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ABSTRACT
Many important areas of behavior change, such as wellness or ed-
ucation, are frictionful; they require individuals to expend effort
over a long period of time with little immediate gratification. Be-
cause of this, humans often act sub-optimally with respect to their
stated long-term goal. Here, an artificial intelligence (AI) agent can
provide personalized behavioral interventions to correct human
policies. The AI must personalize rapidly (before the individual has
a chance to disengage) and interpretably, to aid our scientific un-
derstanding of the behavioral interventions. This work focuses on
crafting small, interpretable models of the human that capture the
mechanism behind the human agent’s sub-optimal policies. These
human models provide the AI with enough inductive bias to quickly
learn intervention policies for each individual it encounters.

KEYWORDS
Reinforcement learning; Personalization; Agent-based modeling of
humans; Bounded rationality

ACM Reference Format:
Eura Nofshin. 2024. Leveraging Interpretable Human Models to Personalize
AI interventions for Behavior Change: Doctoral Consortium. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION
In many AI+human applications for behavior change, AI agents
assist the human in performing frictionful tasks, where making
progress toward the human’s goal requires sustained effort over
time with little immediate gratification. Examples include physical
therapy programs, adherence to scheduled medication, or passing
an online course. Two key challenges for AI agents in these set-
tings are (1) rapid personalization and (2) learning interpretable
intervention policies. In frictionful tasks, since effort exerted by
the human does not reap immediate benefits, the AI agent must
learn a personalized intervention policy from a small number of
interactions for each human, or risk disengagement. These policies
must also be interpretable, so that behavioral experts can discover
which interventions work for which individuals, and why.
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Current RL approaches have two major drawbacks when used
to solve for the AI agent’s intervention policy. First, most planning
methods are too data-intensive for our online setting. For example,
online algorithms in robotics require thousands of interactions
to learn reasonable policies (e.g. in Tebbe et al. [25], Thabet et al.
[26], Yang et al. [28]), but in frictionful tasks, we are limited to tens to
hundreds of interactions per person [27]. Second, existing planning
methods solve for the AI agent’s optimal policy by modeling the
human as a black-box transition or value function. Unfortunately, in
learning black-box representations of the human, we lose the ability
to interpretably attribute human behavior to the model learned by
the AI. In this work, I target interpretable and effective planning by
the AI agent, through the use of carefully crafted human models.
To create and work with these human models, this body of work
bridges across machine learning, behavioral science, and human-
computer interaction (HCI).

Behavioral science provides us with formal theories and models
of human decision-making in frictionful tasks. However, there is
a gap in how to instantiate high-level constructs from behavioral
science (such as temporal discounting in humans) into computa-
tional models (which describe the scale and functional forms of
how temporal discounting changes over time) [9]. Machine learning
offers paradigms that can elegantly encode the behavioral assump-
tions needed to form computational models. For example, temporal
discounting from behavior science [20] can be connected to the dis-
count factor, 𝛾 , which is part of a Markov Decision Process (MDP).
Such explicit computational models are powerful because they (1)
provide the link between behavioral assumptions and the observed
data; and (2) can be incorporated into the AI agent’s planning.
But, models that show promise in theory and simulation must be
tested with real end-users, and user studies guided by HCI design
principles can evaluate effectiveness.

To fill in these gaps, I aim to address the core questions below:

Q1. What is the model? Reducing complex behavioral models to
simpler ones that can be used for AI planning

Q2. How to learn the human model? Updating the human model to
individual-level data observed online.

Q3. How to use the human model for intervention? Learning and
testing intervention policies that work with real users.

2 THE BEHAVIOR MODEL RL (BMRL)
FRAMEWORK FOR AI INTERVENTIONS

I define a formal framework, called BMRL, in which an AI agent
learns to intervene on a human. Like previous work where RL has
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been used to plan interventions, the AI’s reward and transitions de-
pend on the human’s reactions. For example, the AI will maximize
a reward related to whether the human performs the goal-oriented
behavior of interest (e.g. the number of steps in a physical activ-
ity application [11] or the quality of brushing in an oral health
application [27]).

BMRL incorporates sophisticatedmodels of the human’s decision-
making, which are informed by behavoiral science, into the AI en-
vironment. Grounded in literature that treats humans as sequential
decision-makers (e.g. [13, 19, 23, 24, 31]), we model the human as a
Reinforcement Learning (RL) agent planning under a “maladapted”
Markov Decision Process (MDP). In maladapted human MDPs, the
optimal policy does not reach the human’s stated goal (for example,
the goal of an active lifestyle). One example of a maladapted MDP
is having an extremely low discount rate, 𝛾 . This represents my-
opic decision-making, wherein an individual forgoes the long-term
goal (being active) to avoid experiencing friction in the short-term
(unpleasantness of exercising). Unlike prior work that is limited to
inferring the source of suboptimality (e.g. [2, 5, 7, 10, 14, 16, 30]) or
intervening on human rewards/states [4, 12, 15, 22, 29, 31], in our
work, the AI agent intervenes on any of the human’s maladapted
MDP parameters to help them achieve their long-term goals.

3 CHAINWORLD: A SIMPLE HUMAN MDP
THAT IS BEHAVIORALLY GROUNDED

The defining aspect of BMRL is the definition of the human MDP.
When used to inform the AI agent’s policy, the human MDP can
be simpler than expected; in [18], I introduce the concept of “AI
equivalence” to identify a class of more complex human models for
which AI policies learned in a simpler one can be lifted with prov-
ably no loss of performance. Simpler MDPs are preferred because
they require less data to learn (Q2) and are easier to examine (can
be more interpretable). Then, I introduce “chainworlds,” a class of
simple humanMDPs (shown in fig. 1) (Q1). I prove that chainworlds
produce equivalent AI optimal policies as if the AI had used a more
behaviorally complex model, and produce results such as fig. 2 ,
which demonstrates chainworlds allow the AI to learn quickly (Q3).

4 ONGOING AND FUTUREWORK
User studies. Related to Q3, I am developing a flashcard study app
to test whether our theoretical and simulated results will hold on
real human users. Flashcards are frictionful because the user must
put in consistent effort to learn and retain the information to make
progress toward their learning goal. Our measure of success will be
whether or not the user meets their target number of study sessions
for the week.
Relaxing behavioral assumptions of chainworld. Related to Q1, our
chainworld made several simplifying assumptions regarding the
human MDP, that if relaxed, would be interesting future work.
For example, I avoided a POMDP formulation of the AI agent by
assuming that there were no delayed effects of the AI’s actions on
the human MDP. However, habituation (reduced effectiveness of
repeated interventions) is a well-studied phenomenon in the digital
intervention space (e.g. [8]). Furthermore, I avoided the complexity
of multi-agent RL by assuming that the human is not learning, and
instead, is solving an (implicitly) knownMDP. Finally, humans have
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(a) When the human abstains from the behavior, they may lose progress or
slip into disengagement 𝑠𝑑 .
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(b) When the human performs the behavior, they may transition toward
the goal state 𝑠𝑔 .

Figure 1: Graphical representation of the chainworld. Each
state on the chain represents the progress toward the goal state, 𝑠𝑔 .
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Figure 2: Using our chainworldmodel (orange), theAI reaches
oracle-level performance (blue) quickest. Plot is AI rewards
(y-axis) over multiple episodes (x-axis). Lines in upper-left corner
mean the AI personalizes more quickly.

been observed to hyperbolically discount future rewards, as opposed
to the exponential discounting assumed by the MDP formalism [21].
This formalism would have to change, as in Fedus et al. [6], in order
to allow our human agent to perform other types of discounting.
How much personalization is possible? Related to Q2, how precisely
the AI can infer the human’s MDP parameters depends on the data.
When the data is human demonstration data in a single environment,
there is inherent non-identifiability in the human MDP parameters,
as we show in [1]. For example, a human with myopic discounting
vs. a human that perceives low rewards on the goal state will both
behave according to goal-avoidant policies. When there is demon-
stration data from multiple environments, it is possible to combat
non-identifiability by aggregating information from demonstra-
tions across environments [3], but this becomes a difficult search
problem over which environment to show the user. When surveys
are used to collect self-reported data, the trade-offs in information
gained from self-report vs. direct observation of behavior has yet
to be explored. Finally, across all data sources, our inference over
the human model parameters must consider the noisiness and scale
of data that is available, which I have explored in Shin et al. [17].
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