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ABSTRACT
The field of emergent communication investigates the emergence of
shared linguistic conventions among autonomous agents engaged
in cooperative tasks that require communication. Conventions that
arise through self-organisation are known to be more robust, flexi-
ble, and adaptive, and it removes the need for hand-crafting commu-
nication protocols. In my PhD research, I investigate how artificial
agents can co-construct such conventions of linguistic structures in
reference-based tasks. This problem is tackled using the language
game experimental paradigm which aims to model the processes
underlying the emergence and evolution of human languages. My
primary contribution thus far introduces a novel methodology for
the language game paradigm in the emergent setting. Using the
methodology, agents can establish through self-organisation an
emergent language that enables them to refer to arbitrary entities
in their environment using single-word utterances. For the first
time, the methodology is directly applicable to any dataset that
describes entities in terms of continuously-valued features. The
next phase in my research is to move from single-word utterances
to multi-word utterances through the emergence of grammatical
structures.
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1 INTRODUCTION
In recent years, the field of emergent communication has witnessed
an unprecedented surge of interest propelled by developments in
deep multi-agent reinforcement learning. These developments have
enabled agents to learn to communicate in complex environments
and deal with high-dimensional input data such as images [17]. As
a result, a number of impressive experiments have been conducted,
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addressing a range of tasks including, but not limited to, reference
[6, 18, 19], navigation [14, 21, 37], and robotics [22]. In such settings,
the shared task requires establishing an emergent communication
protocol which enables coordination among the agents.

While these results are incredibly promising, the conditions
under which the languages in these experiments emerge, differ
significantly from the way human languages do [42]. For exam-
ple, as discussed in [42], populations sometimes consist of only
two agents [5, 26], learning is not decentralised [10, 15], or agents
can either speak or listen, but not both [6, 16, 21]. To ensure that
effective and coherent conventions can emerge in heterogeneous
populations and can adapt to changes in tasks and environments, it
is thus important to model the circumstances under which artificial
languages emerges (as much as possible) to those under which
human languages emerge [42].

Human languages, similar to biological evolution, are evolution-
ary systems where linguistic structures are shaped through the
processes of variation and selection [7, 20, 29]. These processes
operate at the level of concepts, words, and grammatical struc-
tures [42]. Conventions constantly emerge and evolve through
local communicative interactions between members of a linguistic
community. Indeed, language emerges through self-organisation,
rather than through central control [8, 34, 35]. For that purpose,
the language game experimental paradigm was conceived as a
framework to model the emergence and evolution of languages in
populations of artificial agents by simulating these aforementioned
evolutionary mechanisms [24, 34, 36]. It has been demonstrated
that such self-organising systems, driven by the processes of varia-
tion and selection, exhibit desirable properties such as robustness
and adaptability [1, 12, 28].

In my PhD research, I investigate how artificial agents can co-
construct conventions of linguistics structures in reference-based
tasks using the language game experimental paradigm. The goal is
to develop generally mechanisms for the emergence of such conven-
tions in large-scale experiments for agents embedded in continuous
environments. This project is divided into two concrete stages. In
the first, detailed in Section 2, I developed a general methodology
for the emergence of conceptual structures in a fully decentralised
manner. In the second stage, detailed in Section 3, I plan to explore
the emergence of grammatical structures which provide agents with
the ability to compositionally assemble concepts into meaningful
combinations.
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Figure 1: Examples of emerged concepts for the CLEVR (a),
WINE (b) and CREDIT (c) datasets. Reprinted from [4].

2 EMERGENCE OF CONCEPTUAL
STRUCTURES

Inspired by a discrimination-based approach in the tutor-learner set-
ting [25], I introduced a methodology through which a population
can establish a linguistic convention in a decentralised manner. This
convention enables agents to refer to arbitrary entities within their
environment [4]. In our experimental set-up, agents participate in
pairwise local communicative interactions. In each interaction, two
agents are sampled from the population and are randomly assigned
the role of either speaker or listener. The agents are placed in a
simulated environment and perceive a set of 3 to 10 entities through
their own sensors. The goal of the speaker is to produce a linguistic
utterance that draws attention to a particular entity. An interaction
is successful if the listener, based on the utterance, is able to distin-
guish the entity from all others. Agents cannot transmit their raw
sensor values as each agent perceives the world possibly differently
[25]. For example, agents might be endowed with different sensors
(heterogeneous agents), or sensor readings might differ due to noise
or calibration differences.

Therefore, the agents must come up with a convention that
allows them to abstract away from these raw sensor values. Specif-
ically, agents build from the bottom up an inventory of concepts,
which associate discrete symbolic labels (word forms) to concept
representations (word meanings). While all concept representa-
tions are individually constructed and grounded in an agent’s own
sensory-motor endowment and experiences, the emergent linguis-
tic systems of the agents are compatible on a communicative level.
In other words, only the linguistic forms are shared and observed,
while the meaning remains tied to the individual agent.

To illustrate, Figure 1(a) visualises a word “demoxu” that emerged
in the inventory of an agent in one of the experiments. In this ex-
periment, agents were situated in a simulated scene consisting of
geometric objects from the CLEVR dataset [13]. The other two con-
cepts in Figure 1 (b) and (c) emerged in other experiments detailed
in the paper. The concept representation corresponds to a set of
weighted Gaussian distributions, one distribution for each sensor
that the agent is endowed with. The weights of the distributions
are learned and reflect the importance of the feature channel to
the concept. For visualisation purposes, Figure 1 only shows the
channels with positive weights. A qualitative analysis (detailed in

the original paper) demonstrated that the word “demoxu” emerged
and was conventionalised to primarily refer to small objects. This
representation can be used in both production and comprehension
processes. As a speaker, the agent finds a concept that matches
with the topic entity and utters the word for it. Conversely, as a
listener, the same representation can be used to map an utterance
to an entity in the world.

The novelty in our approach lies in the way in which agents
represent, invent, adopt and align concepts. In contrast to prior
work, the methodology combines three properties that have never
been achieved together. It proposes an approach for decentralised,
communication-based concept learning in (i) continuous feature
spaces (as opposed to the discrete setting as in [43]), (ii) in a multi-
agent setting (as opposed to a tutor-learner setting as in [25]),
and (iii) without labels [38]. As a result, the methodology is now
directly applicable to any dataset that describes entities in terms of
continuously-valued features.

The methodology is experimentally validated on three tabu-
lar datasets, each describing hundreds of thousands of entities in
terms of continuous features. Through a range of experiments, it is
demonstrated that the methodology enables a population to con-
verge to an effective and coherent linguistic convention, that it
can effectively deal with noisy observations, uncalibrated sensors
and heterogeneous populations, that the method is adequate for
continual learning, and lastly that the convention can self-adapt
to changes in the environment and to the communicative needs of
the agents.

3 WORK PLAN
The next step of my research is to look beyond the emergence of
single-word concepts and investigate how grammatical structures
can emerge within populations of autonomous agents. Grammatical
structures provide agents with the ability to compositionally assem-
ble concepts into meaningful combinations. For example, consider
a scene where neither “cube” or “green” is discriminative, but the
combination is. Instead of inventing distinct concepts, the agent
should learn to combine these concepts compositionally. The ability
to create new combinations using existing building blocks improves
thus the expressiveness of the emergent language. This capability
enables agents to communicate effectively about objects that they
were previously unable to.

Prior work on the emergence of such grammatical structures in
the language game paradigm [2, 3, 11, 27, 30–33, 39–41] is limited
in terms of broad applicability. The focus of these experiments was
limited to the emergence of specific linguistic phenomena and was
constrained to rather small-scale environments. At the moment,
the language experimental paradigm lacks a general computational
mechanism that facilitates the emergence of grammatical structures
in large-scale experiments. Recent advancements in the domain of
language acquisition through repeated situated communicative in-
teractions are certainly promising [9, 23], but research into general
operators for the emergent setting remains largely unexplored.
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