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ABSTRACT
This research addresses a critical and largely unresolved challenge
in the field of sequential decision-making: operating effectively in
non-stationary environments. These environments are character-
ized by exogenously-driven changes over time, introducing signifi-
cant uncertainties in decision-making processes. The urgency lies
in devising strategies for optimal decision-making and planning
amidst these unpredictable conditions. Central to my research is
the concept of ’anytime’ decision-making. This approach involves
leveraging dynamically learned models that not only mirror the cur-
rent environmental state but also anticipate its potential evolution.
The focus is on how an agent adapts its decision-making process
in an ever-changing environment. A key contribution of my work
is the exploration of adaptive decision-making strategies employed
by an agent whose objectives fluctuate between performance opti-
mization and safety prioritization. This is particularly challenging
in dynamic environments where traditional static decision-making
models fall short. The paper concludes by presenting future re-
search directions. These aims are to enhance the understanding of
adaptive decision-making in non-stationary environments, thereby
advancing the field in this complex and constantly evolving area.
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1 INTRODUCTION
In the realm of artificial intelligence, incorporating planning and
decision-making skills into intelligent agents is a crucial area of
research. This endeavor is especially significant in applications
such as vehicle routing, emergency management, and autonomous
driving [5, 6, 11, 17]. However, a key challenge arises from the
limitations in these agents’ capabilities, often constrained by their
assumptions about the environment’s stationarity. This is partic-
ularly problematic in real-world scenarios, which are inherently
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non-stationary and often violate the basic assumption of stationar-
ity that underpins many reinforcement learning algorithms [16].

For these intelligent agents to achieve true autonomy and relia-
bility, they must be capable of not only perceiving and adapting to
changes in environmental dynamics but also proactively planning
and making decisions in response to these changes. Recent advance-
ments have enabled agents to reactively adapt to new tasks [3, 9]
and proactively seek effective policies for anticipated future envi-
ronmental dynamics [2]. Nevertheless, the pursuit of robust and
efficient decision-making that maintains performance objectives
during environmental transitions remains a significant and unre-
solved challenge in non-stationary settings.

One of the potential directions to address this challenge is the
concept of adaptive decision-making. This approach necessitates
not just a single policy, but an array of diverse policies, each char-
acterized by its unique attributes and designed for specific envi-
ronmental contingencies. By leveraging this multifaceted policy
framework, intelligent agents can navigate the complexities of non-
stationary settings more effectively. They can switch between differ-
ent strategies based on real-time environmental dynamics, thereby
maintaining optimal performance despite the ever-evolving nature
of their operational contexts. This paradigm shift towards adaptive
decision-making, which prioritizes flexibility and responsivenes.

2 OURWORK TO DATE
Toward reaching our goal of making adaptive robust decision-
making for autonomous agents, our works have furthered the
state-of-the-art in runtime assurance architecture [12] and robust
decision-making for non-stationary MDP [4] to allow the agent
to choose among the controllers specializing in different objec-
tives to control the system with the most up to date environment
model [7, 13, 14], and to make robust decisions regardless of how
much progress has been done towards environment model up-
date [8, 10].

2.1 Dynamic Simplex for Adaptive
Decision-Making

In the context of agents operating in non-stationary environments,
the challenge of maintaining effective decision-making without
immediate access to updated environmental models is crucial. To
tackle the challenge, we have taken significant steps by augmenting
the traditional simplex architecture [15] with the inclusion of a plan-
ner, leading to the development of what we refer to as the dynamic
simplex framework [7]. This enhancement allows for a dual-mode
operation: a highly conservative safety-oriented controller is acti-
vated in response to environmental changes or anomalies, and a
goal-focused controller is employed when the objective function’s
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constraints are deemed to be met. This approach ensures the sys-
tem’s safety against potential environmental risks, even though it
may temporarily set aside other objectives. Simultaneously, model
updates could be done while the system operates under the safety
controller, whether these updates are executed remotely or directly
on-site. This ensures that the model continuously reflects the latest
environmental changes without interrupting the system’s safety-
focused operations.

Additionally, to accelerate the collection of valuable data for
model updating, we proposed a simulation framework and methods
for optimizing experimentation [13, 14]. Considering the ongoing
nature of model updates, the agent is required to engage in online
planning that can adapt to changes in environmental parameters in
real-time, while also keeping within the domain-specific limits on
computation time. The Monte Carlo Tree Search (MCTS) algorithm
is an ideal fit for our framework, enabling essential decision-making
through an anytime online planning approach.

When compared with various controllers and extensions of the
simplex architecture, our approach shows greater resilience to a
range of adverse environmental impacts and better performance,
all the while maintaining adherence to the objective function’s
constraints.

2.2 Act As You Learn
We have further advanced our methodology by developing adaptive
Monte Carlo Tree Search (MCTS), detailed in our forthcoming full
paper at AAMAS’24 [8]. This approach revises the assumptions
associated with the always-given safe policy and the separation of
model updating from decision-making within the Dynamic Sim-
plex framework. Our methodology initiates with a robust policy
derived from risk-averse MCTS (RA-MCTS) when environmental
dynamics shift, ensuring safe exploration. In this phase, epistemic
uncertainties play a crucial role in determining whether a given
state-action pair has been sufficiently explored. This assessment
is vital for understanding the extent of our knowledge about the
environment and guiding the exploration process.

In the next phase, we implement a hybrid sampling methodology
that carefully balances safe exploration with goal-directed actions.
The role of aleatoric uncertainties becomes pivotal in this stage.
Contrary to standard practice, in our approach, high aleatoric un-
certainty, which signals a more non-deterministic environment,
leads to the continued use of RA-MCTS to maintain a risk-averse
stance. Conversely, when aleatoric uncertainty is lower, indicating
a more predictable and deterministic environment, our system may
transition to utilizing standard MCTS.

A key aspect of our methodology is the independent updating
of model parameters, separate from the parameters describing the
environmental dynamics. This distinction allows for more efficient
knowledge transfer and helps in preventing the carry-over of un-
certainty estimations from the previous model to the new one. Such
independent updating ensures that our approach remains agile and
accurate, even as environmental conditions evolve.

By benchmarking this method against the state-of-the-art [4] and
various MCTS models, our results highlight the adaptability of our
approach. It maintains robust performance in highly unpredictable
environments due to its reliance on RA-MCTS under high aleatoric

uncertainty and exhibits effectiveness similar to traditional MCTS
in more stable environments where aleatoric uncertainty is lower.

3 FUTURE DIRECTIONS
The progression from Alphazero to MuZero has been a landmark in
the advancement of artificial intelligence, particularly in the sphere
of decision-making within nonstationary Markov Decision Pro-
cesses (MDPs). MuZero’s model-based strategy is notably promis-
ing for bridging the gap between theoretical reinforcement learning
and practical applications, especially in domains where managing
risk and adhering to constraints are paramount. This has inspired
an in-depth investigation into the unique challenges posed by apply-
ing model-based methods to real-world scenarios, with a particular
focus on nonstationary MDPs.

One of the primary challenges in these environments, demon-
strated by methods like stochastic MuZero [1], is efficient learning
for single-task objectives in high-dimensional, stochastic, and con-
tinuously evolving spaces. Notably, the continuous action spaces
present in many real-world applications, such as robotics, add a
layer of complexity to the decision-making process. In continuous
action spaces, the agent must choose from an infinite set of possible
actions, which significantly increases the complexity of finding
optimal strategies, particularly under the changing dynamics of
nonstationary MDPs. Furthermore, while these online learning
approaches are adept at adapting to changing environments, ques-
tions remain regarding their capability to uphold domain-specific
constraints in new dynamics and the amount of data required for
effectively adapting the model to new tasks.

To address these challenges, a meta-learning approach could be
considered, where a generalized model is trained and fine-tuned
in response to environmental changes. However, this tends to be a
reactive solution, updatingmodels only after changes have occurred.
To enhance this, one potential direction could be anticipating future
shifts in environmental dynamics and optimizing the model in
advance. So it can significantly improve themodel’s adaptability and
decision-making capabilities. Furthermore, in nonstationary MDPs
with continuous action spaces, incorporating safe strategies during
model updates can help ensure that decision-making remainswithin
constraint thresholds, even during transitional phases.

In conclusion, while the advancements represented by model-
based approaches like MuZero are significant, their application
to the dynamic, uncertain, and complex realm of nonstationary
MDPs with continuous action spaces presents unique challenges.
Addressing these challenges is crucial for the successful deployment
of AI models in practical, constraint-sensitive environments.
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