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ABSTRACT
Multi-Agent Systems (MAS) operating within dynamic models have

been extensively studied in various domains, including cyberse-

curity and planning. In this paper, we introduce a dedicated logic

for analyzing a specific category of MAS that involve strategic ob-

jectives within dynamic models. Within these MAS, there exists

an agent known as the “Demon”, which possesses the capability

to modify the MAS model itself, while other agents operate as tra-

ditional MAS entities. We demonstrate that the model-checking

problem for our logic is solvable in polynomial time. Furthermore,

we showcase how this logic can be effectively employed to articulate

significant properties within the realm of cybersecurity.
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1 INTRODUCTION
System Verification. Over the course of the past half-century,

researchers have been driven to create a multitude of verification

techniques for software and hardware systems, all with the common

aim of ensuring these systems align with their intended specifica-

tions [34, 40, 45]. Within the realm of formal verification, model
checking [15] has emerged as a verification technique due to its

versatility and conceptual simplicity. In order to verify whether a

system exhibits specific characteristics, a system’s representation is

provided by a mathematical model 𝔐 (typically a labeled directed

graph). The desired property is expressed using a formula 𝜑 writ-

ten in some logical system characterized by precise mathematical
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semantics, such as the temporal logics LTL [39] and CTL [16]. As-

suming that 𝔐 faithfully represents the target system and 𝜑 aptly

encapsulates the desired property, the sole remaining task revolves

around confirming that 𝔐 complies with the semantic clauses

dictating the truthfulness of 𝜑 . The initial applications of model

checking primarily focused on closed systems, which are defined

by the fact that their behavior is entirely determined by their in-

ternal states. Unfortunately, model checking techniques developed

to address closed systems proved to be largely impractical, since

real-world systems are often open and involve ongoing interactions

with other systems. To address this challenge, model checking has

been extended to Multi-Agent Systems (MAS). Multi-agent systems

represent the behavior of two or more rational agents engaging

in interactions, be it cooperative or adversarial, all with the goal

of achieving a specific objective [26]. Typically, this behavior is

captured through a combination of modal logic and game theory,

where agents act as players in games played on directed graphs

and their objectives are defined using logics for strategic reasoning,

such as Alternating-time Temporal Logic (ATL) [3] and Strategy

Logic [35].

System Security. In recent years, digital systems have become

increasingly complex and dynamic. As a result, it is increasingly dif-

ficult to ensure the security of these systems when facing attackers

able to exploit this complexity. This is confirmed by the emergence

in recent years of sophisticated attacks such as Advanced persistent

threats (APTs) [29], which are complex attacks with a long life

cycle and a high degree of stealth. They can exploit supply chain

vulnerabilities (as in the case of the Stuxnet worm infecting Iranian

Uranium enrichment centrifuges in 2010 [46]), or even "cascade

effects" due to system interconnections (such as the BlackEnergy

Trojan causing a power cut in Ukraine in December 2015 [27]).

Other new coordinated attacks, such as Wormhole Attacks [23],

requires the simultaneous action of several attackers located at

different points in a wireless network. In this context, supervision

is an essential security service, enabling protection mechanisms

to be strengthened and any shortcomings to be remedied. Initially,

system supervision mainly concerned with detection, management,

analysis, and correlation of security events. Today, it encompasses

risk analysis and security orchestration more generally, taking into

account upstream information on current attacks and downstream
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automation of the response to detected attacks. Active cybersecu-

rity mechanisms enabling these tasks are currently available such

as active Intrusion Detection System (also called Intrusion Preven-

tion System) or Moving Target Defense mechanisms (MTDs) [17].

However, their deployment and configuration still remains critical.

The aim is obviously to reduce the risks associated with new threats,

while minimizing the impact on the system and legitimate users (in

terms of performance or usability). In addition, there may be other

constraints, such as the financial cost of the deployed mechanisms.

In this context, it is essential to have methods and tools to define

appropriate and optimal response strategies.

Our contribution. In this paper, we devise a logic, called Ob-

struction Alternating-time Temporal Logic (OATL), allowing one to

reason about the existence of reaction strategies that can counter

all possible identified threat scenarios over a given cyberphysical

system. We model attack scenarios as instances of multi-agent sys-

tems. In all the previously mentioned logics designed to analyze

the strategic abilities of agents, the game model where the players

operate is typically regarded as a static entity. In this view, the

players’ actions determine their positions within the arena (the

graph representing the system) but do not modify the arena’s struc-

ture. Conversely, dynamic game models, where games evolve or

change over time, have received significant attention across var-

ious domains, including cybersecurity, planning, and normative

systems [1, 2, 11, 12, 36, 43].

Let’s suppose that the game environment can change at the will

of an intelligent entity, which we will refer to as the Demon. Specif-

ically, let’s assume that the Demon’s power is to prevent all players

from coordinating to perform a particular action. Furthermore, let’s

also assume that the Demon’s powers are not limitless: he can

prevent a specific action from taking place, but only at a certain

cost. Furthermore, he cannot prevent all possible coordinated ac-

tions from occurring at a given moment. We want to answer to the

following question. Assume that𝔖 ranges over strategies of the

Demon and Σ over strategies of some coalition of agents 𝐴.

∀𝔖 .∃Σ) Can the coalition 𝐴 devise a collective strategy to achieve

their goals, whatever the evolution of the game-enviroment

dictated by a strategy of the Demon may be?

∃𝔖 .∀Σ) Can the Demon act in such a way as to prevent the agents

from having a strategy that guarantees the achievement of

their objective?

2 SYNTAX AND SEMANTICS
In this section, we define the syntax and semantics of Obstruction

Alternating-time Temporal Logic (OATL). First, let us fix some

notation and terminology that will be used along the paper.

Preliminary notions. If𝑉 is a set and𝑈 ⊆ 𝑉 , we denote by𝑈 the

complementary𝑉 \𝑈 of𝑈 in𝑉 . If 𝑣 is a (finite or infinite) sequence

over𝑈 , we denote by |𝑣 | its length (which is 𝜔 if 𝑣 is infinite), by 𝑣𝑖
its 𝑖-th element, by 𝑣≤𝑖 the finite prefix 𝑣1, . . . , 𝑣𝑖 of 𝑣 and by 𝑣≥𝑖 the
(possibly infinite) suffix of 𝑣 starting at 𝑣𝑖 . If 𝑣 is a finite sequence,

𝑙𝑎𝑠𝑡 (𝑣) denotes the last element 𝑣 |𝑣 | of 𝑣 . Given two sequences 𝑣

and 𝑢, we write 𝑣 ⊏ 𝑢 when 𝑣 is a strict prefix of 𝑢.

2.1 OATL Syntax
We now introduce the syntax of our logic.

Definition 1. Given a countable set Ap of atomic propositions,
and a finite (non-empty) set of agents Ag, state 𝜑 and path 𝜃 formulas
are defined by mutual induction using the following grammar:

𝜑 ::= ⊤ | 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 | J𝐴K𝑛𝜃
𝜃 ::= X𝜑 | 𝜑 U𝜑 | 𝜑 R𝜑

where 𝑝 ∈ Ap is any atomic proposition, A is any subset of Ag (subset
of Ag will sometimes be referred to as coalitions), and 𝑛 (the grade)
is any natural number bigger or equal than 0.

In what follows, we use the letters 𝑝, 𝑞, 𝑟, (possibly indexed) to

denote arbitrary atomic propositions, and the Greek 𝜑,𝜓, 𝜃 (possi-

bly indexed) to denote arbitrary formulas. Formulae whose outmost

operator is J𝐴K𝑛 for some A and𝑛, will be referred to as strategic for-
mulae. The height |𝜑 | of a formula 𝜑 is the height of its construction

tree. Formulae of OATL are all and only the state formulas.

2.2 OATL Semantics
We specify the meaning of OATL formulae by means of Concurrent

Game Structures (CGSs for short). Intuitively, a CGS is a labeled

directed graph that represents the possible evolution of a given

Multi-Agent Systemwith respect to simultaneous choices of actions

of a group of (autonomous) agents. Both states and edges are labeled

by members of two disjoints alphabets. States are labeled by atomic

propositions. These atomic propositions represent the properties

that are true at a given state. Each edge is labeled by a tuple, and each

member of a given tuple represents an action that is available for a

given agent at the source state of the edge. The formal definition

follows.

Definition 2. Given a set of atomic proposition Ap and a set of
agents Ag = {1, . . . , 𝑘}, a concurrent game structure over Ap and Ag
is a tuple ℭ = ⟨𝑆, 𝑠𝐼 , 𝐴𝑐𝑡, 𝑃,𝑇 ,V⟩ where:
• 𝑆 is a non-empty set of states and 𝑠𝐼 is a distinguished state
dubbed initial state.
• 𝐴𝑐𝑡 is a finite, non-empty set of actions. We denote by J the
set of maps from the set of agents to the set of actions. Elements
of J will be called joint actions and denoted by bold lowercase
letters, i.e., a, b, c, etc.
• 𝑃 : 𝑆 × Ag→ 2

𝐴𝑐𝑡 \ ∅ is the protocol function which assigns
a non empty-subset of actions 𝑃 (𝑠, 𝑖) of 𝐴𝑐𝑡 to any agent 𝑖
and state 𝑠 . The set 𝑃 (𝑠, 𝑖) represents the set of actions that are
available at the state 𝑠 to the agent 𝑖 .
• 𝑇 : 𝑆 × J → 𝑆 is the (partial) transition function such that
𝑇 is defined for a state 𝑠 and a joint action a only if for every
𝑖 ∈ Ag, a(𝑖) ∈ 𝑃 (𝑠, 𝑖).
• Finally,V : 𝑆 → 2

Ap is the valuation function, which assign
to any state 𝑠 a (possibly empty) subset of Ap.

An obstruction model 𝔐 is a pair ⟨ℭ, $⟩ where ℭ is a CGS and $ :

𝑆 × J → N+ is the (partial) cost function. Such function associates
to any state 𝑠 and joint action a such that𝑇 (𝑠, a) is defined, a positive
natural number $(𝑠, a).

A model is a CGS provided with a function that assigns a cost

(a positive natural number) to any pair composed of a state and a
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joint action that defines a transition from the given state. Thus, a

model is a labeled, directed weighed graph.

Given an obstruction model 𝔐 = ⟨ℭ, $⟩, a path is an infinite

sequence of states of the CGS, 𝜋 = 𝜋1, 𝜋2, . . . such that: for any

𝑖 ∈ N+ there is a joint action a ∈ J such that 𝜋𝑖+1 = 𝑇 (𝜋𝑖 , a). We

will denote paths by the letters 𝜋, 𝜌, 𝜏 , and 𝜆. A finite sequence of

states ℎ is a history iff there is a path 𝜋 such that ℎ = 𝜋≤𝑖 for
some positive natural number 𝑖 . We will denote by 𝐻 the set of all

histories over a given model 𝔐. Given a state 𝑠 of the model 𝔐,

we denote by J (𝑠) the set of joint actions that defines a transition
from 𝑠 , that is J (𝑠) = {a ∈ J | 𝑇 (𝑠, a) = 𝑠′ for some 𝑠′ ∈ 𝑆}. If A is

a coalition, aA-action available at 𝑠 is a function 𝑓 : 𝐴→ 𝐴𝑐𝑡 such

that 𝑓 (𝑖) ∈ 𝑃 (𝑠, 𝑖) for each 𝑖 ∈ 𝐴. If 𝑓 and 𝑔 are actions available

at 𝑠 for the coalitions 𝐴 and 𝐵 we say that 𝑔 extends 𝑓 , if 𝐴 ⊆ 𝐵

and 𝑓 (𝑖) = 𝑔(𝑖) for each 𝑖 ∈ 𝐴. We write 𝑓 ⪯ 𝑔 if 𝑔 extends 𝑓 .

F (𝐴, 𝑠) denotes the set of 𝐴-actions available at 𝑠 and F (𝐴,𝔐) is⋃
𝑠∈𝑆 F (𝐴, 𝑠). If 𝑓 ∈ F (𝐴,𝔐) then 𝑓 ⪯𝑠 = {a ∈ J (𝑠) | 𝑓 ⪯ 𝑎}. Note

that, as mentioned before, we will consider a special agent, which

is outside any coalition of agents, who has the power of modifying

the model itself. This special agent, that we call the Demon, acts

rationally, i.e., he can came-up with strategies to modify the model.

As already said, we can see a model of OATL as a directed weighted

graph in which arcs are labeled by joint actions. Given a history ℎ, a

demonic strategy selects a subset of arcs that are adjacent to 𝑙𝑎𝑠𝑡 (ℎ)
and whose sum of weights does not surpass a given threshold. The

arcs selected by the demonic strategies are temporarily erased from

the set of arcs that coalitions can select, in this sense the structure

of the graph is modified by the actions of the Demon. We formally

define the notion of demonic strategy as follows.

Definition 3 (Demonic Strategy). If𝔐 is an obstruction model
and 𝑛 ∈ N is a natural number, a demonic n-strategy is a function
𝔖 : 𝐻 → 2

J that given an history ℎ, returns a subset 𝐴𝔖 of J such
that:

(1) 𝐴𝔖 ⊂ J (𝑙𝑎𝑠𝑡 (ℎ)),
(2) (∑a∈𝐴𝔖

$(𝑙𝑎𝑠𝑡 (ℎ), a)) ≤ 𝑛.

Apath𝜋 is compatiblewith a demonic n-strategy𝔖 (𝔖-compatible

for short) if for all 𝑖 ≥ 1 we have that 𝜋𝑖+1 = 𝑇 (𝜋𝑖 , a) implies a ∉

𝔖((𝜋≤𝑖 )). Given a state 𝑠 and a demonic n-strategy𝔖, Out (𝑠,𝔖)
denotes the set of paths whose first state is 𝑠 and that are compatible

with𝔖.

Definition 4 (Strategy). Given a model𝔐 and a coalition 𝐴,
an A-strategy for 𝐴 (or simply 𝐴-strategy) is a function Σ : 𝐻 →
F (𝐴,𝔐) that maps each history ℎ to an 𝐴-action 𝑓 such that 𝑓 ∈
F (𝐴, 𝑙𝑎𝑠𝑡 (ℎ)).

A path 𝜋 is compatible with an A-strategy Σ for the coalition 𝐴 (Σ-
compatible for short) iff for every 𝑖 ≥ 1, we have that 𝜋𝑖+1 = 𝑇 (𝜋𝑖 , a)
implies Σ(𝜋≤𝑖 ) ⪯ a. We denote with Out(𝑠, Σ) the set of all Σ-
compatible paths whose first state is 𝑠 .

Definition 5 (Satisfaction). The satisfaction relation𝔐, 𝑠 |= 𝜑

between a model 𝔐, a state 𝑠 of𝔐, and a state formula 𝜑 is defined
as follows:

• 𝔐, 𝑠 |= ⊤ always;
• 𝔐, 𝑠 |= 𝑝 iff 𝑝 ∈ V(𝑠);

• 𝔐, 𝑠 |= ¬𝜑1 iff it is not the case that 𝔐, 𝑠 |= 𝜑1 (denoted
𝔐, 𝑠 ̸ |= 𝜑1);
• 𝔐, 𝑠 |= 𝜑1 ∧ 𝜑2 iff 𝔐, 𝑠 |= 𝜑1 and 𝔐, 𝑠 |= 𝜑2;
• 𝔐, 𝑠 |= J𝐴K𝑛𝜃 iff there is a demonic n-strategy𝔖 such that for
all A-strategy Σ if Out (𝑠,𝔖) ∩Out(𝑠, Σ) ≠ ∅, then there is a
𝜋 ∈ Out (𝑠,𝔖) ∩ Out(𝑠, Σ) such that 𝔐, 𝜋 |= 𝜃 .

The satisfaction relation𝔐, 𝜋 |= 𝜑 between a model𝔐, a path 𝜋 of
𝔐, and path formula 𝜃 is defined as follows:

• 𝔐, 𝜋 |= X𝜑 iff 𝔐, 𝜋2 |= 𝜑

• 𝔐, 𝜋 |= 𝜑1 U𝜑2 iff there is an 𝑖 ≥ 1 such that𝔐, 𝜋𝑖 |= 𝜑2 and
𝔐, 𝜋 𝑗 |= 𝜑1 for all 1 ≤ 𝑗 < 𝑖 ;
• 𝔐, 𝜋 |= 𝜑1 R𝜑2 iff either 𝔐, 𝜋𝑖 |= 𝜑2 for all 𝑖 ≥ 1 or there
is an 𝑖 ≥ 1 such that 𝔐, 𝜋𝑖 |= 𝜑1 and 𝔐, 𝜋 𝑗 |= 𝜑2 for all
1 ≤ 𝑗 ≤ 𝑖 .

A OATL formula𝜑 is true in amodel𝔐 iff𝔐, 𝑠𝐼 |= 𝜑 . Two formulas
𝜑 and𝜓 are equivalent (denoted by 𝜑 ≡ 𝜓 ) if for all models 𝔐 and
state 𝑠 of 𝔐,𝔐, 𝑠 |= 𝜑 iff 𝔐, 𝑠 |= 𝜓 .

Remark that since any demonic 𝑛-strategy can select only a

strict subset of the set of joint actions available at 𝑙𝑎𝑠𝑡 (ℎ) for a
given history ℎ, we can never have that Out (𝔖, 𝑠) ∩Out(Σ, 𝑠) = ∅
for every A-strategy Σ.

3 CASE STUDY
In terms of cybersecurity risk management, the questions specified

below are natural questions that arise in the risk identification

or risk treatment phases. To illustrate this, in the following of

this section, we will take into consideration the following generic

cybersecurity scenario, where we consider:

• A system with a given set of assets under protection.This

system could be for instance a network with a set of servers

storing resources or providing the legitimate users with ser-

vices. The physical assets of the system may feature known

vulnerabilities that could not have been fixed for some rea-

son. For instance, a given server on which runs a critical

service that could not be stopped, uses an old Linux distri-

bution version with a privilege escalation vulnerability that

could be exploited by an attacker to gain full access privilege

on the server.

• A set of legitimate users that use the system under protection.

Their action on the system allow them for instance to request

access to the servers.

• A set of attackers that can exploit vulnerabilities to launch

an attack. This attack will be successful under some precon-

ditions. These preconditions maybe related to the credentials

that a subset of attackers already obtained on the system

(knowledge of passwords, access to some servers, . . . .), but

also to actions previously performed by legitimate user (ac-

cess request to some resources,. . . ). Combining such previous

attack in a sequence, the attackers will be able to build an at-

tack path that allows to reach a given objective: for instance

obtaining the root privilege on a given critical server.

• A unique defender (a centralized defense system) whose

objective is to counter the attack, that is prevent the coalition

of attackers from reaching its goal. This defender has the

power to react to an atomic attack performed by a coalition
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Figure 1: Amodel depicting the considered attack scenario. Joint
actions labeling red edges have a cost of 3, joint actions labeling
black edges have a cost of 2 while those labeling blue edges have a
cost of 1. The symbol★ stands for ⟨★,★,★⟩

of attackers, by dynamically deploying a predefined set of

security countermeasures, in order to minimize the future

risk. These newly deployed security countermeasures will

remove one or several preconditions of atomic attacks (for

instance by reconfiguring the firewall filtering rules). The

deployment of these countermeasures will come with a cost

(that could be related for instance to the resulting impact on

the performance or usability of the system). The goal of the

defender being also to minimize the impact a constraint on

the cumulative costs of the countermeasures being deployed

must also be satisfied.

As a toy example
1
, consider the following scenario. Three users of a

wireless network (call them Alice, Bob, and David) can modify their

status inside the network (position and granted privileges) by either

making request to the network or by attacking it. Two of the three

users (Alice and Bob) are malevolent and aims at compromising the

integrity of the network itself. To achieve their goal, they must be

in a situation where Alice has been granted root access on a specific

network server, Bob has been granted root on another server, and

David has asked and obtained a specific resource from the network.

Suppose that, in each instant, Alice and Bob can either do nothing

or successfully make an attack on the network and obtaining root

privilege on their wanted server. Suppose, moreover, that David can

either make a specific request on the network or do nothing. Let 𝑟𝑎
be the atomic proposition expressing that Alice is root of the needed

server, 𝑟𝑏 be the atomic proposition expressing that Bob is root of

the needed server, and that 𝑔1 and 𝑔2 be the atomic proposition

expressing the fact that David has been granted access to resources

1 and 2. Given these premises, a possible interaction between Alice,

Bob, and David is depicted in Figure 1. Now, suppose that there is an

intelligent defense mechanism on the network whose power is to

temporally block users’ collective actions. Suppose moreover that

blocking these actions has a specific costs that can vary depending

on the nature of each user’s action. For instance, suppose that, in

Figure 1 joint actions labeling blue edges have a cost of 1, joint

actions labeling black edges have a cost of 2, while joint actions

labeling red edges have a cost of 3. Suppose that the initial state of

the model is 𝑠0. Is there a strategy for the defender such that, for any

strategy adopted by Alice and Bob, there exists at least one situation

in which Alice and Bob are never in position to launch the fatal

1
Examples of such real case studies, at least for the attack part, can be found in [38]

attack? By using OATL, we can express this property as follows:

𝔐, 𝑠0 |= J𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏K𝑛 (⊥R¬(𝑟𝑎 ∧ 𝑟𝑏 ∧ 𝑔1)) for some 𝑛 ∈ N. On
this example, the minimum 𝑛 for which J𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏K𝑛 (⊥R¬(𝑟𝑎 ∧
𝑟𝑏 ∧ 𝑔1)) holds is 3. The 3-demonic strategy𝔖 selecting the joint

action a such that a(𝐴𝑙𝑖𝑐𝑒) = ★, a(𝐵𝑜𝑏) = ★ and a(𝐷𝑎𝑣𝑖𝑑) = 𝑟𝑒𝑞1
given any history ℎ such that 𝑙𝑎𝑠𝑡 (ℎ) = 𝑠0. The set of paths in

Out (𝑠0,𝔖) contains 𝑠0 · 𝑠𝜔
1
and 𝑠0 · 𝑠𝜔

3
, {𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏}-strategies Σ

such that 𝐵 = Out (𝑠0,𝔖) ∩Out(𝑠0, Σ) ≠ ∅ are those in which Alice

and Bob both choose 𝑎𝑡𝑡 on 𝑠0. For all these strategies, there is a

path (i.e., 𝑠0 · 𝑠𝜔
1
) that satisfies ⊥R¬(𝑟𝑎 ∧ 𝑟𝑏 ∧ 𝑔1).

4 OATL PROPERTIES
In this section, we study the formal properties of OATL. In particular

we show that, as in ATL, the set of states that satisfies a formula of

the form J𝐴K𝑛 (𝜑1 U𝜑2) or J𝐴K𝑛 (𝜑1 R𝜑2) can be expressed as the

fix-point of particular monotone functions.

Given a model 𝔐 and a formula 𝜑 , {{𝜑}}𝔐 denotes the set of

states of 𝔐 that satisfies 𝜑 , that is {{𝜑}}𝔐 = {𝑠 ∈ 𝑆 | 𝔐, 𝑠 |= 𝜑}.
Notice that we can omit 𝔐 when it is clear from the context. If

𝑋 ⊂ J (𝑠) for a given state 𝑠 , we write 𝐶𝑜𝑠𝑡 (𝑋 ) for ∑a∈𝑋 ($(a, 𝑠)).
Given a state 𝑠 , a coalition 𝐴, and an 𝐴-action 𝑓 available at 𝑠 ,

we let 𝑛𝑒𝑥𝑡 (𝑓 , 𝑠) denotes the set of states: 𝑛𝑒𝑥𝑡 (𝑓 , 𝑠) = {𝑠′ ∈ 𝑆 |
𝑠′ = 𝑇 (𝑠, a) for some a s.t. 𝑓 ⪯ a }. If 𝑋 is a set of states,D(𝑠, 𝐴, 𝑋 )
denote the subset of J (𝑠): D(𝑠, 𝐴, 𝑋 ) = {a ∈ J (𝑠) | ∃𝑓 ∈
F (𝐴,𝔐) s.t.𝑓 ⪯ a and 𝑛𝑒𝑥𝑡 (𝑓 , 𝑠) ⊆ 𝑋 } And 𝑃𝑟𝑒 (𝑋,𝐴) denotes
the set of states: 𝑃𝑟𝑒 (𝑋,𝐴) = {𝑠 ∈ 𝑆 | ∃𝑓 ∈ J (𝑠, 𝐴) s.t. 𝑓 ⪯
a and 𝑇 (𝑠, a) = 𝑠′ ∈ 𝑋 }. Finally: (𝑛,𝐴,𝑋 ) = {𝑠 ∈ 𝑆 | 𝑠 ∈ 𝑃𝑟𝑒 (𝐴,𝑋 )
and 𝐶𝑜𝑠𝑡 (D(𝑠, 𝐴, 𝑋 )) ≤ 𝑛}. Intuitively, a state 𝑠 belongs to (𝑛,𝐴,𝑋 )
when the Demon can ensure that all action available to 𝐴 that in-

evitably lead to a state that is not in 𝑋 can be erased.

Proposition 1. For every formula 𝜑 and model 𝔐 we have:

𝑠 ∈ {{J𝐴K𝑛X𝜑}} iff 𝑠 ∈ (𝑛,𝐴, {{𝜑}})

Proof. We only prove the (→) direction, as the converse is triv-

ial. We proceed by contraposition. Suppose that 𝑠 ∉ (𝑛,𝐴, {{𝜑}}).
If 𝑠 ∉ 𝑃𝑟𝑒 (𝐴, {{𝜑}}) the result is clear. Otherwise suppose that

𝑠 ∈ 𝑃𝑟𝑒 (𝐴, {{𝜑}}) and consider an arbitrary demonic n-strategy𝔖.

By hypothesis, we must have that 𝐶𝑜𝑠𝑡 (D(𝑠, 𝐴, {{𝜑}})) > 𝑛 and

𝐶𝑜𝑠𝑡 (𝔖(𝑠)) ≤ 𝑛 we deduce that there is a subset 𝑌 of J (𝑠) and a

𝑓 ∈ F (𝐴, 𝑠) such that 𝑓 ⪯ a for every a ∈ 𝑌 , 𝑇 (𝑠, a) ∉ {{𝜑}}, and
𝑌 ⊈ 𝔖(𝑠). From the fact that 𝑌 ⊈ 𝔖(𝑠), it follows that the coalition
can always choose an appropriate 𝑓 ∈ F (𝐴, 𝑠) and 𝐴-strategy Σ,
such that Σ(𝑠) = 𝑓 for which we will have that 𝜋 ∈ Out(𝑠, Σ) im-

plies 𝜋2 ∉ {{𝜑}}. But this means, by definition of satisfaction, that

𝔐, 𝑠 ̸ |= J𝐴K𝑛X𝜑 as we wanted. □

Theorem 1. For every formula 𝜑 and𝜓 the following equivalences
hold:

(1) J𝐴K𝑛 (𝜑 U𝜓 ) ≡ 𝜓 ∨ (𝜑 ∧ J𝐴K𝑛X J𝐴K𝑛 (𝜑 U𝜓 ))
(2) J𝐴K𝑛 (𝜑 R𝜓 ) ≡ 𝜓 ∧ (𝜑 ∨ J𝐴K𝑛X J𝐴K𝑛 (𝜑 R𝜓 ))

Proof. We give a detailed proof of (1). For the (→)-direction,
let 𝔐 be any model and 𝑠 any of its states, and suppose that 𝑠 ∈
{{J𝐴K𝑛 (𝜑 U𝜓 )}}. By the definition of satisfaction, this means that

there is a demonic 𝑛-strategy𝔖 such that for every 𝐴-strategy if

Out (𝑠,𝔖)∩Out(𝑠, Σ) ≠ ∅ then there is a 𝜋 ∈ Out (𝑠,𝔖)∩Out(𝑠, Σ)
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such that 𝜋 𝑗 ∈ {{𝜓 }} and 𝜋𝑖 ∈ {{𝜑}} for each 1 ≤ 𝑖 < 𝑗 . If 𝑗 = 1, then

we can conclude, otherwise 𝑠 ∈ {{𝜑}} and we must show that 𝑠 ∈
{{J𝐴K𝑛X J𝐴K𝑛 (𝜑 U𝜓 )}}. Consider an arbitrary A-strategy Δ and let

𝜋Δ be a path that satisfies (𝜑 U𝜓 ) given the demonic n-strategy𝔖. It

is clear that 𝜋Δ≥2 ∈ Out (𝜋
Δ
2
,𝔖)∩Out(𝜋Δ

2
,Δ) and, since 𝜋Δ

1
∉ {{𝜓 }},

that𝔐, 𝜋Δ≥2 |= 𝜑 U𝜓 . Moreover 𝜋Δ ∈ Out (𝑠,𝔖) ∩Out(𝑠,Δ). Since
Δwas arbitrary, we can conclude that𝔐, 𝑠 |= J𝐴K𝑛X J𝐴K𝑛 (𝜑 U𝜓 ) as
we wanted. For the converse direction. Suppose that 𝑠 ∈ {{𝜓 ∨ (𝜑 ∧
J𝐴K𝑛X J𝐴K𝑛 (𝜑 U𝜓 ))}}. If 𝑠 ∈ {{𝜓 }} then we are done. Otherwise 𝑠 ∈
{{𝜑}}. From the fact that 𝑠 satisfies J𝐴K𝑛X J𝐴K𝑛 (𝜑 U𝜓 ), we obtain
that there is a strategy𝔖1 such that given any A-strategyΔ, we have
that𝔐, 𝜋2 |= J𝐴K𝑛 (𝜑 U𝜓 ) for some 𝜋 ∈ Out (𝑠,𝔖) ∩Out(𝑠, Σ). By
applying again the definition of satisfaction, we obtain that there

is a demonic n-strategy𝔖𝜋
Δ such that given any A-strategy Σ, we

have that𝔐, 𝜌 |= (𝜑 U𝜓 ) for some 𝜌 ∈ Out (𝜋2,𝔖𝜋
Δ ) ∩Out(𝜋2, Σ).

Consider the n-demonic𝔖★
defined by:

𝔖★ (ℎ) =


𝔖1 (ℎ) if ℎ = 𝑠

𝔖𝜋
Δ (ℎ

′ ) if ℎ = 𝑠 · ℎ′ and ℎ′ ⊏ 𝜏 for 𝜏 ∈ Out (𝜋2,𝔖𝜋
Δ )

and 𝜋 ∈ Out (𝑠,𝔖1 ) ∩ Out(𝑠,Δ)
∅ otherwise

That is,𝔖★
is obtained by composing𝔖1 with the appropriate

𝔖𝜋
Δ for any A-strategy Δ. By construction, we obtain that given any

A-strategy Δ, if Out(𝑠,Δ) ∩ Out (𝑠,𝔖★) ≠ ∅ then there is a path

𝜋 ∈ Out (𝑠,𝔖★) ∩ Out(𝑠,Δ) such that 𝔐, 𝜋 |= 𝜑 U𝜓 and we can

thus conclude. □

Let𝔐 be a model and 𝜑 ,𝜓 be two formulae. Consider the two

functions Un
𝐴,𝜑,𝜓 and Rn𝐴,𝜑,𝜓 from 2

𝑆
to itself defined by:

U𝑛
𝐴,𝜑,𝜓

(𝑋 ) = {{𝜓 }}𝔐 ∪ ({{𝜑}}𝔐 ∩ (𝑛,𝐴,𝑋 )) (1)

R𝑛
𝐴,𝜑,𝜓

(𝑋 ) = {{𝜓 }}𝔐 ∩ ({{𝜑}}𝔐 ∪ (𝑛,𝐴,𝑋 )) (2)

we can prove the following.

Theorem 2. For every model 𝔐 and pair of formulae 𝜑 and𝜓 :

(1) {{J𝐴K𝑛 (𝜑 U𝜓 )}}𝔐 is the least fix-point of U𝑛
𝐴,𝜑,𝜓

;

(2) {{J𝐴K𝑛 (𝜑 R𝜓 )}}𝔐 is the greatest fix-point of R𝑛
𝐴,𝜑,𝜓

.

Proof. We only prove (2). In virtue of the Theorem 1, it is clear

that {{J𝐴K𝑛 (𝜑 R𝜓 )}} is a fix-point of the function in Equation 2.

To prove that 𝑋 = {{J𝐴K𝑛 (𝜑 R𝜓 )}} is the greatest fix-point of the
function, we consider another fix-point 𝑌 and show that 𝑌 ⊆ 𝑋 .

If 𝑌 = ∅ there is nothing to do. Otherwise, let 𝑦 ∈ 𝑌 : we have
that 𝑦 ∈ {{𝜓 }} and either 𝑦 ∈ {{𝜑}} or 𝑦 ∈ (𝑛,𝐴,𝑌 ). If this last case
holds, we have that 𝐶𝑜𝑠𝑡 (D(𝑦,𝐴,𝑌 )) ≤ 𝑛. We define a strategy𝔖:

𝔖(ℎ) =
{
D(𝑙𝑎𝑠𝑡 (ℎ), 𝐴,𝑌 ) if 𝑙𝑎𝑠𝑡 (ℎ) ∈ {{𝜓 }} ∩ (𝑛,𝐴,𝑌 )
∅ otherwise

Remark for any historyℎ, the value of𝔖(ℎ) only depends on 𝑙𝑎𝑠𝑡 (ℎ),
and we can thus consider𝔖 as a strategy associating to any state

𝑠 a set of joint actions. Let Σ be any 𝐴-strategy, suppose that 𝐵 =

Out (𝑦,𝔖) ∩Out(𝑦, Σ) is non-empty. The fact that there is a 𝜋 ∈ 𝐵
such that 𝜋 satisfies 𝜑 R𝜓 follows by observing that 𝑦 ∈ 𝑌 , and

that for a given state 𝑣 ∈ 𝑌 , 𝑣 ∈ {{𝜓 }} and either 𝑣 ∈ {{𝜑}} or

𝑣 ∉ {{𝜑}}. In this last case, since 𝑣 ∈ 𝑌 the strategy𝔖 will select all

the joint actions a that leads to a state that is not in 𝑌 . Thus given

any history ℎ such that 𝑙𝑎𝑠𝑡 (ℎ) = 𝑣 we will have that there is a 𝑣 ′

in 𝑛𝑒𝑥𝑡 (Σ(ℎ), 𝑣) such that 𝑣 ′ ∈ 𝑌 (under the hypothesis that 𝐵 is

non-empty) and we can thus construct a path having the wanted

property. Since Σ was arbitrary, the previous reasoning holds for

any A-strategy and we obtain the wanted result. □

4.1 Model Checking
Here, we show that the model-checking problem for OATL is

PTIME-complete. To obtain this result, we first show how each

ATL formula 𝜑 can be translated to an OATL formula (𝜑)• for
which the following holds: given any model𝔐 = ⟨ℭ, $⟩, we have
that ℭ, 𝑠 |=𝐴𝑇𝐿 𝜑 iff 𝔐, 𝑠 |= (𝜑)•. We thus obtain a reduction for

the model checking problem of ATL to the one of OATL. Since the

former is PTIME-hard this gives us a lower-bound. To show that

the model-checking problem for OATL is PTIME-easy, we provide

an Algorithm (Algorithm 1) that given a model 𝔐 and a formula 𝜑

returns the set of states of 𝔐 satisfying 𝜑 . This labeling algorithm

is nothing but an extension of the one for ATL.

We start with the reduction: we define the 0-fragment of OATL

to be the set of OATL formulae in which the grade of every strate-

gic formula is 0. Let (−)• be the function from ATL formulae to

OATL formulae that is the identity on atomic propositions and ⊤,
commutes with the boolean connective and such that:

(J𝐴KX𝜑)• = J𝐴K
0
X (𝜑)•

(J𝐴K(𝜑 U𝜓 ))• = J𝐴K
0
((𝜑)• U (𝜓 )•)

(J𝐴K(𝜑 R𝜓 ))• = J𝐴K
0
((𝜑)• R (𝜓 )•)

we can easily show the following by remarking that Out (𝔖, 𝑠)
contains all paths starting at 𝑠 when𝔖 is a 0-strategy.

Lemma 1. For every ATL formula 𝜑 , every CGS ℭ, every cost
function $, and every state 𝑠 of ℭ we have that: ℭ, 𝑠 |=𝐴𝑇𝐿 𝜑 iff
⟨ℭ, $⟩, 𝑠 |= (𝜑)•

We can now state the model checking problem.

Definition 6. Given a finite model 𝔐, a state 𝑠 of 𝔐, and an
OATL formula 𝜑 , the model checking problem consists in determining
whether 𝔐, 𝑠 |= 𝜑 .

Given a model 𝔐, its size |𝔐 | is the cardinality of the transi-

tion function 𝑇 of 𝔐. Given a formula 𝜑 , we denote by | |𝜑 | | the
cardinality of the set of subformulae of 𝜑 .

Theorem 3. The model-checking problem for OATL is PTIME-
complete and can be solved in time O( |𝔐 | × | |𝜑 | |).

Proof. The lowerbound follows from Lemma 1. For the upper-

bound, Algorithm 1 shows a procedure for model checking OATL,

which manipulates set of states. The procedure is inspired by the

model checking for CTL [16] and ATL [3]. However, it uses the ad-

ditional procedures: the function 𝑆𝑢𝑏 returns an ordered sequence,

w.r.t. their complexities, of sub-formulae of a given formula 𝜑 .

The function (𝑛,𝐴,𝑋 ) which takes a natural number 𝑛, coalition

𝐴, and a subset of states 𝑋 . The function returns the subset 𝑋 ′ of
𝑃𝑟𝑒 (𝐴,𝑋 ), such that 𝐶𝑜𝑠𝑡 (D(𝑠′, 𝐴, 𝑋 )) ≤ 𝑛 for all 𝑠′ ∈ 𝑋 ′. The
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Algorithm 1 Labeling Algorithm (𝔐, 𝜑)

1: for all 𝜑 ∈ 𝑆𝑢𝑏 (𝜑 ) do
2: switch 𝜑 do
3: case 𝜑 = ⊤
4: {{𝜑 }} ← 𝑆

5: case 𝜑 = 𝑝

6: {{𝜑 }} ← {𝑠 ∈ 𝑆 : 𝑝 ∈ V(𝑠 ) }
7: case 𝜑 = ¬𝜑1

8: {{𝜑 }} ← 𝑆 \ {{𝜑1 }}
9: case 𝜑 = 𝜑1 ∧ 𝜑2

10: {{𝜑 }} ← {{𝜑1 }} ∩ {{𝜑2 }}
11: case 𝜑 = J𝐴K𝑛X𝜑1

12: {{𝜑 }} ← (𝑛,𝐴, {{𝜑1 }})
13: case 𝜑 = J𝐴K𝑛 (𝜑1 U𝜑2 )
14: 𝑋 ← ∅; 𝑌 ← {{𝜑2 }}
15: while 𝑌 ≠ 𝑋 do
16: 𝑋 ← 𝑌

17: 𝑌 ← {{𝜑2 }} ∪ ({{𝜑1 }} ∩ (𝑛,𝐴,𝑋 ) )
18: {{𝜑 }} ← 𝑌

19: case 𝜑 = J𝐴K𝑛 (𝜑1 R𝜑2 )
20: 𝑋 ← {{⊤}}; 𝑌 ← {{𝜑2 }}
21: while 𝑋 ≠ 𝑌 do
22: 𝑋 ← 𝑌

23: 𝑌 ← {{𝜑2 }} ∩ ({{𝜑1 }} ∪ (𝑛,𝐴,𝑋 ) )
24: {{𝜑 }} ← 𝑌

Algorithm 2 Test (𝑠, 𝐴, 𝑋, 𝑛))

1: 𝑆𝑢𝑚 ← 0

2: for 𝑓 ∈ F(𝐴, 𝑠 ) do
3: if 𝑛𝑒𝑥𝑡 (𝑓 , 𝑠 ) ⊆ 𝑋 then
4: 𝑆𝑢𝑚 ← 𝐶𝑜𝑠𝑡 (𝑓 ⪯𝑠 )

5: if 𝑆𝑢𝑚 ≤ 𝑛 then
6: Return True
7: else
8: Return False

worst possible case is when 𝑃𝑟𝑒 (𝐴,𝑋 ) = 𝑆 , and one needs to call

|𝑆 |-times the function 𝐶𝑜𝑠𝑡 (D(𝑠′, 𝐴, 𝑋 )). So, we are quadratic in 𝑆 ,

since ( |𝑆 | · |𝑆 |) ≤ |𝑇 | we are also polynomial in |𝑇 |.
Algorithm 2 calculates for a given state 𝑠 , if𝐶𝑜𝑠𝑡 (D(𝑠, 𝑛, 𝑋 )) ≤ 𝑛.

Such an Algorithm runs in polynomial-time in the cardinality of the

transition function 𝑇 . In fact, it has just one for loop who ranges

over the actions that are available to the coalition 𝐴 in the given

state 𝑠 and uses as subroutine the next function from ATL (line 3).

Since the number of these actions never exceeds the cardinality of

𝑇 , and since 𝑛𝑒𝑥𝑡 (𝑓 , 𝑠) can be computed linearly in the cardinality

of 𝑇 , then Algorithm 2 runs in polynomial-time in the cardinality

of 𝑇 .

Algorithm 1 works bottom-up on the structure of the formula;

the cases of interest are for strategic formulas. Termination of such

procedure is guaranteed, as the state space S is finite. Soundness and

completeness of the algorithm directly follows from Proposition 1

and Theorem 2. □

5 IMPERFECT INFORMATION
Here, we are delving into a semantic variation of our logic, wherein

the Demon, the agents, or even both may possess imperfect infor-

mation regarding the potential developments within a game. As is

customary, the agents’ lack of complete information about the game

model will be represented by dividing the states of the model into

distinct equivalence classes (one for each agent, plus one for the

Demon). States belonging to the same equivalence class for agent 𝑖

will be regarded as indistinguishable from agent 𝑖’s perspective. In

the same way, states belonging to the same equivalence class for the

Demon, will be regarded as indistinguishable from his perspective.

Definition 7. Given a set of atoms Ap and a set of agents Ag, an
Imperfect-information CGS (iCGS for short) over Ap and Ag is a tuple
ℭ = ⟨𝑆, 𝑠𝑖 , 𝑃,𝑇 ,V, {∼𝑖 }𝑖∈Ag⟩ where:
• ⟨𝑆, 𝑠𝑖 , 𝑃,𝑇 ,V⟩ is a CGS over Ap and Ag;
• for each 𝑖 ∈ Ag, ∼𝑖⊆ 𝑆 × 𝑆 is an equivalence relation over 𝑆 .

An imperfect information model (iModel for short) is a triple ⟨ℭ,∼
, $⟩ where ∼ is the Demon’s equivalence relation over 𝑆 and $ is a
cost function.

Note that CGS can be seen as a specific instance of iCGS, where

∼𝑖 is simply the identity function on 𝑆 for each 𝑖 ∈ Ag. Likewise,
a model can be considered a special case of an iModel, where the

iCGS corresponds to a CGS, and ∼ is also the identity function

on 𝑆 . Since we are dealing with imperfect information, it becomes

essential to introduce the concept of uniform strategies. To begin,

when considering two histories, ℎ and ℎ′, and specific agent 𝑖 ∈ Ag,
we will say that ℎ ≡𝑖 ℎ′ if and only ℎ and ℎ′ have the same length

𝑛, and ℎ 𝑗 ∼𝑖 ℎ′𝑗 for every 𝑗 ≤ 𝑛. Similarly, we will use the notation

ℎ ≡ ℎ′ if and only if ℎ and ℎ′ have the same length 𝑛, and ℎ 𝑗 ∼ ℎ′
𝑗

for every 𝑗 ≤ 𝑛. With these definitions in place, we can now proceed

to define uniform strategies for both the agents and the Demon.

Definition 8 (Uniform Strategies). Given an iModel𝔐 and
a coalition, a uniform A-strategy is an A-strategy Σ such that
for every 𝑖 ∈ 𝐴, for every pair of histories ℎ and ℎ′, if ℎ ≡𝑖 ℎ′

then (Σ(ℎ)) (𝑖) = (Σ(ℎ′)) (𝑖). A uniform demonic n-strategy is a
demonic n-strategy𝔖 such that, for every pair of histories ℎ and ℎ′,
if ℎ ≡ ℎ′ then𝔖(ℎ) = 𝔖(ℎ′).

A strategyS (Demonic or not) is said to bememoryless whenever

𝑙𝑎𝑠𝑡 (ℎ) = 𝑙𝑎𝑠𝑡 (ℎ′) implies S(ℎ) = S(ℎ′) for each pair of histories

ℎ and ℎ′. Let us now delineate some variations of the satisfaction

relation introduced in Definition 5.

Definition 9. Let𝔐 be an iModel, 𝑠 be any state of𝔐, and 𝜑 be
any formula, we write:
• 𝔐, 𝑠 |=𝑖𝑅 𝜑 for the satisfaction relation obtained by replacing,
in Definition 5, every occurrence of "demonic n-strategy" with
"uniform demonic n-strategy";
• 𝔐, 𝑠 |=𝑖𝑟 𝜑 for the satisfaction relation obtained by replacing,
in Definition 5, every occurrence of "demonic n-strategy" with
"uniform memoryless demonic n-strategy";
• 𝔐, 𝑠 |=𝑖𝑅 𝜑 for the satisfaction relation obtained by replacing,
in Definition 5, every occurrence of "A-strategy" with "uniform
A-strategy";
• 𝔐, 𝑠 |=𝑖𝑟

𝑖𝑟
for the satisfaction relation obtained by replacing,

in Definition 5, every occurrence of "demonic n-strategy" with
"uniform memoryless demonic n-strategy" and every occur-
rence of "A-strategy" with "uniform memoryless A-strategy".

First, we provide a result for the worste case.

Proposition 2. The model-checking problem for OATL under the
satisfaction relation |=𝑖𝑅 is undecidable.

Proof. Consider a formula belonging to the 0-fragment of OATL,

and let𝔐 = ⟨𝐶,∼ , $⟩ be any iModel. Since the set of paths starting
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at 𝑠 compatible with a 0-strategy is the set of paths starting at 𝑠 ,

it is easy to see that 𝔐, 𝑠 |=𝑖𝑅 𝜑 iff ℭ, 𝑠 |=𝐴𝑇𝐿
𝑖𝑅

(𝜑)• where (−)•
is the translation from ATL to the 0-fragment of OATL given in

Subsection 4.1. Since the model checking problem is undecidable for

ATL under the |=𝐴𝑇𝐿
𝑖𝑅

satisfaction relation [18], we can conclude. □

We recall that the bottom-up approach is a methodology that

is peculiar to strategic (and temporal) logics. This methodology

allows reducing the satisfiability of a formulawithmultiple strategic

operators, to the satisfiability of a formula containing just one

strategic operator. The procedure can be described as follows: given

a model 𝔐 and formula 𝜑 with multiple strategic operators, let

𝜑1, . . . , 𝜑𝑛 be the strategic subformulae of 𝜑 containing exactly one

strategic operator. For any 𝜙𝑖 we choose a fresh atom 𝑝𝑖 . We add 𝑝𝑖
toV(𝑠) whenever 𝑠 satisfies 𝜙𝑖 in𝔐, obtaining a new model𝔐′.
We then consider the formula 𝜙 ′ obtained from 𝜙 by substituting

each occurrence of 𝜙𝑖 with 𝑝𝑖 and evaluate 𝜙 ′ on 𝔐′ reusing the
same procedure, and we then iterate this process.

In a cybersecurity scenario, as described in the Section 3, the case

where the Demon (the defender) has imperfect information and no

memory, and the players possess perfect memory and information

represents the worst-case scenario to consider when determining

the existence of a defense strategy on a given system. Hopefully,

the complexity of the latter scenario is not prohibitive. The proof

of this fact is a copycat of the one given by Schobbens for ATL in

his classic paper [42], and we thus omit it.

Theorem 4. The model checking problem for OATL under the
satisfaction relation |=𝑖𝑟 is in PNP.

From the above theorem, and from the classic result of Schobbens

mentioned above, one obtains the following.

Corollary 1. The model checking problem for OATL under the
satisfaction relation |=𝑖𝑟

𝑖𝑟
is in PNP.

Inwhat follows, we prove that deciding if𝔐, 𝑠 |=𝑖𝑅 𝜑 is EXPTIME-

complete. Let us introduce some notation that will be used in the

following paragraphs. If𝔐 is a iModel and 𝑠 is one of its states, we

denote by P(𝔐, 𝑠) the set of paths of 𝔐 whose first state is 𝑠 . If

𝔐 is a model, we use 𝑆𝔐 to denote the set of states of 𝔐, 𝑇𝔐
will

denote its transition function and so on.

If 𝔐 and 𝔐′ are two iModels, then 𝔐 is a submodel of 𝔐′

if 𝑆𝔐 ⊆ 𝑆𝔐
′
, 𝐴𝑐𝑡𝔐 ⊆ 𝐴𝑐𝑡𝔐

′
. For any state 𝑠 and 𝑠′ of 𝔐 and

joint action a of 𝔐 we have that 𝑇𝔐 (𝑠, a) = 𝑠′ iff 𝑇𝔐′ (𝑠, a) = 𝑠′.
Furthermore, L𝔐 (𝑠) = L𝔐′ (𝑠) for any state 𝑠 of 𝔐. Finally, {∼𝑖
}𝔐
𝑖∈Ag∪𝐷𝑒𝑚𝑜𝑛

is the restriction of {∼𝑖 }𝔐
′

𝑖∈Ag∪𝐷𝑒𝑚𝑜𝑛
over 𝑆𝔐 .

If ℭ = ⟨𝑆, 𝑠𝐼 , 𝑃,𝑇 ,V, {∼𝑖 }𝑖∈Ag⟩ is an iCGS, 𝑠 is a state of ℭ and

𝑋 ⊆ P(ℭ, 𝑠), then the unwinding of ℭ over 𝑋 is the iCGS ℭ′ =
⟨𝑆 ′, 𝑠′

𝐼
, 𝑃 ′,𝑇 ′,V′, {∼′

𝑖
}𝑖∈Ag⟩, where:

• the set of states 𝑆 ′ is the set of non-empty finite prefixes of

paths from 𝑋 , the initial state 𝑠′
𝐼
is the sequence whose the

only element is 𝑠 itself;

• for every ℎ ∈ 𝑆 ′, we have 𝑃 ′ (ℎ) = 𝑃 (𝑙𝑎𝑠𝑡 (ℎ));
• for every pair of histories ℎ and ℎ′ in 𝑆 ′, for every joint

action a, we have that ℎ′ = 𝑇 ′ (ℎ, a) iff ℎ′ = ℎ · 𝑠 and 𝑠 =

𝑇 (𝑙𝑎𝑠𝑡ℎ(ℎ), a);
• for every ℎ ∈ 𝑆 ′,V′ (ℎ) = V(𝑙𝑎𝑠𝑡 (ℎ));
• for every 𝑖 ∈ Ag, ∼′

𝑖
= {⟨ℎ,ℎ′⟩ ∈ 𝑆 ′ × 𝑆 ′ | ℎ ≡𝑖 ℎ′}.

The unwinding ℭU of an iCGS ℭ is simply the unwinding over

the set of paths starting at the initial state of the of ℭ. Given an

iModel 𝔐, the unwinding 𝔐U of 𝔐 is the iModel ⟨ℭU ,∼U , $⟩
whereℭU is the unwinding ofℭ, ∼U is {⟨ℎ,ℎ′⟩ ∈ 𝑆 ′×𝑆 ′ | ℎ ≡ ℎ′}
and $

U (ℎ, a) = 𝑛 iff $(𝑙𝑎𝑠𝑡 (ℎ), a) = 𝑛, for any 𝑛 ∈ N+.
Given a path 𝜆 of a iCGS:

• its magnitude𝑀 (𝜆) is defined as the cost of the joint action

who defines the transition from 𝜆1 to 𝜆2, i.e.,M(𝜆) = $(𝜆1, a)
for a ∈ J (𝜆1) such that 𝜆2 = 𝑇 (𝜆1, a);
• its label L(𝜆) is the joint action a that defines the transition
from 𝜆1 to 𝜆2 i.e., L(𝜆) = a such that 𝜆2 = 𝑇 (𝜆1, a);
• if 𝑋 is a set of paths, then we denote by L(𝑋 ) = {a ∈ J (𝑠) |
a = L(𝜆) for some 𝜆 ∈ 𝑋 }.

Definition 10. Let𝔐 be an iModel and𝔐U be its unwinding.
A demonic n-strategy tree 𝔗 is any submodel of 𝔐U such that:

(1) P(𝔗, ℎ) ≠ ∅ for any ℎ that belongs to the set of states of 𝔗;
(2) for any state ℎ of 𝔗, for any subset 𝑋 of P(𝔐U , ℎ), if 𝑋 ⊈
P(𝔗, ℎ) then (∑𝜆∈𝑋 M(𝜆)) ≤ 𝑛;

(3) for any pair of states ℎ and ℎ′ of 𝔗, if P(𝔐U , ℎ) ∩P(𝔗, ℎ) =
𝑋 , P(𝔐U , ℎ′) ∩ P(𝔗, ℎ′) = 𝑌 , and ℎ ∼ ℎ′ then L(𝑋 ) =
L(𝑌 ).

Now, we have all the ingredients to prove the following result.

Lemma 2. Let 𝔐 = ⟨ℭ,∼ , $⟩ be an iModel and 𝜑 = J𝐴K𝑛𝜓 be a
formula such that 𝜓 does not contain any occurrence of a strategic
operator. We can prove that 𝔐 |=𝑖𝑅 J𝐴K𝑛𝜓 iff there is a demonic
n-tree 𝔗 over the unwinding 𝔐U of 𝔐 such that 𝔗 |=𝐴𝑇𝐿 J𝐴K𝜓 .

Proof. For the (→)-direction, suppose that 𝔐 |= J𝐴K𝑛𝜓 . Thus
there is a demonic uniform n-strategy 𝔖 such that for every A-

strategy Σ, if Out (𝑠𝐼 ,𝔖) ∩ Out(𝑠𝐼 , Σ) ≠ ∅ then there is a 𝜋 ∈
Out (𝑠𝐼 ,𝔖) ∩ Out(𝑠𝐼 , Σ) such that 𝜋 |= 𝜓 . Consider the unwinding

ℭ′ of ℭ over Out (𝑠𝐼 ,𝔖). It is easy to see that ℭ′ is a demonic

n-strategy tree and that ⟨ℭ′ ∼′, $′⟩ |= J𝐴K
0
𝜓 , where ∼′ and $

′
are,

respectively, the restriction of ∼ and $ to ℭ′. Since a 0-uniform
strategy is a 0-strategy, and since ℭ′ is a CGS, by Lemma 1 we

obtain that ℭ |=𝐴𝑇𝐿 J𝐴K(𝜓 )•, from the fact that𝜓 does not contain

any strategic operator, we conclude that (𝜓 )• = 𝜓 .

For the converse direction, suppose that 𝔗 |=𝐴𝑇𝐿 J𝐴K𝜓 for some

demonic n-strategy tree 𝔗 over 𝔐U . Given any state ℎ of 𝔗, let

ℎ𝔗J be {a ∈ J (𝑙𝑎𝑠𝑡 (ℎ)) | ∃ℎ′ ∈ 𝑆𝔐U ∧ℎ′ ∉ 𝑆𝔗 ∧𝑇𝔐U (ℎ, a) = ℎ′}.
We define a 𝑛-demonic uniform strategy𝔖 by𝔖(ℎ) = ℎ𝔗J if ℎ ∈ 𝑆𝔗
and𝔖(ℎ) = ∅, otherwise. Thus, the result follows by observing that
ℎ ∈ S𝔗 iff ℎ ⊏ 𝜋 for some 𝜋 ∈ Out (𝑠𝐼 ,𝔖). □

Given the above lemma, we can characterize the complexity of

deciding whether 𝔐, 𝑠 |=𝑖𝑅 𝜑 .

Theorem 5. The model checking problem for OATL under the |=𝑖𝑅
satisfiability relation is EXPTIME-complete.

Sketch. For the upper-bound, consider a formula 𝜑 = J𝐴K𝑛𝜓
where 𝜓 does not contain any strategic operator. By Lemma 2,

𝔐 |=𝑖𝑅 𝜑 iff there is a n-demonic strategy tree𝔗, such that𝔗 |=𝐴𝑇𝐿
𝜑 ′, where 𝜑 ′ = J𝐴K𝜓 . Given a strategy tree 𝔗 to check whether

it satisfies a formula such as 𝜑 ′, one can check whether such a
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tree satisfies 𝜓 within the ( |𝑆𝔐 | + 1)-th depth of 𝔗 (see [31–33]

to further details on this aspect). One can enumerate all the finite

trees of depth |𝑆𝔐 | +1 that are subtrees of 𝑛-demonic strategy trees,

and check whether one of them satisfies 𝜑 ′ using the ATL model

checking algorithm. In the worst case, the number of such subtrees

is exponential in the cardinality𝑇𝔐
. Since we call for each of them

a polynomial-time algorithm (i.e., ATL model checking), the result

follows. To generalize such a result to arbitrary formulae, recall

that we can use the classic bottom-up approach for ATL formulas.

For the lower-bound, we recall that to solve two-player turn-based

games with imperfect information is EXPTIME-hard [41]. □

6 RELATEDWORK
In the past years, many works focused on the strategic abilities of

agents playing in a dynamic gamemodel. We compare our approach

with some of these works, highlighting differences.

Obstruction Logic (OL) [13] is a recently introduced logic al-

lowing reasoning about two-player games played on a labeled and

weighted directed graph. In OL, one of the two players, known

as the Demon, has the power to temporarily disable edges in the

graph whose sum of weights does not exceed a given natural num-

ber. For simplicity, let’s consider an OL formula ⟨⟨ 𝑛⟩⟩𝜓 where 𝜓

does not contain strategic operators. The reader can easily check

that𝔐, 𝑠 |=𝑂𝐿 ⟨⟨ 𝑛⟩⟩𝜓 iff𝔐, 𝑠 |= JAgK𝑛𝜓 . This relationship between
OL and OATL semantics can be extended in the obvious way for

boolean and temporal operators. Thus, OATL is an extension of OL.

SabotageModal Logic and its extensions [4, 30, 44] is another
line of research related to our work. Sabotage games have been

introduced by van Benthem with the aim of studying the computa-

tional complexity of a special class of graph-reachability problems.

In these games, one player moves over a directed graph by travers-

ing adjacent nodes and tries to reach a certain subset of nodes, while

the other player has the power of erasing an edge anywhere in the

graph at any turn. To reason about sabotage games, van Benthem

introduced Sabotage Modal Logic (SML). SML is obtained by adding

to the ^-modality of classical modal logic another modality ♦. Let
𝐺 be a directed graph and 𝑠 one of its vertex; the intended meaning

of a formula ♦𝜑 is “ ♦𝜑 is true at a state 𝑠 of 𝐺 iff 𝜑 is true at 𝑠 in

the graph obtained by𝐺 by erasing an edge 𝑒". The model checking

problem for Sabotage Modal Logic is PSPACE-complete [30]. Our

games are incomparable with those considered in SML: they are

concurrent and multiplayer games, we consider temporal objectives

and the Demon can select subset of edges based on their weight.

The authors of [43] introduce Dynamic Escape Games (DEG,
for short). Such games have a close resemblance to ours. These are

games with weighted transitions in which Player1 (P1) tries to reach

a target state while Player2 (P2) tries to prevent it. Along a play, P1

plays as usual, i.e., from his current position, he chooses one of the

available successors and moves to it. Conversely, P2, sitting on a set

of states S, chooses some of her successors that become irrevocably
unavailable to P1 and adds them to S. Contrary to us, the authors

have proposed an optimized heuristic that provides partial results

to check whether P1 has a strategy to reach one of his goal states.

Logics on Normative Systems (NS) [1, 2] are also related to

OATL. An NS is a transition system in which some transitions are

considered illegal and deactivated according to some parameter.

Formally, in logic for NS one evaluates CTL or ATL formulae with

respect to a transition system in which a set of arcs has been deleted

according to a given function. The assignment function on NS in

non-local e non-quantitative: any subset of arcs can be deleted by

the assignment and there is no notion of deletion cost.

Module checking (MC) for strategic and temporal logics [8,

9, 28] is a line of work which is related to ours: more precisely to

the fragment of OATL in which the grade of strategic operators

is 1 and the cost of every transition is one. In MC, states of a

model are partitioned into those controlled by the environment

and those controlled by the system. Given a formula 𝜑 and a model

𝔐, the MC problem is solved by determining whether every tree

obtained by deleting one out-coming edge of an environment state

in the unwinding of 𝔐 satisfies 𝜑 , and this for every state of the

environment. Although there is a similarity between MC and OATL

model checking, the two approaches are orthogonal. In OATL each

state of the model can be seen as a state that is controlled by the

environment (the Demon). Furthermore, we can only ask whether

there exists a subtree of the unwinding of the model that satisfies

a universal ATL formula. This difference is found in the fact that

the model checking problem for OATL is polynomial, while the MC

problem (even for “simple” logics like CTL) is at least exponential.

From the cybersecurity side, several existing works have pro-

posed different game-theoretic solution for finding an optimal de-

fense policy. Most of these approaches try to solve games using

analytic and optimization techniques, e.g., [19, 20, 37, 47]. The work

in [10] shares some ideas with our approach on the cybersecurity

side. However, the authors do not use dynamic models and study a

timed-logic framework and timed games to express and evaluate

network security properties, which result in an EXPTIME-complete

procedure. The already mentioned work in [11] propose a logical

approach to play on Attack Graphs. They show that security games

can be coded by means of their logic, and that the model-checking

problem for such a logic is decidable. The work in [14] shows a

technique to check whether an attacker has a strategy to achieve a

reachability objective by using an automata-theoretic approach.

7 CONCLUSION
We introduced OATL, a logic allowing to reason about concurrent

games in which one of the players has the power to modify, locally

and temporarily, the game structure. We showed how to express

cybersecurity properties via OATL. We studied the formal prop-

erties of OATL and its model-checking problem under different

semantics.

As future work, we aim to deeply investigate the context of

imperfect information. Unfortunately, as demonstrated, this prob-

lem is generally undecidable. To address this challenge, we could

consider employing an approximation to perfect information [5],

memory [7], or some hybrid technique [21, 22]. Furthermore, we

aim to investigate semantic variants of imperfect information OATL

where the Demon, the players, or both, employ bounded memory

strategies [6] or natural strategies [24, 25]. Finally, we plan to give

a sound and complete axiomatization for OATL.
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