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ABSTRACT
Exploration in reinforcement learning remains a difficult challenge.
In order to drive exploration, ensembles with randomized prior
functions have recently been popularized to quantify uncertainty
in the value model. However these ensembles have no theoretical
reason to resemble the actual Bayesian posterior, which is known to
provide strong performance in theory under certain conditions. In
this thesis work, we view training ensembles from the perspective
of Sequential Monte Carlo, a Monte Carlo method that approxi-
mates a sequence of distributions with a set of particles, and propose
an algorithm that exploits both the practical flexibility of ensembles
and theory of the Bayesian paradigm. We incorporate this method
into a standard DQN agent and experimentally show qualitatively
good uncertainty quantification and improved exploration capa-
bilities over a regular ensemble. In the future, we will investigate
the impact of likelihood and prior choices in Bayesian model-free
reinforcement learning methods.
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1 INTRODUCTION
Reinforcement learning (RL) algorithms are still notoriously sam-
ple inefficient. One pressing reason is the difficulty of exploring an
environment efficiently while assuming little prior knowledge. A
promising approach that is currently studied is to attempt to quan-
tify epistemic uncertainty of an agent, which is the uncertainty
caused specifically by a lack of data, as opposed to uncertainty
caused by inherent randomness. If the epistemic uncertainty of the
value models learned by the agent can be quantified accurately,
then an approach that provides intrinsic reward or uses Thompson
sampling [1, 2, 7, 8, 14, 15, 17] can effectively drive exploration.
However, quantifying uncertainty for deep neural networks is in
itself a difficult task [10, 13].

Ensembles of neural networks have been shown to provide bet-
ter predictive accuracy over a single model in supervised learning
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tasks [4, 11], as well as suitable methods for uncertainty quantifi-
cation for exploration in reinforcement learning [6, 14, 15]. While
ensembles with independent models of identical architecture tend
to collapse to the same predictive model [9], there are several tech-
niques developed to prevent this, such as adversarial learning [11],
bootstrapping the data [15], and adding additive priors [14]. Further,
some techniques such as Stein Variational Gradient Descent [3, 12]
alleviate this issue by interpreting the ensemble as an approxima-
tion to the Bayesian posterior and training it as such.

Bayesian neural networks can have desirable properties if the
posterior can be inferred accurately. They have in theory opti-
mal predictive accuracy given the correct likelihood and prior and
also provide accurate uncertainty quantification. Many algorithms
such as BootDQN [14, 15], NoisyNets [7], Epistemic Value Estima-
tion [18], Monte Carlo Dropout [8] are motivated from a Bayesian
point of view, but whether the posterior approximations are close
to the true posterior is an important question. Performance of the
algorithm does not relate one-to-one to quality of posterior approx-
imation, since in model-free methods it is unlikely that the problem
is properly described by the chosen likelihood, which is usually
taken to be a normal distribution. For example, BootDQN with
prior functions achieves state of the art performance on Deep Sea, a
very difficult needle-in-haystack problem, but there is no inherent
reason for the ensemble to be similar to the posterior distribution.

Unfortunately, exactly inferring the posterior is intractable al-
ready for some simple statistical models, and accurately approxi-
mating this posterior is very difficult for neural networks. Typically,
posterior approximation methods fall into one of two categories:
Markov Chain Monte Carlo, and Variational Inference.

In my thesis work, I aim to answer the following questions:

• Under standard likelihood and prior assumptions, does more
accurate posterior approximation produce better model-free
algorithms?

• Can we come up with more suitable likelihood and priors in
order to make the resulting posterior more aligned to solving
typical RL benchmarks?

2 BAYESIAN DEEP LEARNING
A Bayesian Neural Network (BNN) is any neural network 𝑓𝜃 pa-
rameterized by 𝜃 ∈ Θ where the intent is to infer the posterior

𝑝 (𝜃 |D) = 𝑝 (D|𝜃 )𝑝 (𝜃 )∫
𝑝 (D|𝜃 )𝑝 (𝜃 )𝑑𝜃

=

∏𝑛
𝑖=1 L(𝑦𝑖 |𝑓𝜃 (𝑥𝑖 ))𝑝 (𝜃 )∫ ∏𝑛
𝑖=1 L(𝑦𝑖 |𝑓𝜃 (𝑥𝑖 ))𝑝 (𝜃 )𝑑𝜃

,
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where (𝑥1, . . . , 𝑥𝑛) and (𝑦1, . . . , 𝑦𝑛) are data points assumed to be
i.i.d. from some likelihood L(𝑦 |𝑓𝜃 (𝑥)), and 𝜋 (𝜃 ) is a prior distribu-
tion.

Unfortunately, especially in the case of large neural networks,
the posterior is intractable to compute or sample from exactly. In
reinforcement learning settings, Markov Chain Monte Carlo [5]
and Variational Inference [7, 8, 18] have both seen use before, with
varying model algorithms and model classes.

Another problem in the case of deep learning, is that the chosen
likelihood and prior have to be the correct probability distributions
in order for the posterior to enjoy the theoretical guarantees that
the Bayesian paradigm provides.

Sequential Monte Carlo (SMC) is a class of algorithms that aim to
sample from a sequence of distributions 𝑝0 (𝜃 ), . . . , 𝑝𝑚 (𝜃 ), lending
itself very well to problems where data comes in sequentially.

For example, a posterior 𝑝 (𝜃 |D) ∝ 𝑝 (𝜃 )𝑝 (D|𝜃 ) conditioned on
one data set D, can be updated to the posterior conditioned on
newly obtained data 𝑝 (𝜃 |D ∪B) by applying SMC to the sequence(

𝑝 (𝜃 )𝑝 (D|𝜃 )𝑝 (B|𝜃 )𝜆𝑡
)
𝑡=0,...,𝑇

, (2)

where 0 = 𝜆0 < 𝜆1 < · · · < 𝜆𝑇 = 1.

3 SEQUENTIAL MONTE CARLO DQN
In my first paper [19], I propose to use Sequential Monte Carlo to
train an ensemble of Q-networks, to create an agent named SMC-
DQN that closely resembles the architecture of BootDQN, but uses
a posterior approximation with stronger theoretical motivation.

In SMC-DQN, an agent keeps track of the posterior over param-
eters of a neural network 𝑄𝜃 (𝑠, 𝑎) that models the Q-values. The
posterior is approximated by keeping a set of particles𝜃1, . . . , 𝜃𝑛 and
weights𝑤1, . . . ,𝑤𝑛 , that are updated by running SMC on a sequence
of distributions interpolating between 𝑝 (𝜃 |D𝑁 ) and 𝑝 (𝜃 |D𝑁+𝐵),
where D𝑁 and D𝑁+𝐵 is the replay buffer at time 𝑁 and 𝑁 + 𝐵

respectively.
Specifically, we extend a standard DQN agent by replacing its

point-wise estimator𝑄𝜃 (𝑠, 𝑎) with an ensemble of neural networks
𝑄𝜃1 (𝑠, 𝑎), . . . , 𝑄𝜃𝑛 (𝑠, 𝑎) and weights 𝑤1, . . .𝑤𝑛 to maintain an ap-
proximation of the posterior 𝑝 (𝜃 |D, 𝜽 ′), conditioned on the current
replay buffer

D = ((𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1))𝑡=1...𝑁
and current target parameters

𝜽 ′ = (𝜃 ′1, . . . , 𝜃
′
𝑛) .

In line with the work by Schmitt et al. [18], a normal distribution

𝑄𝜃 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) − 𝛾 max
𝑎′

𝑄𝜃 ′ (𝑠′, 𝑎′) ∼ N (0, 𝜎)

is used as a probabilistic interpretation of the squared temporal
difference error, and to represent the uncertainty in the targets we
define the likelihood to be a mixture distribution

logL(𝑠, 𝑎, 𝑟, 𝑠′ |𝜃,𝜽 ′) =

log
𝑛∑︁
𝑖=1

1
𝑛
exp

©«
1

2𝜎2
[𝑄𝜃 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎)−

𝛾 max
𝑎′

𝑄𝜃 ′
𝑖
(𝑠′, 𝑎′)]2

ª®®¬ ,
(3)

contrasting BootDQN which shares no target values between en-
semble members.

The log posterior distribution is defined as

log𝑝 (𝜃 |𝜽 ′,D) ∝ log𝑝 (𝜃 ) + logL(D|𝜃, 𝜽 ′), (4)

where

logL(D|𝜃, 𝜽 ′) =
∑︁

(𝑠,𝑎,𝑟,𝑠′ ) ∈D
logL(𝑠, 𝑎, 𝑟, 𝑠′ |𝜃, 𝜽 ′). (5)

After collecting a batch of data, the agent updates its model of
the posterior by running an SMC sampler on the sequence defined
in Equation 2.

In our experiments, the agent uses Thompson Sampling to select
their actions at train time, but any algorithm that can make use of
a probabilistic model, such as UCB, could also be used.

We test our agent on the exploration environments in BSuite [16],
which includes Deep Sea, Stochastic Deep Sea, andCartpole-swingup.
We also include Mountain Car since the states where the agent re-
ceives feedback on its performance here is also sparse.

We find strongly improved exploration capabilities over regular
ensembles, and results competitive with ensembles using random-
ized prior functions. Especially on continuous state environments
our agent performs well. We theorize that the discrepancy in per-
formance between ensembles with randomized prior functions is
due to issues with the likelihood. Since Deep Sea is one hot encoded
and a deterministic environment, the likelihood has two issues:

(1) The assumption of normally distributed noise is surely vio-
lated, since the environment is deterministic for a determin-
istic policy.

(2) The parameterization of the neural network causes corre-
lation between states that are in reality independent. This
makes the likelihood incorrect, and the posterior with re-
spect to this likelihood therefore does not accurately reflect
the real uncertainty.

This experiment highlights the necessity of future work in de-
vising good likelihoods for Bayesian model-free Q-learning ap-
proaches. Nonetheless, the agent does learn to solve the environ-
ment eventually.

4 FUTUREWORK
In supervised deep learning, it is already known that the posterior
often does not lead to optimal performance even with accurate
posterior approximation when using standard likelihoods and pri-
ors [20]. Similarly, our results tentatively suggest that the perfor-
mance of a Bayesian model-free algorithm with a simple likelihood
and prior depends on how applicable the likelihood is to the envi-
ronment. To fully exploit the uncertainty quantification that the
Bayesian paradigm provides, it is therefore an interesting future
direction for my thesis to verify this claim and look into how better
likelihoods can be constructed.

Furthermore, incorporating such uncertainty quantification and
exploration methods into a wider range of RL algorithms and dif-
ferent return estimators, as opposed to standard one-step DQN
algorithms, will also help to establish the applicability our methods.
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