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ABSTRACT
The likes of ChatGPT has propelled the use of AI techniques beyond
our community’s expectations. Along with this, the fear of AI has
also risen, in particular around the ability, or lack thereof, of the AI
system to explain its behaviours. Explainability is a key element of
building trust and an important issue for our community. In this
paper we advocate for agents that are explainable-by-design, that is,
explainability is built into the development of agents rather than an
afterthought.We propose key features of an explainable agent (XAg)
system and propose a general framework that enables explainability.
We advocate the use of design patterns to develop XAgs and propose
a general design pattern that can be used for any agent architecture.
We instantiate our framework for goal-based agents and implement
the framework for the SARL agent programming language coupled
with a state-of-the-art event management system. We make a call to
the developers of other agent programming languages (APLs) in our
community to follow suit by instantiating the general framework
we propose into their APL, perhaps even enhancing the framework
we present. We also propose an open repository of design patterns
and examples for agent systems. If nothing else, we hope this paper
will inspire further work on XAg from the design perspective as it
is critical that multi agent systems are explainable by design!
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1 INTRODUCTION
ChatGPT and other generative AI tools have brought AI into the
spotlight beyond expectations. Every company is now frantically
seeking to integrate these technologies into their products and
industries. This rapid adoption however, has also raised questions
on whether these systems can be trusted.

As Prof. Virginia Dignum states in her book "Responsible AI" [9]:
"Responsible AI is more than the ticking of some ethical ‘boxes’ or
the development of some add-on features in AI system". Ensuring the
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system is designed responsibly is crucial to trusting its behaviour.
Explainability, therefore, should not be considered as an add-on
technique of an AI system, rather it must be embedded into the sys-
tem’s architectural foundations. Whilst, embedding explainability
into agents will increase trust and adoption [24], it is not the only
benefit. Explainable agents (XAg) can also increase productivity as
they can more quickly uncover errors and/or areas of improvement,
and it can also help mitigate risks as it provides insights on whether
the AI system could potentially violate norms, rules or standards.

Traditional software engineering has promoted strong design
conventions to improve a large number of quality attributes of soft-
ware systems. These quality features (sometimes referred as "-ity"
attributes) include modularity, usability, and so on. We argue that
"explainability" should be included into the list of quality attributes
for AI systems, ensuring that it is considered as a central aspect of
the system’s design. A well established means of ensuring quality
attributes is through the use of Design Patterns [14]. Tores et al.
called for the use of design patterns in MAS over a decade ago [5] to
increase the broader acceptance of the technology. There has been
some work on the use of design patterns in MAS [7, 22], for exam-
ple, [7] provided design patterns for agent-oriented programming,
providing templates for realising some agent-oriented concepts
and abstractions. There has also been recent work by Washizaki
et al. [35] exploring design patterns for machine learning systems,
also highlighting the importance of this approach in gaining wider
acceptance by the broader software engineering community. How-
ever, to the best of our knowledge, no patterns have been proposed
for explaining agent behaviours. In this paper, we advocate the use
of design patterns for XAg.

In this work, we make a call to the AAMAS community to: (i)
make explainability a central element of any agent architectural
design; (ii) contribute design patterns that ensure explainability is
embedded into the agent’s architecture; and (iii) develop new or
enhance existing agent programming frameworks that implement
XAg design patterns, so that the agents created are explainable by
design. We propose an open repository that hosts a collection of
design patterns for agents systems, including for XAg, and example
applications that implement those design patterns.

As a first step towards this, we have developed a general archi-
tecture for XAg based on the event-driven architecture which is
inherent to agent systems. Within this framework, we have devel-
oped a design pattern (TriQPAN ) for XAg. We have instantiated
our design pattern for goal-based agents, incorporating it in to
the SARL agent programming language [27] coupled with a state-
of-the-art event management system. We add our design patterns
and three application examples into the open repository as initial
contributions to kickstart community contributions.
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We hope these preliminary steps inspire further work on XAg
from the design perspective as it is critical that multi agent systems
are explainable by design.

2 BACKGROUND: XAG
While there has been a significant focus on the importance of ex-
plainable AI, there is a limited amount of research in Multi-Agent
Systems (MAS) in the development of explainable agents. Notable
exceptions to this trend include recent work by Winikoff et al. [36]
and earlier contributions by Habers et al. [17, 18]. These works
leverage goal-plan trees (GPT) [33, 34] as a foundation for provid-
ing explanations. GPTs are akin to decision trees and facilitates
traceability. Hence, essentially, explaining the rationale behind an
action involves tracing the GPT. Habers et al. [18] necessitate agents
to record any decisions requiring an explanation through an ex-
plicit logging mechanism. For instance, when an agent adopts a goal
G at time t, it logs this decision. The explanation log can encom-
pass beliefs, goals, actions, etc. They emphasize that the decision
of what to log should depend on the information desired for an
explanation. Despite providing templates for specific case studies,
their approach lacks a general formalism. Winikoff et al.’s [36] ap-
proach extends the work of Habers et al., introducing the concept
of “valuings". Their work show that employing these valuings leads
to more effective explanations. Further, a significant contribution
of [36] lies in their mechanisms for generating explanations in a
human-friendly natural language, surpassing a simple trace of a
GPT. They provide formal definitions and detailed algorithms for
their approach. To the best of our knowledge, the work of Winikoff
et al. has not been implemented in an agent programming language
but rather exists as prototypes in Haskell and Python, serving to
evaluate the presented formalisms and algorithms.

3 GENERAL APPROACH FOR XAG
In this section we propose a general approach that enables XAg by
design. Figure 1, presents an overview of the general architecture
and we describe the components below.

Figure 1: Architecture Overview
Event driven architecture
The Sense-Deliberate-Act is the standard reasoning model for any
agent architecture. This general agent model is inherently an event-
driven architecture [13] which can benefit from decades of software
engineering research in this area. An event-driven architecture
(EDA) uses events to transmit information that triggers loosely cou-
pled microservices. A wide range of software architecture patterns
have emerged to support this new way of building software [19].
In an agent architecture, these microservices translate to modules
at different levels of abstraction such as sensing, goal selection,
plan selection, intention scheduling, and so on. These events can

be stored and queried to generate explanations. For the purpose of
storing and querying events, there are numerous well-established
mainstream patterns and tools, that can be used in the context of
agent systems rather than having to re-invent the wheel, a wheel
that has seen decades of best practice in industry.

Explainable decision-making processes
At the core of our explainable-by-design principle is that each
decision-making process in the agent’s architecture must surface
enough information to explain the reasons for the decision. For
instance, a goal-oriented agent should be able to explain why it is
pursuing a particular goal, or a particular plan, or why not and so
on. The AAMAS community has already started some efforts to-
wards this though they are more “add-on” features than a “built-in”
feature of the agent architecture (see Section 2).

We acknowledge that agent technologies are still evolving (and
will continue to do so with the rapid adoption of AI), and there
is no “one-size-fit-all” solution for agents. So, instead of trying to
propose a “silver-bullet” architecture for XAg, we propose to focus
on defining a set of design patterns that enable explainable-by-
design decision-making processes. Similar to the seminal works
like the Gang of Four [15] for mainstream software engineering, we
advocate creating design patterns that can be adapted to different
use cases, while ensuring the quality feature of explainability. We
have made a contribution towards this and have proposed the
TriQPAN pattern which we present in Section 4. We see this as a
catalyst to other design patterns for XAgs and indeed other agent
reasoning processes.

Query languages and explanation engines
In the architecture we propose, events generated are stored in a
data lake, that is a collection of events from disparate sources. In a
large complex and long-running agent system, this will result in
potentially very large amounts of events containing information
not only of what did the agent(s) do, but the information that
enables understanding why they did it. To understand the why,
we need specialized query languages to find these reasons in a
potentially large ocean of events. Once again, fortunately, we can
borrow and adapt tools from mainstream software engineering for
this purpose. Indeed, more often than not, event storage systems
provide, well formed sophisticated query languages that can be
used to interrogate the event-store.

The explanation engine needs to formulate the appropriate queries,
gather and process the results to generate the explanations. Big-
data applications such as banking or fintech deal with enormous
amounts of streaming data events, and these days utilise machine-
learning techniques in managing data. Our community should ex-
plore these state of the art approaches for XAgs.

The format the events are stored in, and the query languages are
generally not the most intuitive to non-technical human users, who
are often the end users of the AI systems. Hence, there is a need for
a human interface module to allow queries and present responses in
an intuitive human-readable form. Various AI techniques, such as
natural language processing, large language models, dialog systems,
and many others could be applied for this purpose. We propose this
human interface to be decoupled from the other components which
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Figure 2: TriQPAN pattern for agents

allows the query/explanation process to be more easily tailored to
different kinds of human users.

4 TRIQPAN : XAG DESIGN PATTERN
Aligned with the approach we advocate for, we propose a design
pattern TriQPAN (Trigger, Query, Process, Action and Notify) [28],
which is designed to ensure that decision processes are recorded to
explain the agent’s behaviours. TriQPAN structures the steps of a
decision-making process following the Sense-Deliberate-Act loop
(see Figure 2). Once the decision process has been triggered (e.g. by
a perception), it will query its state or known information (e.g., its
belief sets), compute or process this information to select the actions
to perform, and finally, notify of its actions to other modules of
the agent. All the components of the decision-making process are
documented in the XAgentProcess event that is emitted when the
process completes.

TriQPAN enables the use of well-known event-driven patterns
(i.e., Event Sourcing [11] and CQRS [12]) in agent architectures for
explainability. This allows us to leverage years of industry practice
in event-driven architectures and integrate state-of-the-art tech-
nologies such as Event Store DB.

In particular, Event Sourcing (ES) is commonly used to track
changes in the state of the system for auditing and traceability,
although many other benefits can be obtained. When correctly
implemented, ES allows to replay events to recreate the state of the
system at any given time; create “what if” scenarios by injecting
events; and more.

Usually closely associated with ES, CommandQuery Responsibly
Separation (CQRS) pattern is widely used in industry applications
to separate the interfaces that modify the state and those that
query the state. Furthermore, CQRS enables the creation of multiple
query models from the event store to allow more efficient use
cases. For XAgs, this allows creating multiple explainability query
models that can be tailored to different needs (e.g., granularity and
depth; temporal traces; specific modules or reasoning aspects; etc.).
Coupled with continuous event streams, it opens the possibility of
continuous live explanations of the agent’s decisions.

We instantiated our framework for goal-based agents using the
SARL agent programming language [27]. As the engine itself is
designed using the TriQPAN pattern, developers always create
XAgs that emit XAgentProcess event documenting there goal-based
reasoning processes. Detailed discussion can be found in [28]

We hope this is only a first step to a collaborative and interop-
erable XAg framework. We make a call to the developers of other
agent programming languages (APLs) in our community to follow
suit by instantiating the general framework we propose into their
APL, perhaps even enhancing the framework we present.

5 RESEARCH AGENDA
Explainaibility has proven to be a complex topic of AI in general.
XAgs are no exception to this. In this section, we highlight some
of the most critical areas we need to focus on as a community to
enable XAgs that are explainable-by-design .

Standardization. Most large endeavours require the community
to collaborate using a shared understanding. We will follow the
natural path of agreeing on the key agent processes and components
that will later find its path into standards. We have seen efforts
towards this goal in proposals like FIPA [20]. Unfortunately, this
standardization efforts have been stalled for several years.

To overcome the complexity of a “comprehensive” agent stan-
dard, we advocate for a “loosely coupled” approach where standards
are focused on events format, syntax and semantics. Focusing on
the events (i.e., information exchange units) will allow different
decision-making techniques to be interchangeable.

Implicit in this description is the need for standard commu-
nication exchange patterns. Messaging architectures can take a
wide-range of formats, and each one requires its own standardiza-
tion [19]. For instance, if we follow a publisher-subscriber pattern,
the community will have to agree on topics (and subtopics), accept-
able events on each topics, and so on. This is similar to the popular
robotic architecture ROS [37].

We expect that the XAgentProcess event will attract the most
attention and debate. As the event exposing the information regard-
ing the decision-making, it will be critical to allow explainability.
If we use TriQPAN as a starting point, we need then to provide
standards for how to expose each element of the process: (i) trigger
will benefit from events standardization mentioned previously; (ii)
query will have to summarize all information needed to make the
decision (see Section 5); and (iii) criteria used in the deliberation
step (i.e., process) will have to be accurately document (e.g., what
did you value and considered when deciding your actions?). A stan-
dard (even a de facto one) will serve as an anchor point to open
other fields of research, such as query languages (see Section 5).

Design Patterns and Best Practices. New problems will emerge as
XAgs are developed and whilst a myriad of possible solutions can
be advanced, only a few will become accepted best practices. Best
practices need to define the principles that guide the practice. Initial
work on explainability principles are excellent starting points [6, 26].
More comprehensive approaches to responsible AI must be con-
sidered as well [8]. Standards on software quality [21] must be
extended to include AI specific features (e.g., explainability, ac-
countability, transparency, etc.). The best practices defined by our
community will inform these decisions. Finally, Design patterns [15]
will enable agent system developers to implement these practices.
TriQPAN is a first step in this direction for explainability features.

Exposing information (semantics + data). Agents’ decisions are gen-
erated based on its beliefs. These beliefs have associated semantics
that in many cases are left implicit for the developer to interpret.
Explainable events must surface data with its associated semantics,
or make these semantics readily accessible.

Problems related to semantics are already well known in tradi-
tional software engineering [32]. Similar problems may arise, such
as “misunderstandings” when producing explanations, e.g.,units

Blue Sky Ideas Track  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2714



for numerical values (e.g. Celsius or Fahrenheit for temperature),
implicit categories without clear boundaries (e.g. temperatures is
HIGH or LOW is subjective), cultural assumptions, etc. This is-
sue becomes more complex when we consider that decisions may
be influenced by experience, preferences or learned values. Work
on knowledge representation [23] and ontology engineering [16]
should be considered in addressing this challenge.

Query languages. XAgswill generate large amounts of events.While
storing and scaling event-processing can be done efficiently with
current technologies, the community will need to work on novel
languages to query these explainability event data lakes to extract
meaningful information. These languages need to inspect streams
of events to find the information required to answer the user’s ques-
tions. Using these query languages, dedicated explanation engines
will need to be created to produce human-friendly explanations.
Work on event query languages [10] would be useful here.

Explanation generation and human interfaces. As hinted above, an
essential part will be the engines that interpret the questions and
generate the human-friendly explanations. In this context we will
have the opportunity to extend existing approaches to be able to ask
not onlyWhat happened, but why it happened. These engines will
have to be able to keep track of the context and dig into the events to
produce contextually accurate, complete (yet succinct) answers. In
this context, knowledge-graphs, UI patterns for XAI [30], and large
language models [25] are natural candidates, but other innovative
interfaces (e.g., augmented reality) should also be explored.

Integrating explainaibility of other AI components. Agent systems
will rely on other AI fields for different components, e.g., deep learn-
ing for computer vision during sensing. To have truly explainable
agents, our techniques will have to capture the explainability infor-
mation of these other modules. This will prove to be a challenging
and interdisciplinary exercise. Other AI architectures (e.g., deep
learning) are developing their own explainability standards and
techniques [26, 29]. Our approach to XAgs should be compatible
and complementary to them, so we can use these techniques in dif-
ferent agent modules, ensuring explainability is not compromised.

Complex process interactions. Explaining the interaction between
decision-making (sub-)processes (e.g., how a plan being selected
impacted future goal selections) will require us to understand and
explain the interactions between these sub-processes. Reasons could
be hidden in long sequences of disconnected decisions. With the
stream of all-inclusive events stored in a database, we can explore
how to understand and explain these decisions (for instance, us-
ing causal inference). Creating information protocols for decision-
making process interactions may be a good starting point [31].

Introspection processes. “Programs that reason about themselves” is
not a new quest [2]. Can the same events used to generate explana-
tions for humans be used by the agent to understand the limitations
of its own processes and self-improve by modifying the decision
processes? This should be possible for plan selection by learning
better context conditions, for example.

Explainable Teams. Teams of agents are common-place and we are
not short of agent teammodels, algorithms, and applications. As we
progress towards explainable single-agents, we will need to work

on teams capable of explaining their cooperative behaviours and
strategies. Work in this field has already started [3, 4] but there is
much to be addressed.

6 CONCLUSION AND CALL TO ACTION
Autonomous agent systems will play a key role in this new era
of responsible AI. It is important to ensure that key features for
accountability and transparency are embedded into the design of
agent systems. We argue that to achieve explainability-by-design
we need to focus our attention on three enabling features: (i) event-
driven agent architectures that allow loosely couple modules to
interact; (ii) design patterns and best practices to ensure explain-
ability is embedded into the agent’s design and not an "add-on"
feature; and (iii) query languages and explainability engines capable
of generating and presenting explanations. As a first step towards
this goal, we proposed the TriQPAN pattern to expose relevant
information of the decision-making process and implemented it in
the SARL APL, which will be publicly released.

We call out to the AAMAS community to help us build an open
repository with collections of design patterns and corresponding
case studies, to allow us to further our research on explainable
agents, converge on standards for key components such as event
structures, and reach a maturity that main-stream software engi-
neering has through this approach of design patterns. To kick-start
this, we have a created an open repository in GitHub1, which hosts:
a design patterns catalogue (DPC) for agent systems; and a shared
and open explainability events database (EEDB).

Each pattern in the DPC must follow a unified documentation
structure including purpose, quality feature promoted, problem and
solution, etc. Explainability patterns will have to make a contribu-
tion to the EEDB to showcase the outputs produced and the XA-
gentProcess event format promoted. In turn the EEDB will contain
streams of explainability events generated for different application
domains. Each explainability event will have to document its syntax
and semantics. The goal is twofold: (i) serve as a shared knowledge
base of explainability event formats; and (ii) serve as datasets and
benchmarks for query languages and explanation engines.

We provide the initial contributions to this repository by doc-
umenting the TriQPAN XAg design pattern and provide our im-
plementation examples in SARL. We also provide XAgentProcess
event stream generated by our goal-oriented engine for three dif-
ferent domains: (i) the “Why bad coffee?" example by Winikoff et
al. [36]; (ii) the Search and Rescue example for ad-hoc behaviours [28];
and (iii) the multiagent programming contest “Agents in the City”
scenario [1].

All of the contributions to this repository will be community
driven supported by public repositories hosted in GitHub to pro-
moted transparency, collaboration and easy access. We hope the
community, especially the EMAS sub-community will join us in
our efforts in creating explainable agents by design.
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