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ABSTRACT
Autonomous robot teams have the potential to revolutionize the
way we approach many problems, ranging from transportation
to active sensing for weather science. However, to accomplish
these missions, the robots must operate in environments with more
threats and uncertainty than current autonomous systems can han-
dle. The Belief Markov Decision Process framework (BeliefMDP) is
a systematic and robust mathematical framework that can be used
to obtain policies for these agents while reasoning over different
kinds of uncertainties in the environment. Since computing opti-
mal policies for a BeliefMDP exactly is intractable, this doctoral
proposal focuses on solving them approximately by leveraging tree
search techniques and guiding them using smart heuristics and
learning algorithms for long-horizon continuous space problems.

KEYWORDS
BeliefMDPs, POMDPs, Online Tree Search, Information Gathering,
Navigation among humans
ACM Reference Format:
Himanshu Gupta. 2024. Efficient Continuous Space BeliefMDP Solutions
for Navigation and Active Sensing: Doctoral Consortium. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION
Current state-of-the-art methods enable autonomous agents to op-
erate successfully in controlled settings with predictable changes,
like robotic arms in factories. However, deploying them in unstruc-
tured and unpredictable environments remains an open challenge.
There exists a significant technical gap regarding techniques for
dealing with uncertainties in the agent’s environment introduced
by factors like transition noise, observation noise, and shifting un-
structured surroundings. These environments are characterized
as being partially observable, where the agent can not accurately
perceive the true state of the environment. For example, when nav-
igating among humans, the agent does not know the human’s true
intention. It must deduce human intention from their movements
in the environment and choose the best action by considering the
uncertainty in this estimation. Another example is an active sensing
problem, for instance, an autonomous aircraft or team of aircraft
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gathering the most informative data to study and predict extreme
weather [9]. For such active sensing problems, the agent’s actions
are targeted toward reducing uncertainty over the hidden variables.
Both of these seemingly different problems can and are often tack-
led by maintaining a belief distribution over the unobservable state
and finding policies over those distributions, called belief states.

The Belief Markov Decision Process (BeliefMDP) is a mathemat-
ical framework that enables solving sequential decision-making
problems over belief space systematically and robustly. Unfortu-
nately, solving them exactly is typically infeasibly expensive [30], so
we solve them approximately. Offline techniques [18, 21, 24, 31, 37]
work well for small and discrete problems but lack scalability for
real-life robotics tasks. Recent works have leveraged sampling-
based online tree search techniques to solve complex continuous
space problems [23, 36, 39, 42]. While effective, tree search tech-
niques often yield suboptimal policies for long-horizon problems,
particularly with sparse rewards, and are unsuitable for large or
continuous action spaces.

This leads to my three research questions. RQ1: Can tree search
techniques be used to solve multi-dimensional continuous state
space BeliefMDPs with long-horizon and sparse rewards? RQ2:
Can this be extended to efficiently solve continuous action space
BeliefMDPs? RQ3: How can these solvers be leveraged to solve
domains that include teams of (coordinating) autonomous agents?

2 PREVIOUS WORK
My previous work focused on answering RQ1 in the domain of
autonomous navigation among humans. Prior works formulated
the navigation task using the Partially Observable Markov Decision
Process (POMDP) framework (e.g. [1, 3, 5, 6, 16, 17, 20, 25, 38, 40]).
More specifically, it is formulated as a long-horizon sparse re-
ward POMDP, a specialized variant of BeliefMDP featuring state-
dependent rewards. This POMDP is solved using tree search tech-
niques which are guided by value estimates obtained by executing
a rollout policy. Unfortunately, within the limited planning time,
the built tree can fail to find the sparse reward, resulting in sub-
optimal action selection. However, if the rollout policy can find
the sparse reward in the environment, it can guide the tree search
towards actions and future belief states with high values. Bai et
al. [3] leveraged this idea and proposed a two-step approach for
autonomous navigation among humans. At every time step, they
first use the hybrid 𝐴∗ [8] algorithm to obtain the vehicle’s path
to its goal and then solve a POMDP using a tree search algorithm
(e.g. DESPOT [42]) which reasons over the uncertainty in nearby
humans’ intention to control the speed over that path.

This decoupling of heading and speed planning often leads to
undesirable stalling [7, 10, 22]. I addressed this by giving the online
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Figure 1: POMDP tree search among uncertain humans with control
over both heading and speed. Green and red rectangles represent
vehicle states in the planning tree, where green implies high value.
Purple ellipses denote human positions at different times. Black
circles denote static obstacles. Dotted brown lines represent roll-out
trajectories, a critical part of the proposed approach.

POMDP planner access to all of the vehicle’s control options, the
speed and heading, rather than solely speed along a fixed path [3, 5,
16, 17]. This expansion of the action space opens up a much larger
region of the state space to exploration (Figure 1). To determine
an effective rollout policy for the vastly increased set of states
reachable in the tree search, I used multi-query motion planning
techniques such as Probabilistic Roadmaps (𝑃𝑅𝑀) [19] and Fast
Marching Methods [29]. These techniques are run offline to build a
queryable data structure that can be used to find a path from any
point in the environment to the vehicle’s goal. During tree search for
the extended space POMDP, employing a reactive controller along
this path proved to be an effective rollout, guiding the vehicle to its
goal and collecting sparse rewards whenever feasible. My approach
generated trajectories that were much faster than the trajectories
generated by the decoupled approach and outperformed them in
more than 90% of the experiments, without compromising safety
[10]. Extended space tree search aids the vehicle in discovering an
effective strategy: moving toward empty spaces nearer to its goal,
rather than staying idle and letting nearby humans pass.

3 CURRENTWORK
3.1 Navigation among humans for

Non-holonomic vehicles (NHV)
The multi-query motion planning techniques used in my prior
work do not consider the vehicle’s kinodynamic constraints during
path generation, and thus only work for holonomic vehicles. For
example, 𝑃𝑅𝑀 samples points in the free space of an environment
and connects points if a straight-line motion is feasible between
them. Unfortunately, finding a control input that will drive a NHV
(e.g. a car) between any two points in space is nontrivial, and often
not possible. To tackle this issue, I employed the method proposed
by Takei et al. [41] to solve the Hamilton-Jacobi-Bellman partial
differential equation. The solution is the optimal value function,
aiding in path generation from any point in the environment to
the vehicle’s goal while adhering to the vehicle’s kinodynamic
constraints [32]. Using a reactive controller over this path as a
rollout during tree search, I demonstrate in both simulation and

real-world tests that my method helps NHV navigate safely and
more efficiently among humans compared to the two-step approach.

3.2 Learning Policy and Value functions for
Belief MDPs

This work is focused on answering RQ2. Although the problem in
my prior work has a continuous action space, I chose a small dis-
cretized action set due to the limitations of tree search techniques.
This subset is often generated using domain-dependent heuristics
or hand-crafted by a domain expert, which is not always possible.
Recent efforts for solving traditional MDPs with continuous action
space collect experiences from the environment and learn a contin-
uous policy using deep reinforcement learning techniques [12, 34].
To address partial observability there, a common solution is to stack
the observations from the last few steps [27], thus approximating
the BeliefMDP as a k-Markov MDP, or use recurrent layers [15, 33]
to obtain a latent state encoding and learn a policy over it [14].

For the wide class of problems where the belief states can be
explicitly maintained, I propose that the policies and value func-
tions should be learned over these belief states. When the belief
state can be computed with exact Bayesian updates, the input to
the network can be the entire probability distribution. For complex
real-life problems, exact Bayesian updates are not feasible. Instead,
the belief state is approximated using a particle filter (PF). Finding
an order invariant encoding of this particle set to the network is
non-trivial. Moss et al. [28] suggested a Gaussian approximation
and used an AlphaZero [35] like approach where the value and the
policy functions are conditioned on the mean and the covariance
encoding of the PF belief. Unfortunately, when the belief distri-
bution is multimodal, this Gaussian encoding is inaccurate and
could lead to substantially suboptimal policies. I assert that using a
moment-generating function (MGF) encoding of the PF belief as
proposed by Ma et al. [26] is a better and more encompassing state
representation for learning and requires further investigation. Pre-
liminary results on the continuous space variant of LaserTag [42]
(an information-gathering problem) show that policies conditioned
on the MGF encoding of the belief state outperform state-of-the-art
tree search techniques [11].

4 FUTUREWORK
My future work will focus on answering RQ3. For complex active
sensing problems with large search areas like the one mentioned
in Section 1, a single agent might not be effective in gathering
information. Intuitively, a team of agents collaborating is more
likely to succeed. When planning for multiple agents using tree
search, Amato et al. [2] proposed using macro-actions, since it
prevents tree search space explosion. I believe learning these macro-
actions could be useful as shown by Cai et al. [7] and Lee et al. [22] in
a single agent domain. Leveraging techniques from the multi-agent
MDP literature to solve the BeliefMDP in a multi-agent setting
is also a promising direction. Furthermore, domains with limited
communication where agents can not share their information or
have to choosewhat information to share are evenmore challenging
to solve [4, 13, 43], and something I intend to explore.
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