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ABSTRACT
Operators’ cognitive performance is often critical for success and
safety in isolated, confined, and extreme (ICE) environments such
as spaceflight and wilderness medicine. Future autonomous systems
may leverage predictions of cognitive states to improve human-
system performance. Current approaches of estimating cognitive
states, such as surveys or behavioral measures, are obtrusive, task-
specific, or cannot be used in real-time. Physiological modeling,
where biosignals are used to predict operator cognitive states, has
the potential to overcome these limitations. My research develops
predictive models of cognitive states and investigates cognitive
health in ICE environments, aiming to inform adaptive autonomous
systems and mitigate health and performance decrement.
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1 INTRODUCTION
Operational environments often require humans to teamwithmulti-
ple agents, including other humans and autonomous systems. These
settings, such as spaceflight, aviation, medicine, and military oper-
ations, are characterized by trained users, ambiguity, hazards, and
degraded performance and safety resulting from improper action.
In future operational environments, the ability to predict operators’
cognitive states could inform adaptive autonomous systems and
improve safety and performance [13].

Some operational crews work in isolated, confined, and extreme
(ICE) environments, such as space, polar, or deep sea settings. These
crews face isolation from their typical social network, confinement,
and extreme, dangerous conditions [7]. Isolation is also associated
with decreased cognitive functioning [1, 3, 6]. To best support
crews operating in ICE environments, it is important to understand
factors of these environments that affect crewmembers’ cognitive
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health (the ability to clearly think, learn, and remember [12]) and
to develop means of modeling the cognitive states of crewmembers
subject to the unique challenges of ICE settings.

Current methods of measuring cognitive states are insufficient
for operational environments. Though subjective questionnaires are
widely-accepted, their use requires interrupting an operator’s task.
Behavioral and task-based measures are often specific to given tasks
and lose validity with changes to tasks or protocols. Physiological
measures, however, do not require interrupting an operator’s work
and do not rely on task-specific elements. As a result, models based
on physiological measures may show robustness to changes in tasks
or protocol, as well as utility across different tasks.

To better support crews in multi-agent, operational, ICE environ-
ments, we aim to 1) develop physiological models of cognitive states
practical for operational use, 2) assess the transferability of physio-
logical models across tasks, and 3) investigate factors influencing
cognitive health in ICE environments.

2 PREDICTIVE MODELING OF COGNITIVE
STATES USING PHYSIOLOGICAL DATA

In future complex operational environments, the ability to pre-
dict an operator’s trust, mental workload, and situation awareness
(TWSA) can facilitate improved safety and performance [5, 10, 11,
13]. Predictive models of TWSA must work in near real-time if
they are to be useful in real-world operations. These models would
provide additional operational utility if they are accurate across dif-
ferent users. Collecting demographic information on operators may
be impractical in time-constrained situations [15, 16]. Furthermore,
necessitating collection of demographic data may decrease a tool’s
acceptability, especially where an operator’s performance affects
their career; [2, 4]. Real-time, operator-agnostic models of TWSA
are of critical interest as we look to improve the performance of
human-agent teams in complex operational environments.

We explored the implications of excluding operator-specific in-
formation and features that cannot be used in real time on modeling
TWSA in the same experiment [14]. We built regression models
of operator TWSA from electrocardiogram, respiration, electroder-
mal activity, and eye-tracking data in a supervisory task where
participants (n=10) worked alongside an autonomous system on a
simulated deep space habitat. We performed feature shrinkage to
reduce our feature set and stability selection to reduce variability
in feature selection. Additionally, we used simulated random data
to demonstrate our pipeline’s robustness to false positives from
high-dimensional data. Finally, we used internal cross-validation
to assess the predictive accuracy of our models on unseen trials
and on unseen people. This was done with different subsets of
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Figure 1: Leave-One-Participant-Out cross validation predictive performance for real-time applicable, operator-agnostic models
of trust (left), workload (center), and situation awareness (right).

available features to assess the utility of real-time usable models
and of operator-agnostic models. The feature selection was not
included in the cross-validation; comprehensive cross-validation is
future work. Leave-one-participant-out cross validation predictive
performance for each of TWSA is shown in Figure 1. We improve
on prior work that relies on proxy measures by using validated
questionnaires as the target variables in predicting TWSA. We also
improve on work modeling singular cognitive states by predict-
ing each of TWSA independently in one integrated task. Finally,
our modeling approach improves upon classification techniques by
modeling TWSA as continuous constructs. We showed that model
performance decreases with less information available, but that
real-time applicable, operator-agnostic models still demonstrate
viability for use in predicting operator TWSA [14].

3 ASSESSING THE TRANSFERABILITY OF
PHYSIOLOGICAL MODELS ACROSS TASKS

Physiological models do not directly rely on task-specific elements
(such as response time or accuracy) and thus may be robust to
changes in tasks or usable across tasks. In this workwe developmod-
els of TWSA from electrocardiogram, respiration, and eye tracking
data recorded as operators perform different spaceflight-relevant
tasks. We assess the ability of the models to transfer to both new
participants and to new tasks.

In a simulated space habitatmaintenance task, participants (n=15)
worked with an autonomous system to maintain an air revitaliza-
tion system (ARS) [9]. The autonomous system controlled the ARS
while participants acted in a supervisory role. In a separate simu-
lated spacecraft piloting task, participants (n=15) tracked a space
station with a docking camera, performed verbal callouts, mon-
itored a secondary task light, and worked with an autonomous
system to complete a decision task [8]. Both tasks elicited changes
in participants’ TWSA. Physiological signals were recorded from
participants during trials and participants rated their TWSA via sub-
jective questionnaires after each trial. Regression models of TWSA
were fit with an emphasis on model stability and generalizability.

The datasets were split into training and testing sets to enable eval-
uation of the models’ predictive accuracy on new participants. Next,
models built with data from the habitat maintenance task will be
used to predict the TWSA of participants performing the piloting
task, and vice versa. The habitat maintenance and piloting tasks
emulate responsibilities of future deep space habitat operators, but
vary the level of control assigned to the operator. Our use of consis-
tent physiological sensors, subjective questionnaires, and sample
pool enables a focus on the task’s influence on model accuracy.
Results will both provide insights into the utility of physiological
models of cognitive states across tasks and identify physiological
measures that are robust to inter-individual and task differences.

4 INVESTIGATING COGNITIVE HEALTH IN
ICE ENVIRONMENTS

Next, I will study cognitive health in ICE environments with an
emphasis on complex, extended-duration teaming scenarios. I will
use qualitative interviews to learn how skilled operators (such as
astronauts, emergency medicine doctors, and military leaders) pro-
cess information in ICE settings. Building on my current research
on modeling cognitive states, I will use the themes identified in the
interviews to design lab-based experiments investigating neuro-
physiological measures of cognitive health via electroencephalog-
raphy (EEG) and functional near-infrared spectroscopy (fNIRS).
I will leverage a space habitat mockup at CU Boulder - an ideal
environment for isolating up to four individuals and controlling
the information they have access to. Finally, I will conduct field
studies at Mars Desert Research Station, an analog Martian habitat,
evaluating the transfer of modeling capabilities from the lab to field
settings using wearable sensors. This extended-duration study in
an ICE environment provides an ideal culmination for this research
and paves the way for its use in real-world applications.
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