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ABSTRACT
Significant challenges exist in robustly interacting and communi-

cating with a diverse array of agents, especially in intricate settings

like autonomous driving where AI agents and humans coexist.

This work approaches these challenges from three perspectives:

generalization of agent policies, development of communication-

supporting representations, and interactions between humans and

AI agents using natural language. We provide an overview of pre-

liminary achievements in each area and outline proposed research

focusing on enhancing cooperative driving through natural lan-

guage communication, aiming to comprehensively address these

complex multi-agent interaction challenges.
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1 INTRODUCTION
Future AI is not alone.Artificial Intelligence (AI) has been intensively
developed in the single-agent setting such as playing Atari games

and generating artistic pieces. It is relatively under-explored in

scenarios where decision-making AI agents coexist with humans

and other agents. For instance, there is a potential for autonomous

vehicles to be able to work together to improve traffic safety and

cooperate with human drivers to reduce traffic congestion [11].

The learning dynamics in multi-agent decision-making scenarios

present a significant challenge.When the other agents are viewed as

a part of the environment, the environment is non-stationary. Game

theory offers some analytical tools to solve multi-agent games, but

struggles with high game complexity and handling multi-modal

(in formats like videos, sounds, HDMaps, Metadata, etc.) input

for policies. Multi-agent Reinforcement Learning (MARL), which

optimizes expected individual or team return using Reinforcement

Learning (RL), provides promising scalability for complex inputs

and long-horizon decisions. Techniques in MARL like population-

based training, empirical game-theoretic analysis, and centralized

training decentralized execution (CTDE), have achieved significant

success in games like Go [9], StarCraft [12], and Diplomacy [1].

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

Despite MARL’s ability to formulate strong policies that yield

high expected returns, two specific aspects are yet to be extensively

examined in the context of deep learning.

The first aspect is the generalization of a policy to emergent

teammates or opponents that do not appear during the training

phase, herein referred to as unseen agents. The cooperative counter-
part of the problem is referred to as Ad-Hoc Teamwork (AHT) [10]

or Zero-Shot Coordination (ZSC) [6]. This concern is crucial since

AI may frequently encounter novel partners, such as humans or

other AI agents. These partners might exhibit diverse policy styles

or coordination conventions. Typically, the generalization of a pol-

icy is attained by either calculating conservative policies such as

Nash Equilibria or by training with a diverse population of agents.

The second aspect involves communication in multi-agent learn-

ing. Most training frameworks assume either entirely centralized

information sharing or fully decentralized observation. However,

real-world scenarios often permit communication, albeit with lim-

itations in bandwidth. These restrictions complicate multi-agent

learning, raising critical questions about when and whom to com-

municate with, what information to share, and how to handle the

received information. Among communication protocols, when in-

teracting with humans, natural language is the most suitable. It

is well-structured and can be understood by almost all humans,

perhaps with proper translation.

Where these two dimensions intersect, formulating a universally

applicable policy that accommodates a range of policies, along

with communication mechanisms, holds practical relevance in real-

life applications such as autonomous driving. Consider a scenario

where a vehicle, due to a brake failure, is about to run a red light and

broadcasts its intention to nearby vehicles as a cautionary measure.

A vehicle intending to cross at the green light could receive the

message and decelerate accordingly. Note that if one of the cars

is controlled by a human driver, the message may need to be in

natural language, or some other human-interpretable modality.

With this motivation in mind, this work navigates the complexi-

ties of multi-agent learning, addressing the critical question:

How can a decision-making agent efficiently communicate with and
create generalizable policies for novel AI or human teammates or
opponents in simulated real-world scenarios?

This work will explore and answer the question along the fol-

lowing three dimensions:

(1) Generalization. Such generalization pertains to interacting

with diverse partners or opponents without the need for

additional fine-tuning during interactions. Ensuring a high

degree of policy population diversity during the training

phase prepares the agents to handle a broad spectrum of

policy styles and coordination conventions.
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(2) Communication-SupportingRepresentations. Interchange
of messages involves answering questions related to when,

with whom, and what to communicate, and managing the

tangible real-world constraints of limited bandwidth. This

work will focus on how to construct messages through a

learned representation space in decision-making scenarios.

(3) Interaction with Humans and other AI agents via Natu-
ral Language. This work will deepen the investigation into

the intersection of communication and policy generalization

with humans and other AI agents. To this end, we plan to in-

tegrate natural language into the multi-agent system so that

agents can share their intentions and key observations with

both human and autonomous agents. Concurrently, humans

will have the opportunity to strategize with nearby agents

to optimize specific metrics.

All proposed contributions will be evaluated in simulated envi-

ronments that model real-world applications following the best

practices in the literature.

2 PRELIMINARY RESULTS
In this section, we outline some preliminary results along each

dimension of the main question:

We introduce and evaluate a reinforcement and game-theoretic

training framework, MACTA [5], which uses PPO [8] as the best re-

sponse oracle and fictitious play [2] as the empirical game-theoretic

tool. We show that the resultant policy can generalize to unseen

opponents and is robust against a dedicated adaptive opponent in

a simulated cache timing attack scenario. Further, we propose the

concept of Minimum Coverage Sets (MCS) in [7] as a metric for

maximizing the meaningful diversity in the training population.

We also propose the algorithm L-BRDiv to approximate the MCS

in a game. Results show that we can robustly discover distinct co-

operative conventions and Ad Hoc Teamwork agents trained with

the generated set of diverse populations can adapt robustly to a

variety of testing agents. These two works partially address the

generalization dimension (Dimension 1).

We introduce and evaluate Coopernaut [4], an end-to-end driv-

ing framework that generates efficient communicatable represen-

tations of the local point-cloud observation of autonomous agents

through end-to-end imitation learning of driving policies. We show

that with Coopernaut, autonomous agents can significantly re-

duce collisions without compromising traffic efficiency compared

to disconnected vehicles in accident-prone scenarios. This contri-

bution addresses what information to communicate (Dimensions 2)

through a learned representation space under the available band-

width in autonomous driving.

We have conducted an empirical study [3] of applying decentral-

ized multi-agent reinforcement learning to work with both humans

and AI agents to improve traffic efficiency in autonomous driving.

We delve into the decentralized training of RL agents in a mixed

environment where human and AI agents coexist. Experimental

findings indicate that a small presence of RL autonomous vehicles

can effectively collaborate to influence human drivers and amplify

overall traffic efficiency within an open environment. This contribu-

tion explores the agents’ intelligent interactions with both humans

and other AI agents (Dimension 3) without communication.

3 PROPOSED RESEARCH
In the evolving landscape of traffic systems, autonomous vehicles

(AVs) must interact not only with human drivers but also with

other AVs from various manufacturers, each potentially adhering

to different driving policies. Thus, autonomous vehicles being able

to communicate and form emergent coordination with novel part-

ners through a generalizable communication language (e.g. natural

language) is one promising future direction in traffic systems.

Natural language serves as a well-structured and universally

comprehensible communication protocol among humans, adapt-

able with appropriate translation. By equipping AVswith a language

module, they can communicate their intentions or observations

to humans, as well as respond to instructions received in natu-

ral language. For instance, an AV experiencing brake failure and

consequently running a red light can broadcast its predicament to

nearby vehicles. A vehicle preparing to cross the intersection on a

green light, upon receiving this message, can then slow down to

avoid a potential collision. Different from the generated representa-

tions in Coopernaut, the natural languages are more interpretable.

Furthermore, the integration of large language models (LLMs) en-

hances the capabilities of these autonomous agents. LLMs enable

AVs to perform common-sense analysis based on messages received

and engage in meaningful dialogues with multiple vehicles, thus

enriching the context and decision-making process in driving.

Addressing policy diversity in autonomous driving is another

critical aspect of this project. Different driving styles, such as

risk-seeking or risk-averse policies, significantly impact decision-

making in scenarios like overtaking. A risk-seeking AV might prior-

itize reducing travel time at the risk of increased collision potential,

whereas a risk-averse AV might opt for safety but risk getting stuck

in a deadlock. We plan to have vehicles negotiate about their plans

to reach local Ad Hoc coordination for improved traffic efficiency.

This proposed project is dedicated to achieving significant ad-

vancements in the domain of autonomous vehicle communication

and coordination. Our goals, leveraging the utility of natural lan-

guage, are multifaceted and aim to enhance the interaction dynam-

ics within diverse traffic scenarios. These goals include:

(1) Let AVs articulate their intentions and critical observations

to other vehicles effectively. In scenarios where conflicts may

arise, we aim to enable vehicles to negotiate and collabora-

tively formulate driving plans to avoid conflicts.

(2) Integrate LLMs in AVs to interpret received messages and

pivotal driving-related information to generate language

instructions for driving decisions for AVs to follow.

(3) Equip agents with the ability to interact seamlessly with a

range of driving styles and policies, including behaviors of

human drivers, ensuring that AVs can operate safely and

efficiently in a mixed-autonomy traffic environment.

(4) Refine driving policies of AVs to achieve a balance of high

driving efficiency, a low rate of collisions, and rapid adapt-

ability to varying driving policies.
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