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ABSTRACT
Multi-Agent Reinforcement Learning (MARL) has seen a move
towards creating algorithms which can be trained to work coop-
eratively with partners. Typically MARL is done in self-play (SP).
Recent works show agents trained with SP often achieve near op-
timal results when paired with one another, however, they form
arbitrary play conventions which can perform poorly when mis-
matched. This led to research into algorithms which have been
developed to form strategies which avoid the need for convention
matching and allow for zero-shot coordination (ZSC) with any
novel partner. ZSC solves the problem of convention matching,
and is useful in short interactions, however in pro-longed or re-
peated interaction this comes at the cost of optimality. Avoiding
conventions leaves the challenge of being unable to exploit known,
existing conventions and achieve higher levels of optimality. In this
work we use population training with a belief of the partner type to
exploit conventions which could exist, leading to high rewards over
pro-longed interactions. We demonstrate that our method is able
to better adapt in convention reliant environments over repeated
interactions than current state-of-the-art competing ZSC methods.
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1 INTRODUCTION
There has been a substantial increase in interest in the field of
Reinforcement Learning (RL), particularly that of using it to solve
problems involving cooperation between many different agents,
examples include self driving cars, robot assistants and robots in
warehouses. Multi-Agent Reinforcement Learning (MARL) has been
used with varying levels of success in these cooperative environ-
ments enabling two or more agents to be trained to work collabora-
tively toward a common goal. It has been established that training
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agents in self-play (SP) can achieve emergent behaviours in which
agents adopt different conventions to solve a problem, however
a mismatch in convention could lead to sub-optimal or even dis-
astrous results. For instance, in driving, adherence to a unified
convention, such as driving on the left or the right, is crucial to
prevent collisions. This work introduces a strategy to address con-
vention mismatches by creating a population of agents with diverse
conventions and learns to identify which convention should be
adopted for a given group of agents.

2 BACKGROUND
MARL research is typically done using self-play (SP), where agents
learn through interaction with clones of themselves. Agents trained
with SP tend to perform well in MARL environments by learning
arbitrary conventions. An example of the success of SP can be seen
with the research done on Simplified Action Decoder for Deep
Multi-Agent Reinforcement Learning (SAD) [5] where the agents
are trained to play the game Hanabi, a particularly complex, par-
tially observable environment which has been set as benchmark
environment [1]. The work done in SAD led to the emergent be-
haviours in which agents use arbitrary conventions to solve the
environment. These conventions are an important phenomenon
which leads to solutions of problems which wouldn’t otherwise exist,
however, these only work when paired with agents with match-
ing conventions. It was later shown in Other Play (OP) [7], utiliz-
ing cross-play (XP) to pair agents from different SP sessions, that
conventions are often mismatched. The authors of OP proposed
exploiting symmetries in the environment to reduce the number
of conventions that could be formed, making it less likely for a
mismatch. Noting the weakness of needing to know symmetries
of the environment for OP to work, further research was done in
Synchronous K-Level Reasoning with a Best Response (SyKLRBR)
[4], and Off Belief Learning (OBL) [6] in which the authors employ
alternative strategies to achieve zero-shot coordination (ZSC). This
is done by using a training strategy similar to Cognitive Hierar-
chies (CH) [2] and K-level Reasoning (KLR) [3] which trains 𝑘-level
agents to have a general best response (BR) to previous levels of
cognitive reasoning. The initial policy acts randomly to ensure that
actions infer no extra meaning outside of what they reveal about
the environment so that conventions can’t be formed. This means
they should, in principle, achieve zero-shot coordination (ZSC). An-
other approach to solving the problem is to develop a diverse set of
training partners and learning a BR to these agents, this is explored
in Entropy-regularized Deep Recurrent Q-Network (EDRQN) [12],
Trajectory Diversity for Zero-Shot Coordination (TrajeDI) [10], and
Any-Play [9], all of which are capable of achieving ZSC.
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Figure 1: The network structure of our method. Note that the
red arrow from 𝐵𝑡+1 to the dueling DQN represents a break
in the back propagation since the belief network is trained
as an auxiliary task.

3 METHOD AND PRELIMINARY RESULTS
In XP settings, ZSC techniques tend to outperform SP methods on
average, despite SP’s potential for higher rewards within matching
conventions. The potential SP has for higher rewards suggests
that we should consider exploiting known conventions in repeated
interactions. This would require being able to identify a set of
diverse conventions over repeated interactions. The identification
of the correct conventions would help achieve higher rewards in
later interactions than a ZSC general best response despite the
potential to incur early performance losses due to mismatches.

Hence, we propose a method which allows for the creation and
identification of a diverse set of training partners with varying
conventions. We use a training strategy similar to SyKLRBR.We use
synchronous training of𝑀 different synchronous KLR training runs,
depicted in Figure 2. We direct readers to SyKLRBR [4] for details
on the implementation, however we will state the differences in our
work.We use𝑀 initial policies 𝜋𝑚0 with different static distributions
of actions, including one uniform random distribution as is used
in SyKLRBR. The initial policies do not learn over time, consistent
with the random initial policy in SyKLRBR. We ensure these initial
policies action distributions have a Jensen–Shannon divergence
which is above some value 𝜃 to ensure diverse behaviours. This
allows for up to𝑀 different conventions to be learned. We use the
same training architecture used in SyKLRBR, that is a Recurrent
Replay Distributed DQN (R2D2) [8]. This is an architecture which
uses an LSTM and the duelling network architecture, as seen in [11].
We make modifications to the network structure for our method,
depicted in Figure 1, this is to account for the belief 𝐵𝑡 of which
of the 𝑀 × 𝐾 partners we are paired with at time 𝑡 . We take the
observed state 𝑆𝑡 , the previous action taken 𝐴𝑡 and the partner
belief 𝐵𝑡 encoded by the LSTM to give the output 𝑂𝑡 . This output
is then used to get an updated belief of the partner we are playing
with 𝐵𝑡+1. This belief is trained as an auxiliary task with actual
knowledge of which of the𝑀 ×𝐾 partners we are paired with. The
combination of𝑂𝑡 and 𝐵𝑡+1 is then given to a dueling DQN to select
an action 𝐴𝑡+1. Once the𝑀 × 𝐾 partners are trained we then train
a final policy 𝜋𝐾+1 with this set of partners and itself.

To evaluate we take a modified and repeated version of the toy
environment first presented in OBL [6]. This is a team game in
which two partners need to signal to their teammate which animal
is behind a wall by pressing one of a number of buttons and guess
the animal without any prior communication about which animal
is mapped to with which button, allowing for conventions to be
formed. Teams are rewarded with a score of 10 for each correct

Figure 2: The structure of the𝑀 K-level policies with (K+1)-
level final policy.

Method Self-Play Cross-play Rules Bots
Our Method 40 ± 2.67 37 ± 4.12 37 ± 4.85
SyKLRBR 25 ± 0 25 ± 0 25 ± 0
EDRQN 25 ± 0 25 ± 0 25 ± 0
TrajeDI 25 ± 0 25 ± 0 25 ± 0

Table 1: Results of repeated signalling game.

answer, punished with -10 for each incorrect answer and receive
half the score if they cheat and reveal the animal. In a single iteration
of this game, a mismatch in convention is disastrous and we suggest
ZSC techniques for one time interactions, however in reality we
more often encounter repeated interactions. Hence this modified
version is repeated 5 times for each pairing. A perfect score of 50 is
possible if the conventions are perfectly matched, and 25 when the
ZSC strategy of cheating is used. We scaled the number of animals
and buttons up to 3, allowing for 6 permutations of mappings
between animal and button. The length of the interaction needed
to determine the partner convention would increase based on the
number of possible conventions as well as how subtle differences
in behaviour may be. For example, with 𝑛 buttons and animals, you
need a minimum of𝑛 repeated interactions to determine the partner
convention, thus our method is suggested for scenarios with more
repeated interactions than there are conventions. We made 6 pre-
programmed bots which use these mappings for conventions or
cheating and then paired trained agent with these bots randomly
over 100 games each. We tested 6 training runs of each of the
following methods: our method, SyKLRBR, EDRQN, and TrajeDi on
this environment. We found that SyKLRBR, EDRQN, and TrajeDi
find general best responses and all settle on the ZSC strategy of
cheating, while our method tried to coordinate with the strategy it
was playing with achieving higher scores on average. The results
in Table 1 show that our method outperforms state-of-the-art ZSC
methods in this repeated game scenario in three play settings: SP,
XP and with rules bots.

4 CONCLUSION
We show that identifying and matching diverse conventions from
a population of policies is beneficial and often outperforms general
best response ZSC strategies over repeated interactions. We plan to
further this by extending it to other domains such as Hanabi.
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