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ABSTRACT

Reinforcement Learning (RL) has proven successful in learning
behaviors for artificial agents and robots when the transition dy-
namics of the environment are unknown. Despite this progress,
many sequential decision making tasks are prohibitively expensive
to learn. For my research, I intend to utilize and synthesize existing
symbolic knowledge available to supplement the RL techniques
for improved efficiency and faster learning progress. This symbolic
information be in the form of formal language specifications (such
as LTL) or in the form of natural language derived using Large
Language Models (LLMs). I have developed various methods and
frameworks that propose novel techniques in the curriculum learn-
ing domain to improve the learning efficiency of RL agents. I further
want to implement these techniques on physical manipulator robot
and show its efficacy for solving problems in the real world.
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1 INTRODUCTION

Despite the progress made in Reinforcement Learning, numerous
sequential decision-making tasks are still excessively costly and
challenging to learn in a practical manner. In response to this chal-
lenge, various research avenues have investigated the sequencing
of tasks or data samples themselves in a curriculum, aiming to fa-
cilitate the learning progress of of agents in complex problems [3].
However, generating and optimizing a curriculum in a realistic
scenario still requires extensive interactions with the environment.
Other lines of work have investigated incorporation of symbolic
knowledge (either in the form of PDDL, LTL or LLM) to aid the
learning progress of the agent [1, 2]. Little work has examined the
interplay between Symbolic knowledge and Curriculum learning.
I will examine how Symbolic knowledge can be abstracted and
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utilized so that the RL policy shows improved performance with a
faster convergence. Such techniques would enable us to learn sev-
eral complex tasks on physical robots using RL techniques, which
will make the RL policies and behaviors robust, and will also reduce
the work-load on the humans engineering the task. I will begin by
studying representations, and how symbolic knowledge can be ab-
stracted either from LTLs or LLMs for efficient RL. With theoretical
contributions using these two techniques, I will perform empirical
evaluation on physical robots for robotic manipulation tasks. This
will enable robots to learn a wide range of tasks, without needing to
have an explicit policy for the individual task they are attempting.

2 BACKGROUND

Iresearch Curriculum Learning techniques for Reinforcement Learn-
ing (RL) agents. AIlRL algorithms suffer from the sample-complexity
problem, requiring millions of data points to train a simple and
effective policy. In the realm of robotic research, this translates
to extensive man-hours invested in setting up environments for
expensive data collection and training behavior policies, consum-
ing tens of graphics processing unit (GPU) days and contributing
to the significant carbon emissions generated by Al systems. Cur-
riculum, as applied in RL, explores how the arrangement of data
samples can reduce the overall task sample complexity. However, a
notable drawback of several curriculum learning algorithms is that
the time required to generate a sample-efficient curriculum often
surpasses the time needed to learn the target task from scratch.
This undermines the purpose of having an automatically generated
curriculum. Moreover, certain curriculum techniques necessitate
task-specific engineering, relying on a curated reward function that
proves ineffective when the task undergoes changes.

To investigate sample efficient algorithms for learning robust
policies on a robot, I focus on two key areas - Symbolic Knowl-
edge abstraction for RL and Curriculum Learning. Both of the above
mentioned techniques are targeted toward efficient reinforcement
learning for time-intensive robotic applications, however, little has
been studied how the interplay of these two techniques can aid
efficient and quicker learning.

Previously, I worked on Automaton-Guided Curriculum Genera-
tion for Reinforcement Learning Agents [5], in which the task goal
is represented using a high-level specification language, such as
LTLy, and the goal is to come up with a curriculum that returns
an ordered list or a graphical representation of tasks (Fig. 2). Long-
horizon tasks have been traditionally challenging to solve, given
the problem of catastrophic forgetting of RL systems. Hence, I used
the high-level specification language LTL  that allows representing
task goals using temporal specifications, and the DFA form provides
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(b) Prompt to the LLM (left) and the LLM output and corresponding DAG (right)

Figure 1: (a) Gridworld domain and descriptors. The agent needs to collect one of the keys and open the door to reach the goal;
(b) The prompt to the LLM that contains information about the number of paths n expected from the LLM and the symbolic
information such as the entities, predicates and the high-level initial and goal states of the of the environment. The LLM
prompt is converted to a DAG. The path chosen by LgTS is highlighted in red in the DAG in Fig. 1b
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Figure 2: Overview of the automaton-guided curriculum gen-
eration approach. We use the automaton to come up with a
sequence and graph-based curriculum.

a graphical representation of the sequence in which sub-goals must
be achieved. However, it does not specify the individual sub-tasks
of the curriculum. Thus, generating a curriculum is non-trivial as
it requires the agent to reason over multiple potential curriculum
environment configurations for the same sub-goal objective.

To come up with tasks in increasing order of difficulty, I used
the Object-Oriented MDP representation to propose tasks that are
nor too easy nor too difficult given the current learning capacity
of the agent. Thus, the agent has a curriculum, in the form of
a sequence or a graph based ordering of tasks, which help the
agent learn the complex target task in fewer number of interactions.
We demonstrated improved learning performance on a minecraft-
like gridworld domain, as well as on two robotic domains - one
robotic manipulation domain, and one robotic navigation domain.
Our approach, AGCL, reduces the number of interactions with the
target environment by orders-of-magnitude when compared to
state-of-the-art automaton-guided RL baselines.
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Later, I worked on LgTS [4]. Instead of having a human specify
the high-level specification in the form of LTL, the graphical struc-
ture for the sub-goals of the task can be obtained by prompting
an off-the-shelf Large Language Model (LLM) to provide us with
a graphical representation of sub-goal sequences. This provides
the agent a graphical structure, similar to the one obtained from
human-specified LTL formulas as in [5]. The agent later proceeds
to learn RL policies for solving the final task objective.

3 FUTURE WORK

In the near future, I want to use human-specified high-level lan-
guage to dynamically choose tasks that can lead to quicker learning.
In this work, instead of generating a manual curriculum, I will em-
ploy an interplay between two agents - A Teacher agent that pro-
poses new tasks based on the LTL specification to the Student agent
that attempts to learn a low-level RL policy for the task proposed
by the Teacher agent. Here, the Teacher and the Student agents are
RL policies, and the aim for the Teacher agent is to find the most
suitable task based on the LTL specification for the student, and
the aim for the Student is to learn the proposed task using RL pol-
icy. This interplay between the two agents promotes a curriculum
strategy that improves the learning progress on the overall task.
In future, I want to move to learning robust policies for physical
robots. The robot has access to sensory information, which can
be abstracted to generate symbolic information. This symbolic
information can be further enriched to be provided to an RL agent
using off-the-shelf LLMs along with a Visual Language Model that
can guide the low-level control of the robot by informing the robot
regarding important spatial and environmental awareness that
the LLM cannot provide. By combining all the tools that I have
mentioned above, namely, symbolic knowledge abstracted using
LLMs, situated awareness using VLMs, and curriculum learning
techniques, I want to improve real world learning capacity for
robots using reinforcement learning. While this is a challenging
goal, reinforcement learning for robotics has been limited to high-
level policies that are not robust due to limitations of the low-level
control policies. End-to-end trained RL policies will mitigate this
issue and promote robust and dynamic behaviors for task solving.
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