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ABSTRACT
In the field of deep reinforcement learning significant progress has
been made, but it seems we are missing the power of the scaling
laws evident in large language models. This research aims to pi-
oneer the development of large learning agents (LLAs) that can
take advantage of efficient scaling. We focus on creating agents
that generalize strongly, quickly adapt to continuously changing
environments, and integrate the reinforcements received through
human feedback. We believe that this is a key step towards the
long-term vision for continually aligned and intelligent agents.
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1 INTRODUCTION
Throughout my PhD journey and beyond, I strive to contribute
at the intersection of reinforcement learning, continual learning,
and AI alignment. My research is driven by a threefold question,
seeking to address fundamental challenges in the development of
aligned and intelligent agents:

How can we design large learning agents that

(1) generalize robustly in a wide variety of environments,
(2) adapt rapidly to continually evolving environments,
(3) and incorporate reinforcements provided by humans?

By embracing the principles of efficient scaling, we aspire to
develop agents that are not only proficient in their specific tasks
but are also equipped to handle the unpredictable nature of real-
world environments. In the subsequent sections we will delve into
each of these subquestions, exploring current methodologies in the
literature, identifying challenges, and proposing novel approaches.

2 REINFORCEMENT LEARNING
The core of this research lies in the area of deep reinforcement learn-
ing, where artificial neural networks are instrumental in learning a
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policy 𝜋 , often alongside value functions𝑉 or𝑄 . The current meth-
ods in deep RL predominantly use relatively shallow and narrow
networks; the potential of large learning agents is underexplored.

2.1 Scale
The question is whether we can scale up these neural networks to
be deeper and wider, to benefit from the scaling laws that we see
today in large language models (LLMs). These models have demon-
strated that increased scale can lead to significant improvements
in learning capabilities and generalization [11, 18, 29, 31]. This re-
search hypothesizes that similar principles of scaling can be applied
to deep RL, unlocking new levels of efficiency and effectiveness.

In this context, we introduce the concept of Large Learning
Agents (LLAs) - a shift towards leveraging larger neural network ar-
chitectures in RL. The Bitter Lesson [28] teaches us that approaches
that make use of the power of computation generally lead to more
capable learning systems in the long run. Thus, LLAs are envisioned
as a step towards harnessing the computational resources available
today to scale up the capabilities of RL agents.

When we improve the efficiency of our neural networks, we can
take better advantage of the available compute. Sparse neural net-
works have the potential to require less memory (less parameters)
while maintaining the same representational power (number of
neurons) [20]. Or for equal compute, i.e. parameters, we can train
networks with more neurons! We should take advantage of the fact
these larger sparser networks perform better than dense networks
for the same parameter count [14]. On top of that, training sparse
neural networks can be faster with certain hardware [7, 12, 33, 35].

Part of my work focuses on the improvement of dynamic sparse
training (DST) methods [4, 13, 21] to train neural networks that are
sparse from scratch. DST methods search for the optimal sparse
network structure by periodically pruning and growing weights,
inspired by our own brain’s plasticity, which also drops and grows
synapses [3, 5, 25]. We found that within DST, pruning weights
based on magnitude alone is a simple yet effective mechanism [23].

2.2 Focus
Agents that can focus on the most task-relevant inputs in a certain
problem generally perform better. We demonstrated this in our
work on Automatic Noise Filtering [15, ANF], which uses dynamic
sparse training to adjust the structure of a neural network over time.
The network learns to grow more connections to input neurons
that provide task-relevant information, and prune weights that
are connected to irrelevant inputs. We have shown that even in
environments where 99% of the input features are irrelevant to
the task, ANF gains adequate performance, in contrast to dense
(fully-connected) neural networks.
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2.3 Generalization
In our latest work [16, MaDi] we demonstrate that learning tomask
distractions in image-based RL can benefit an agent’s generaliza-
tion performance. MaDi introduces a lightweight Masker network
at the front of the architecture. It learns to mask task-irrelevant
pixels via the reward signal only, without the need for additional
segmentation labels. MaDi shows state-of-the-art performance on
challenging benchmarks such as the DeepMind Control General-
ization Benchmark [17] and the Distracting Control Suite [27]. A
first step in answering research question (1).

Vision Transformers [11], which have an internal attentionmech-
anism [31], were not able to find sufficient focus by themselves in
the benchmarks we tested. The addition of MaDi’s Masker network
significantly improved their generalization performance. Perhaps
with enough pretraining, ViT-like architectures could gain state-of-
the-art performance. We hope to find methods that scale efficiently,
requiring the least amount of pretraining possible.

The ambition is that with the appropriate focus mechanisms, RL
algorithms, and sufficient scale, we can make agents that are able
to learn even faster than humans. Some works show promising
directions in this regard [10, 32, 34], as model-free deep RL can
nowadays learn to play most Atari games up to human level in the
equivalent of just two hours of gameplay [26].

2.4 Physical AGI
The pursuit of Artificial General Intelligence (AGI) is a frontier
in our field, and recent developments have further defined its tra-
jectory. DeepMind’s recent publication outlines six distinct levels
of cognitive AGI, providing a framework for understanding and
measuring progress in this area [22]. My long-term ambition ex-
tends towards algorithms that can be applied to physical robots, to
hopefully move towards physical AGI as well. The first self-driving
cars have become a reality, and my childhood dream of creating a
household robot is still in the back of my mind.

In our previously mentioned MaDi paper [16], we showed that
physical agents can also improve their generalization ability by
masking distractions. We trained a UR5 robotic arm in a visual
reaching task. The goal was to reach the webcam on the tip of
its arm toward a red circle, located randomly on a white screen.
Through asynchronous MaDi, the robot can learn this in real-time,
approximately two hours. Furthermore, whenwe replaced thewhite
background by random videos during test time, the agent did not
get distracted and could still perform the task excellently.

3 CONTINUAL LEARNING
When agents or robots are deployed in the real world, it will become
increasingly important to ensure they can continually adapt to new
situations. The field of lifelong or continual learning investigates
this [6, 24], where agents need to learn multiple tasks sequentially.

Literature has shown that our current neural networks can lose
plasticity over time when trying to learn continually [1, 8, 9]. Meth-
ods that mitigate this often use a sense of resetting or reinitializing
parts of the network. Dynamic sparse training methods similarly
reinitialize some weights periodically, which I believe can be quite
effective in maintaining plasticity. The fact that these networks
are sparse or incomplete gives another advantage: when a weight

is pruned, we can grow a new connection in a different location,
instead of always having to reset parameters or neurons in-place.
Sparsity allows us more “room to play with.” A promising direction
for research question (2).

In this regard, it seems important for networks to be able to
determine which parts are forgettable. In a setting with limited
compute, we will not be able to perform all tasks learned in a long
continual sequence perfectly.1 Perhaps the idea of learning to focus
on the relevant parts of the network can help in continual learning
too, as ANF [15] accomplished in noisy RL environments.

4 AI ALIGNMENT
In the fast-moving field of artificial intelligence, it is important to
consider safety and ethical aspects in our work [2]. A natural way
to integrate this into reinforcement learning algorithms is through
the approach of human-in-the-loop RL [19, 30]. This methodology
does not assume that a reward function is given by the environment,
but that AI agents will have to learn it themselves; directly from
human feedback. This is a project that I am currently working on,
progressing towards research question (3).

We might provide an approximate initial reward function to the
AI agents that we think is useful, as a head start, but supply human
feedback along the way as it is learning continually. An agent will
need to learn to update not only its policy, but also its initial reward
function with the reinforcements it receives.

We need agents that are able to adapt quickly to human feedback,
such that they can function in the real world. We want robots that
adjust their behavior according to human preferences. Even if our
culture, norms, and values evolve over time, the continually aligned
agent keeps learning to adapt its reward function. Hopefully, this
can be a vital tool in the creation of continually aligned AI agents.

5 CONCLUSION
This research at the intersection of deep reinforcement learning,
continual learning, and AI alignment focuses on developing Large
Learning Agents (LLAs) that harness the power scaling laws. Our
discoveries of techniques like Automatic Noise Filtering [15] and
Masking Distractions [16] demonstrate progress towards agents
that can effectively generalize and adapt in challenging environ-
ments. The approach of dynamic sparse training, as part of this
research, has opened new avenues for investigation in the areas of
efficient scaling and continual learning. Our application to phys-
ical robotic tasks has shown encouraging results, indicating the
feasibility of these techniques in real-world scenarios. Significantly,
incorporating human feedback into the learning loop emerges as
a critical aspect in aligning AI with ethical standards and human
preferences. We believe this can be a promising direction to ensure
that our agents operate safely and responsibly.
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