication to induce her to act in a certain way. For
example, it could inform the person (e.g., there is an angry lion be-
hind you!) to trigger a certain emotion (e.g., fear) and, consequently,
to induce a certain behavioral response (e.g., escape).

Formal languages particularly suitable for this type of speci-
fication are those of logics of cognitive attitudes among which
epistemic logics [27, 38, 46], logics of preference [74], their com-
binations [17, 48, 54] and logics of emotions [1, 21, 71] are some
representative examples. Epistemic logic is particularly suited to
modeling an agent’s higher-order beliefs about another agent’s
beliefs and the notions of common belief and knowledge [14, 70].
The concept of common belief has been recently applied to deep
reinforcement learning models used in games involving a ToM com-
ponent [28]. Notions of epistemic planning based on epistemic logic
[9, 10] or on some interesting fragments of it [20, 57, 58] have been
proposed. More recently [22], the notion of epistemic planning was
generalized to cognitive planning where the goal of the planning
agent is not necessarily a belief state of the target agent but, more
generally, a cognitive state. Applications of epistemic and cognitive
planning to modeling dialogue can be found in [43, 50]. The idea of
using planning in combination with a logic of cognitive attitudes
or with a more general notion of information state for modeling
dialogue was advocated much earlier in [2, 3, 16, 18, 19, 66, 73].
Recent advances in epistemic and cognitive planning have offered
new languages, new algorithms as well as a better understanding
of the complexity of plan-based dialogue modeling.

The epistemic/cognitive planning approach is well-suited for
handling intentional communication: it can be used by the agent to
calculate a communicative plan aimed at achieving its perlocution-
ary goal(s), given its beliefs about the interlocutor’s mind. In [22], it
is shown that a NP-complete logic of cognitive attitudes is sufficient
to model communication between an artificial planning agent and
a human. Moreover, in this simple scenario the cognitive planning

problem is Σ2
𝑃
-complete. Consequently, it is possible to success-

fully implement a planning model of intentional communication
between an artificial agent and a human using a SAT solver. But the
epistemic/cognitive planning approach also has limitations. First
of all, it is difficult to access the interlocutor’s cognitive attitudes
unless she explicitly reveals them. Secondly, imperfect rational-
ity, cognitive biases and personality traits of humans are hard to
specify in a top-down way as they are idiosyncratic. Thus, it is
essential to integrate the approach with machine learning to enable
the agent to learn part of the theory of the interlocutor’s mind, the
first challenge we discuss in the next section.

3 CHALLENGES
We discuss three challenges we deem fundamental about the inte-
gration of logic-based intentional communication with machine
learning, normative and explanatory reasoning.

3.1 Challenge I: Learning ToM
The first challenge is how to learn the theory of the human interlocu-
tor’s mind. One possible method is inductive logic programming
(ILP) [56]. It has the advantage of being logic-based and therefore
can be easily integrated with a logic-based model of intentional
communication. By means of ILP the conversational agent could
learn part of the human’s stable beliefs and preferences, where ‘sta-
ble’ means that they do not change over the course of interaction.

Example 3.1. Rob could use ILP to learn the condition under
which Ann prefers using her bike to using her car. It could rely
on a series of observations about the past situations in which Ann
decided to use the bike (resp. the car) and try to find the best
explanation of these observations, assuming that Ann’s preferences
are stable and she is minimally rational so as to choose what is
compatible with her preferences. For instance, Rob could learn that
Ann conditionally prefers cycling to work to driving, if it is not a
rainy day and the outside temperature is not too high.

Another method that could be exploited is reinforcement learn-
ing by supposing that i) a state in the Markov Decision Process
(MDP) representing the interaction between the agent and the hu-
man is identified with a knowledge base of the agent, similarly to
the notion of ‘belief MDP’ [42]; ii) the agent’s goal determines its
reward, ii) the information in the agent’s knowledge base as well
as its goal are expressed in a language suitable for representing
cognitive attitudes, as detailed in Section 2.2. The agent receives
a positive reward at a state of the MDP if from the information
in its knowledge base it can deduce that the goal is achieved. A
model-free algorithm such as Q-learning can then be exploited by
the agent to learn the quality of an action executed at a state.

Example 3.2. Suppose Rob’s goal is to motivate Ann to use her
bike. Through Q-learning, Rob can learn the quality of an infor-
mative action depending on what it knows about Ann’s cognitive
state. For example, it can learn the quality of informing Ann that
the outside temperature is not too high, when it only knows that
Ann believes that it is not a rainy day.

Other approaches to learning ToM exist: based on neural net-
work and meta-learning [62], on Bayesian ToM [5, 6] and bayesian
inference [26], on inverse RL [59]. The problem is that they are not
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based on logic and, consequently, their integration with a logic-
based model of intentional communication seems very complex.1

3.2 Challenge II: Norm Compliance
A normative reasoner must have i) knowledge of legal and moral
norms as well as ii) the capacity to take them into consideration
in its decision-making and planning process and, consequently, to
comply with them. This is fundamental for making the agent trust-
worthy and for aligning its behaviour with the user’s expectations.
In the case of a conversational agent such as Chat-GPT, examples of
norms with which it is expected to comply with are the prohibition
to spread unverified information, the prohibition to lie, deceive or
manipulate. To obtain this functionality, we need a formal language
to represent basic epistemic concepts (e.g., belief, knowledge) as
well as the concept of agency (i.e., the fact that an agent causes a
state of affairs to be true). Such expressiveness is necessary to be
able to define concepts such as deception, manipulation and lie that
are in the content of the norms that the agent is expected to com-
ply with. For example, the prohibition to deceive can be expressed
as the prohibition to make someone believe that a certain fact is
true when we believe that the fact is false. Good starting points for
developing such language are the action-based logic of persuasion
presented in [11], the causal analysis of persuasion presented in
[77], and the epistemic causal logic presented in [67].

The language used to specify the norm compliance module of
the conversational agent should be combined with the language
used to specify its planning module of intentional communication,
as described in Section 2.2. The language resulting from this com-
bination should be expressive enough to represent, at the same
time, cognitive attitudes, the elements of the agent’s theory of the
interlocutor’s mind, and the notion of agency, which is included
in the norms’ contents. The challenging task is to find the right
trade-off between expressiveness and computability. Ideally, the
language should remain implementable using a SAT solver or a
QBF solver, to make the approach exploitable in practice.

Thanks to this combination, it will be possible to include norms
in the conversational agent’s planning process. The agent will look
for an informative plan aimed at achieving its perlocutionary goal,
while maximizing compliance with the norms. This is in line with
the idea of logic-based planning and decision-making under ethical
values and constraints studied in [33, 34, 47]. Another interesting
direction to be explored is the integration of the RL-based solution
discussed in Section 3.1 and the norm compliance module. The
normative reasoning module can be used by the agent to identify
and then discard those actions whose execution would lead to the
violation of the normative specifications. This can be done either
during the learning process or after learningwhen an optimal policy
has to be computed through the learned Q-function. This is in line
with the idea of shielding [4].

3.3 Challenge III: Explanatory Communication
The third challenge we discuss is that of enriching a logic-based
model of intentional communication with explanatory reasoning.
1There are also approaches to goal recognition based on plan observation [53, 64]. They
can be expressed in logic but are limited as models for learning ToM. Indeed, apart
from goals, they do not consider cognitive attitudes of the observed agent. Moreover,
they assume it always executes an optimal plan which is not realistic for humans.

At a cognitive level, an explanation can be seen as a causal attribu-
tion, namely, as a belief (or knowledge) of the explainer about the
actual cause of a given fact (i.e., a belief that a certain fact 𝜑1 is true
because of another fact 𝜑2) [37, Chapter 3]. But explanation also
has a communicative counterpart which is highlighted in social psy-
chology [41], argumentation [15, 63, 76], dialogue models [13] and
explainable AI [44, 55, 69]. As pointed out in Section 2.1, the per-
locutionary goal of a conversational agent engaged in intentional
communication could be explanatory, namely, the goal of letting the
interlocutor know why a certain fact 𝜑 is true. We call explanatory
communication this kind of intentional communication. To be able
to model explanatory communication properly, we need to com-
bine the language of cognitive attitudes and the cognitive planning
algorithm based on it, as described in Section 2.2, with a language
for specifying explanations. A reasonable assumption is that ex-
planations are intrinsically causal. Under this assumption, a good
starting point for the development of such language are logics and
semantics for causal reasoning based on structural equation models
[30, 36, 39] or on causal rules [8, 49]. An important distinction that
the formal language should capture is between others- and self-
explanation. In fact, ideally a conversational agent interacting with
a human should be able to explain the cognitive state and the behav-
ior of its interlocutor as well as its own cognitive state and behavior.
The explanation of an agent’s action, belief or intention makes
usually reference to the reasons determining it. (See [51, 75, 78]
for more details.) Therefore, while others-explanation relies on a
theory of the interlocutor’s mind, self-explanation presupposes a
form of meta-cognition and introspection by the explainer.

Example 3.3. Suppose Ann asks Rob why it informed her that
the outside temperature is not too high. Rob can sincerely report
that it did that because it wants her to use the bike instead of the
car. This is a self-explanation that requires Rob to introspect its
perlocutionary goal and, more generally, its cognitive state.

Introspection, typical of humans, is the basis of reflection and
conscious control over one’s decisions and judgments. As shown by
McCarthy [52], it can be captured using logic. But it lacks altogether
in existing LLM-based dialogue systems. Endowing such systems
with introspection is useful in making them capable of detecting
their own hallucinatory states which are difficult to discriminate
from veridical ones without the help of inference [25, 61].

4 CONCLUSION
Let’s take stock. We have put intentional communication at the
center of the design of conversational agents that are supposed to
interact with humans. We hope we have convinced the reader of
the need to use logic to model this concept appropriately. We have
identified three challenges regarding the integration of intentional
communication with learning, normative and explanatory reason-
ing. The ways a logic-based model of intentional communication
could be combined, at the architectural level, with an LLM-based
dialogue system are manifold. For instance, it could be used to gen-
erate prompts for the LLM in order to better control its output, or
it could be coupled with the LLM in order to check norm compli-
ance during conversation with the human interlocutor. These are
non-trivial engineering problems that are beyond the scope of the
present paper.
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