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ABSTRACT
In this thesis, we address general utility Markov decision processes
(GUMDPs), which generalize the standard Markov decision pro-
cesses (MDPs) framework for decision-making by considering a
broader range of objective functions that depend on the occupancy
induced by a given policy. We aim to study GUMDPs from a theo-
retical perspective and develop new algorithms to solve GUMDPs
by leveraging optimization techniques. We also aim to better un-
derstand how objective specification in GUMDPs compares to that
of MDPs, further studying the connections between the two frame-
works for sequential decision-making. We hope that, by achieving
the proposed goals, the contributions of this thesis can lay down the
foundations supporting the future development and deployment of
agents that take advantage of the diverse set of objectives that can
be encoded with GUMDPs.
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1 INTRODUCTION
Markov decision processes (MDPs) [23] provide a mathematical
framework to study stochastic sequential decision-making. At a
given point in the interaction, the MDP is at a particular state and
the decision-maker chooses an action; given the chosen action, the
process evolves to a new random state and the decision-maker
receives a scalar reward value. The goal of the agent is to find a
policy, i.e., a mapping from states to actions, such that some function
of the stream of rewards yielded when interacting with the MDP
is maximized. MDPs have found a wide range of applications in
different domains [26], such as inventory management [7], optimal
stopping [6] or queueing control [25].
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MDPs are also of key importance in the field of reinforcement
learning (RL) [1] since the agent-environment interaction is typi-
cally formalized under the framework of MDPs. Recent years wit-
nessed significant progress in solving challenging problems across
various domains using RL [18, 20, 24]. Such results attest to the
flexibility of MDPs as a general framework to study sequential
decision-making under uncertainty, as well as to the power and
convenience of RL methods that allow the learning of approxi-
mate optimal behavior under partial MDP specification via direct
interaction with the environment.

As discussed, previous works attest to the flexibility of the MDPs
framework in encoding different objectives via the specification of
a scalar reward signal. However, there exist relevant objectives that
cannot be easily specified under the MDP framework [2]. These
include, for example, imitation learning [16, 22], pure exploration
problems [14], risk-averse RL [11], diverse skills discovery [3, 9]
and constrained MDPs [4, 8]. Such objectives, including the scalar
reward objective of standard MDPs, can be formalized under the
framework of general utility Markov decision processes (GUMDPs)
[21, 28]. In GUMDPs, the objective is, instead, encoded as a function
of the occupancy induced by a given policy, i.e., a function of the
frequency of visitation of states (or state-action pairs) induced
when running the policy on the MDP. Recent works have unified
such objectives under the same framework and proposed general
algorithms to solve GUMDPs under convex objective functions
[12, 27, 28]. Extensions to the case of unknown dynamics are also
provided by the aforementioned works.

In this thesis, we first aim to study GUMDPs from a theoretical
perspective. In particular, we hope to contribute to a better under-
standing of the implicit assumptions of the GUMDPs framework and
the types of objectives that can be encoded with GUMDPs, as well as
the relation between GUMDPs and other decision-making-related
frameworks. We further elaborate on this matter in Sec. 2. Second,
we aim to develop new planning algorithms to solve GUMDPs by
leveraging optimization techniques. We also aim to study the in-
tersection between RL and GUMDPs, i.e., address the development
of methods to learn approximately optimal behavior in an online,
iterative fashion. We further elaborate on this matter in Sec. 3.

2 GUMDPS
The framework of GUMDPs allows for a variety of objectives, in-
cluding many supervised and unsupervised RL problems. We aim
to better understand, from a theoretical perspective, the implicit
assumptions posed by GUMDPs, as well as the expressiveness of
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objective-specification in GUMDPs in comparison to that of stan-
dard MDPs. We now further elaborate on this matter below, high-
lighting two research directions that we believe are of interest.

2.1 The infinite trials implicit assumption
As recently shown in [21], GUMDPs implicitly make an infinite
trials/episodes assumption, i.e., GUMDPs implicitly assume the per-
formance of a given policy is evaluated under an infinite number of
episodes of interaction with the environment. Since this assumption
may be violated under many interesting application domains, the
authors introduce a modification of GUMDPs where the objective
function depends on the empirical state (or state-action) occupancy
induced over a finite number of episodes. The authors also motivate
the use of non-Markovian policies under the proposed finite-trials
GUMDPs formulation.

We aim to further extend the analysis in [21] by considering a
more general setting where an agent interacts with an environment
over multiple episodes, each with a random length [19]. In partic-
ular, we aim to study the impact of the number of trials/episodes
used to evaluate the performance of a given policy when there is
uncertainty in the episodes’ length. Depending on the distribution
over the episodes’ length, we expect the mismatch between the infi-
nite and finite trials formulation to be non-negligible. Considering
randomness over the episodes’ length is of key importance as it is
related to discounting in sequential decision-making [10].

2.2 Connections with objective-specification in
MDPs and beyond

The framework of GUMDPs differs from that of standard MDPs
since, as previously discussed, the objective function depends on
the occupancy induced by the policy. Such difference allows for
a more general decision framework since it is known that certain
objectives can be encoded using GUMDPs but cannot be encoded
using the framework of MDPs [27]. Albeit being a more flexible
framework for decision-making in terms of objective-specification,
the temporal/sequential aspect of the decision-making process in
GUMDPs becomes rather abstract in comparison to that of standard
MDPs. This is because we can, equivalently, interpret the objective
function in GUMDPs as encoding an ordering over the stationary
distributions of the Markov chains that arise when we condition
the transition probability function on different policies.

Despite such differences, [27] connects GUMDPS with MDPs
with non-stationary rewards. Other works provide connections
between GUMDPs and other decision-making-related frameworks.
For example, as shown in [27], the problem of solving GUMDPs
with convex objective functions can be recast as a game between
two players; the solution to the GUMDP is equivalent to finding
a solution to a min-max game (saddle-point) involving a cost and
a policy player. In [12], it is shown that GUMDPs with convex
objectives are related to the concept of mean field games [15, 17], a
continuous approximation of many-agent RL.

We aim to continue these lines of research by further investi-
gating connections between GUMDPs and other frameworks for

(sequential) decision-making. In particular, we aim to further in-
vestigate connections between GUMDPs and: (i) MDPs with non-
stationary rewards; (ii) multi-objective MDPs [5]; and (iii) robust
MDPs [13].

3 SOLVING GUMDPS
We now highlight below two research directions related to the
development of planning and learning algorithms to solve GUMDPs.

3.1 Plannning for GUMDPs
Different works provide planning algorithms for GUMDPs when
the objective function is convex such as [12, 14, 27]. As an example,
[27] provides a meta-algorithm that, given an algorithm for a cost
player and an algorithm for a policy player, returns a solution to
the GUMDP to any desired tolerance.

In this thesis, we will focus our attention on the development of
new algorithms to solve GUMDPs by leveraging techniques from
the field of optimization. In particular, we also want to provide
algorithms to approximately solve GUMDPs when the objective
function is non-convex in the space of occupancies.

3.2 Learning in GUMDPs
Finally, we want to provide learning algorithms for GUMPS, i.e.,
algorithms that allow learning approximately optimal policies with-
out requiring a complete specification of the GUMDP. First, we
want to study the case where only the dynamics of the GUMDP are
unknown. In a later stage, we also want to investigate the case of
unknown of underspecified objective functions.
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