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ABSTRACT
Cooperative multi-agent reinforcement learning methods aim to
learn effective collaborative behaviours of multiple agents perform-
ing complex tasks. However, existingMARLmethods are commonly
proposed for fairly small-scale multi-agent benchmark problems,
wherein both the number of agents and the length of the time hori-
zons are typically restricted. My initial work investigates hierarchi-
cal controls of multi-agent systems, where a unified overarching
framework coordinates multiple smaller multi-agent subsystems,
tackling complex, long-horizon tasks that involve multiple objec-
tives. Addressing another critical need in the field, my research
introduces a comprehensive benchmark for evaluating MARL meth-
ods in long-horizon, multi-agent, and multi-objective scenarios.
This benchmark aims to fill the current gap in the MARL commu-
nity for assessing methodologies in more complex and realistic
scenarios. My dissertation would focus on proposing and evalu-
ating methods for scaling up multi-agent systems in two aspects:
structural-wise increasing the number of reinforcement learning
agents and temporal-wise extending the planning horizon and com-
plexity of problem domains that agents are deployed in.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) enables autonomous
agents to develop collaborative strategies for addressing complex
challenges. Over the last decade, this domain has advanced signifi-
cantly, with numerous methods achieving notable success across
various benchmarks and applications. A critical focus within the
MARL community is the scalability of multi-agent systems (MAS),
especially in terms of the number of agents and the time hori-
zons for decision-making. Conventionally, MARL methods focus on
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small-scale problems, where the number of agents and the decision-
making steps per agent taken within each episode are constrained.
Significant challenges still lie in effectively scaling up MAS, i.e.,
structurally increasing the number of reinforcement learning (RL)
agents and temporally extending the time horizons of multi-agent
decision-making.

Increasing the number of RL agents in MAS, along with long-
horizon planning, significantly boosts their ability to tackle complex
problems unmanageable by smaller-scale systems. This is partic-
ularly evident in real-world scenarios where extensive, sustained
efforts from numerous agents are essential. For example, manag-
ing urban traffic often involves thousands of traffic lights working
continuously to optimize city-level traffic networks [23]. However,
scaling up MAS introduces many challenges, such as structural and
temporal credit assignment [1], non-stationarity [12], and the curse
of dimensionality [7]. Furthermore, despite the growing popularity
of research on scaling up MARL, unified benchmarks for evaluating
these methods remain scarce.

My dissertation focuses on scaling multi-agent reinforcement
learning systems through task decomposition, which segments large,
complex multi-agent problems into smaller, manageable subprob-
lems. Specifically, my research involves two facets of task decom-
position. The first approach, structural task decomposition, divides
large-scale MAS into smaller autonomous modules called mini-
MAS and develops effective cooperation mechanisms among mini-
MAS. The second, temporal task decomposition, focuses on dividing
long-horizon, complex problems into shorter, simpler subproblems.
Importantly, these two approaches are interconnected: mini-MAS,
structured through structural task decomposition, are ideally suited
for addressing subtasks generated by temporal task decomposition.

My initial study presents HiSOMA [5], a hierarchical multi-agent
reinforcement learning system with task decomposition. It features
a three-level hierarchy, utilizingmini-MAS as intermediary function
modules to learn policies through various MARL algorithms to
address subproblems. In my subsequent study, I develop MOSMAC
[6], a challengingMARL benchmark aimed at assessing state-of-the-
art MARL methods in complex long-horizon scenarios involving
multiple objectives.

2 MARLWITH HIERARCHICAL CONTROL
HiSOMA [5] is a hybrid hierarchical MARL model that combines
a class of Self-Organizing Neural Network (SONN), named Fusion
Architecture for Learning, Cognition, and Navigation (FALCON)
[20, 21], with state-of-the-art non-hierarchical MARL methods to
navigate complex, long-horizon decision-making problems. Hi-
SOMA implements two task decomposition strategies: clustering
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agents into mini-MAS via structural task decomposition to estab-
lish a hierarchical control architecture and dividing long-horizon
domain-specific tasks into short-horizon subtasks using temporal
task decomposition. Different from conventional hierarchicalMARL
approaches [2, 9, 10, 17], where the focus is the cooperation and
communication among agents, HiSOMA emphasizes efficient coor-
dination among mini-MAS. At its core, the adaptability of HiSOMA
is anchored in mini-MAS — fully functional autonomous multi-
agent modules that interact with environments through informa-
tion exchanges and primitive actions, compatible with many state-
of-the-art MARL methods. Such a configuration enables deeper
hierarchical control and task decomposition, enhancing HiSOMA’s
ability to address complex problems.

In HiSOMA, while mini-MAS focus on specific subtasks, the cen-
tral controller, FALCON, is pivotal for global task decomposition
and sequential subtasks allocation. It monitors the global states
and assigns suitable subtasks to each middle-level controller, i.e.,
mini-MAS, which subsequently distributes subtasks as intrinsic
goals to its lower-level agents. The lower-level agents execute prim-
itive actions and directly interact with the environments according
to the received intrinsic goals. The experiments on the MOSMAC
benchmark (see Section 3) demonstrate HiSOMA’s effectiveness in
scaled-up scenarios with long-horizon planning compared to non-
hierarchical MARL methods like QMIX [14]. As HiSOMA adopts
FALCON as the central controller, characteristics like cognitive
codes could be utilized so that the learning progress of HiSOMA
can be effortlessly tracked and analyzed. Moreover, HiSOMA al-
lows for controllers to be pre-trained on subtasks and subsequently
fine-tuned upon integration. This approach significantly reduces
the training costs for long-horizon MARL, addressing a practical
challenge of end-to-end training over long trajectories.

3 MOSMAC: A BENCHMARKWITH VARYING
HORIZON AND MULTI-OBJECTIVES

There is a notable gap in the literature concerning MARL bench-
marks tailored for scaled-up, long-horizon challenges. Moving be-
yond the HiSOMA model, another focus of my research is to bench-
mark existing state-of-the-art MARL algorithms against complex,
long-horizon multi-agent tasks. To this end, I propose a new bench-
mark named multi-objective SMAC (MOSMAC) [6], which offers
a variety of multi-objective tasks scalable across different time
horizons. MOSMAC is characterized by its combination of mul-
tiple objectives, diverse temporal scales, and complex navigation
terrains.

Specifically, MOSMAC’s tasks involve dual objectives: engaging
adversarial units and navigating to strategic positions. Agents must
balance these objectives to complete tasks with varying horizons. To
further mirror realistic scenarios in long-horizon tasks, MOSMAC
challenges agents with tasks involving sequences of multi-objective
subtasks targeting different strategic positions. By changing the
target strategic positions and relative positions of enemies, agents
can be exposed to a large variation of tasks in short-horizon cases
and subtask sequences in long-horizon cases. These variations in
objectives and task sequences provide a wide range of scenarios,
which are further complicated by complex terrain features like

plains, canyons, ramps, and high/low grounds, which are rarely
considered by existing benchmarks in StarCraft II [3, 8, 15].

We evaluated nine popular MARL algorithms onMOSMAC using
the EPyMARL framework [13]. These algorithms include IA2C [13],
IPPO [16], COMA [4], MAA2C [13], MAPPO [22], IQL [19], MAD-
DPG [11], VDN [18], and QMIX [14]. Our findings reveal that while
current MARL algorithms excel in scenarios with lower stochastic-
ity, they face challenges in more generalized tasks involving mul-
tiple objectives over extended horizons. Interestingly, the results
reveal that while centralized training with decentralized execution
(CTDE) algorithms typically surpasses independent learning meth-
ods in many benchmarks, independent learning algorithms showed
superior performance in highly stochastic scenarios with multi-
objective cooperation, especially with complex terrain features, as
seen in MOSMAC. This observation indicates that although CTDE
approaches mitigate MARL issues like non-stationarity and the
curse of dimensionality, these benefits are often offset by the high
cost associated with centralized training in large-scale MAS. Con-
sequently, decomposing large-scale MAS into independent CTDE
modules is a potential strategy for scaling up MARL methods.

4 TOWARDS LARGE AGENT TEAM AND
LONG-HORIZON PLANNING

In this paper, I have presentedHiSOMA, a hybrid hierarchicalMARL
model that integrates SONN with MARL to scale up multi-agent
reinforcement learning systems for long-horizon problems, and
MOSMAC, a challenging MARL benchmark featuring long-horizon
multi-objective MARL problems. Moving forward, my dissertation
aims to broaden the scope by exploring two pivotal research di-
rections of multi-agent reinforcement learning systems, namely,
towards large agent teams and long-horizon planning. These di-
rections are intrinsically linked, with the former concentrating on
increasing the number of agents through novel MARL algorithms
and MAS architectures and the latter focusing on applying and
evaluating these MARL approaches on long-horizon problems.

Structurally scaling up MARL methods with hierarchical strate-
gies, such as employing hierarchical MARL algorithms and hier-
archical MAS structures like HiSOMA, is an interesting avenue of
research. Temporally scaling up MARL methods for long-horizon
planning necessitates a certain level of temporal abstraction to
transform the long-horizon learning problems into multiple short-
horizon subproblems, also inherently calling for a hierarchical
framework to decompose and allocate subproblems efficiently. There-
fore, adopting hierarchical architectures in MARL is a promising
research direction for scaling up MARL methods.

Successfully scaling up MARL methods significantly hinges on
the availability of appropriate benchmarks and environments.While
a number ofMARL benchmarks have recently emerged in theMARL
community, there is a notable lack of environments for structurally
and temporally scaled-up MARL methods. Consequently, it is im-
perative to develop benchmarks and tasks tailored for scaled-up
MARL methods and to establish standard evaluation criteria.
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