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ABSTRACT
Skill acquisition is among the most remarkable aspects of human
intelligence. It involves discovering purposeful behavioural mod-
ules, retaining them as skills, honing them through practice, and
applying them in unforeseen circumstances [11]. Skill acquisition
underlies our ability to choose to spend time and energy on the mas-
tery of particular tasks and draw upon previous experience to solve
more complex problems over time with less cognitive effort [10]. If
endowed with continual skill acquisition, robots can autonomously
improve their skills over time, where learning at one stage of de-
velopment is a foundation for future learning [23]. It could unlock
new possibilities for physical automation with general-purpose
robots, just as general-purpose computer processors ushered in the
information age [24, 33]. In this work, we propose a novel approach
called Graduated Learning, where we ask a robot to acquire newma-
nipulation and locomotion skills repeatedly, using time-delineated
experiences of attempts at those skills (i.e., episodes) and some
store of previously acquired knowledge (e.g., weights of a neural
network). Our proposed approach chooses the order in which an
agent learns these skills since the progressive manner in which
they are developed plays a vital role in developing a final skill set.
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1 INTRODUCTION
Recent advances in Machine Learning have fueled a class of robots
that can perform specialized tasks such as vacuum cleaning, as-
sembly, welding and pick-and-place items in warehouses. However,
most of these robots cannot accomplish much beyond what they are
explicitly designed to do, often operating within a very narrow set
of conditions. They require representations of the world in terms
of objects, actions, and plans which are carefully hand-crafted or
learned for the robot’s task [25, 33]. Typical data-driven learning
systems have distinct training and deployment phases. In order to
adapt to changes in the real-world post-deployment (e.g., changes in
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lighting, wear and tear of hardware, and sensor calibration), the en-
tire system is often rebuilt rather than making incremental changes
to the model. The majority of commercially deployed robots rely
heavily on human supervision and intervention when deployed
out in the world [21, 25]. However, a general-purpose robot capa-
ble of solving a multitude of tasks cannot rely on representations
hardwired before deployment because each new task may require
a different representation. To build a truly general-purpose robot,
there are four key challenges that need to be addressed.

Learning under real-time constraints. Firstly, general-purpose
robots must have the ability to learn on-the-fly as they interact
with the environment, commonly known as online learning. When
online learning systems engage with the physical world, we call
them real-time learning systems. Reinforcement Learning (RL) is a
natural way of formulating real-time learning tasks [27]. Many deep
RL methods, which use artificial neural networks with many lay-
ers, have been developed to solve complex motor control problems
[1, 7, 26]. However, they do not easily extend to the real-time learn-
ing setting that operates under time and resource constraints, for
example, in quadrotors and mobile robots [13]. While approaches
including learning from demonstrations [6, 30], sim-to-real [4, 19],
and offline RL [14] have been used to develop pre-trained agents,
there has been relatively little interest in studying real-time learning
in the real world.

How to specify a reinforcement learning task? Secondly, to solve
unforeseen tasks, general-purpose robots cannot rely on a human
instructor to provide domain knowledge beforehand. Many deep
RL approaches rely on task-specific prior knowledge to carefully
engineer a guiding reward signal, often biasing the solution that
the agent can find [8, 22]. For many guiding reward tasks, there is
a related sparse reward task (e.g., a reward of -1 for each time step
until termination) that is much easier to specify and still captures
the desired behaviour of agents. In addition, when the sparse reward
formulation is used, the agent can discover novel and potentially
superior solutions. However, this learning using sparse rewards
is thought to be hard to solve [20]. Our interest lies in leveraging
sparse reward formulations since they can provide a natural means
to specify a sequence of tasks either given by humans at a high
level or automatically generated for a continual learning agent.

Developing efficient, scalable policy learning methods. Thirdly,
deep RL methods can be prohibitively expensive in terms of compu-
tational resource requirements, especially on complex vision-based
control tasks. As onboard computing is a scarce resource in mobile
robots, learning systems must be designed such that the computa-
tional platform can meet real-time requirements [13]. While state-
of-the-art deep RL methods achieve effective performance, they
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require computationally intensive, large batch gradient updates,
which are not suitable for real-time learning [21, 34]. In contrast,
incremental RL methods are computationally cheap and perfectly
suited for real-time learning [5, 29]. However, their learning per-
formance is not adequate to solve complex control tasks. We deem
a learning method scalable if the computation or memory usage
can be increased or decreased depending on the availability of re-
sources without affecting the final performance after learning for a
sufficient amount of time. For onboard learning, we require novel,
computationally cheap learning methods that may learn slower
than existing methods, but they could catch up with sufficient time.

Skill discovery. Fourthly, we lack methods to effectively discover
real-life skills by learning from scratch in complex vision-based
robot tasks. There are several methods for discovering skills in
simple, simulated environments [2, 3, 9, 11, 17, 31], but they cannot
be extended to the real-time learning setting. While [15] learns
diverse primitive skills on a Daisy hexapod robot, they parameterize
the primitives as simple cyclic movements and solve only a simple,
non-visual locomotion task.

2 THE GRADUATED LEARNING FRAMEWORK
I present the idea of graduated learning, where we repeatedly ask
a robot to acquire new manipulation and locomotion skills, using
time-delineated experiences of attempts at those skills (i.e., episodes)
and some store of previously acquired knowledge (e.g., weights of
a neural network). Such a learning agent will solve only minimum-
time problems. Based on its current behaviour, the agent determines
which events are not so frequent or rare, called flow events. The
agent makes flow events goal states and learns to reach those goal
states as soon as possible. Once the agent learns to effectively reach
a flow goal state, we store the policy network parameters for future
use. As the agent solves more such tasks, newer events become
flow events to the agent. The agent could also learn a high-level
controller that can reuse previously learned skills to solve a task.

3 EXPERIMENTAL APPROACH
We will use the iRobot Create2 vacuum robot, Anki Vector, Franka
Emika Panda Arm and UR5 industrial robot arm as physical testbeds
given our extensive experience prototyping applications and pub-
lishing research papers with them [12, 16, 29, 32]. Since experiments
are costly to perform on real robots, we will also use simulated
experiments on Gazebo and MuJoCo [28]. Simulated experiments
would only serve as litmus tests to rule out ineffective approaches.

Milestone 1: Real-time reinforcement learning. Recently, we de-
veloped a real-time learning system called the Remote-Local Dis-
tributed (ReLoD) system to make resource-intensive RL algorithms
tractable on resource-limited computers [32]. A common setup for
a robotic agent is to have two different computers simultaneously:
a resource-limited local computer tethered to the robot and a pow-
erful remote computer connected wirelessly. Given such a setup, it
is unclear to what extent the performance of a learning system can
be affected by resource limitations and how to efficiently use the
wirelessly connected powerful computer to compensate for any per-
formance loss. In this paper, we implemented a real-time learning

system to distribute computations of two deep reinforcement learn-
ing (RL) algorithms, Soft Actor-Critic (SAC) and Proximal Policy
Optimization (PPO), between a local and a remote computer.

Milestone 2: Task Specification. In a recent submission, we re-
evaluated sparse rewards for task specification in RL, which are
often overlooked due to their perceived difficulty and lack of infor-
mativeness compared to dense rewards. Sparse rewards, however,
offer simplicity in specification, for example, for a sequence of
tasks in continual learning. Our studies contrasted the two reward
paradigms, revealing that sparse rewards not only facilitate learn-
ing higher-quality policies but also surpass dense-reward-based
policies on their own performance metrics. We demonstrated that
sparse-reward formulations can lead to effective learning in a rea-
sonable timeframe on benchmark tasks. Crucially, we identified
the goal-hit rate of the initial policy as a robust early indicator for
learning success in sparse-reward settings. By applying our insights
to vision-based reaching tasks on four distinct robotic platforms,
we show that robots can learn without pre-training and from raw
pixels in two to three hours with sparse rewards. Our findings
advocate for a re-evaluation of sparse rewards to simplify reward
design and achieve higher-quality policies in real robot learning.
Our video demo can be found here: https://youtu.be/rrbqbbdmvkM

Milestone 3: A novel, efficacious incremental learning method. As
the agent will learn thousands of tasks or even more over time, we
need to develop lightweight computationally and memory-efficient
agents that can maintain all these tasks in our computers. I’m
working on an effective, novel incremental learning method based
on the entropy regularized RL objective proposed by [35]. It can
be used to learn multiple control policies in parallel, and all the
relevant data structures can be stored with ease. This work will be
submitted to NeurIPS 2024.

Milestone 4: Detecting flow events. How to detect flow events
which are necessary to generate a task and choose a task among
available flow tasks that best helps solve the overarching task? I
will survey the literature for effective, automatic curriculum gen-
eration [18] and option discovery [2, 3] to answer this question.
Subsequently, I’ll draw upon these ideas to build agents capable of
detecting flow events and choosing the most promising flow event
to help solve the target task.

Milestone 5: Composition of learned skills. We will assess the
effectiveness of a high-level controller that can select among learned
flow event policies to generate abstract motor behaviours to solve
complex vision-based tasks on multiple robots. Here, we can draw
inspiration from [8, 17, 22].

4 IMPACT
Autonomous skill acquisition is crucial for building general-purpose
robots that can operate in unstructured environments and safely
share spaces with humans. The ability to learn versatile skills and
adapt to unseen situations would help robots function indepen-
dently in hazardous environments, assist in healthcare, and reduce
the impact of labour shortages around the world. My research will
push the boundaries of robot learning, thus bringing us a step closer
towards building truly intelligent machines.
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