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ABSTRACT
The distribution of resources is a critical issue that impacts all as-
pects of the Internet and society, with fairness playing a key role.
Current standard algorithms for distribution typically measure fair-
ness through methods based on envy or proportionality, requiring
precise numerical values. However, there is a clear discrepancy
between how these algorithms are intended to work in theory and
their application in real-world situations. This is because users of-
ten do not have exact information about the resources and struggle
to assign a numerical value to them. Our goal is to explore settings
where agents do not take exact numeric values as input. In this
framework, we do not assume that individuals can specify exact
numerical values for resources. Instead, we assume that each agent
has an ordinal preference for the items. That is, given two items,
an agent can identify which is better, without assigning cardinal
values to them. We consider new criteria for fairness in this setting,
and discuss about their achievability in this article. Besides, we
investigate the Probabilistic Serial mechanism where agents also
only provides ordinal ranking over items, and particularly research
on the incentive ratio of the mechanism.
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1 BACKGROUND
Allocating resources fairly has been a challenge from the beginning
of human society and is still of great significance in modern life.
It occurs at many levels within both the digital world and social
structures [8]. Traditional examples of fair division include allo-
cating food and water among a community or evenly distributing
inheritance among offsprings, and similar concepts are still applied
to modern society in areas like cloud computing [4, 10].

The modern theory of fair allocation arguably originated in
the work of Steinhaus [9] and has been the focus of economics,
mathematics, and computer science for most of the last century
[7]. To allocate resources fairly, one needs first to define fairness.
There are generally two types of well-studied fairness, namely
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envy freeness (EF) and proportionality (PROP). Assume that in an
allocation, each agent gets a bundle of resources. Each agent has
an evaluation of all bundles. An allocation is envy-free if, for each
agent, they think that their bundle is the best among all bundles.
In addition, an allocation is considered proportional when each
agent receives a bundle perceived to be at least as valuable as the
total value of all resources divided by the number of agents. Put
simply, an allocation is proportional if each agent feels they have
obtained a fair share of the resources. In this work, we only consider
indivisible items.

As indicated by the above definitions, in traditional research,
problems are often defined with mathematically precise conditions,
referred to as cardinal fairness; agents are assumed to be able to
assign a concrete numeric value on any subset of the resources.
However, this method often overlooks the practicality of imple-
menting such algorithms. It misses the fact that the computational
burden placed on users to express and communicate their precise
preferences regarding resources could render the algorithms un-
usable; for instance, an algorithm might be rejected if users find it
too complex to operate.

Perhaps more crucially, it is often challenging for users to artic-
ulate their preferences using precise cardinal values. For example,
while individuals might recognize that a car is generally more valu-
able than a cellphone, quantifying the exact value difference is
nearly impossible.

Therefore, we argue that a gradual relaxation of the perfect in-
formation assumption is necessary for theory to more closely align
with reality and for theoretical insights to be deployed effectively
in practice. In this context, our project aims to investigate the prob-
lem of fair allocation with imperfect information. We assume that
agents have an ordinal ranking preference of all items so that they
can compare any pair of items without assigning value to them.

2 ORDINAL FAIRNESS
When agents only have ordinal preferences on items, it is trivial to
compare two items. However, there is no natural way to compare
two bundles. In some cases, it is easy for an agent to compare
two bundles: when one is strictly better than the other. If there
exists a matching between items from the two bundles in which,
for each pair of items, the item in a certain bundle is better than
the other, then it is safe to say that certain bundle is preferred over
the other. This is also called stochastic dominance (SD). However,
the SD condition is strict, and not all bundles are comparable by
SD. Therefore, other ways of comparison are needed.

Twoways are commonly used to extend preferences over items to
preferences over bundles: downward lexicographic (DL) dominance
and additivity.

Doctoral Consortium  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2788



DL dominance assumes that the value differences between items
are huge, such that, for an item 𝑜 and an agent 𝑖 , 𝑖 will consider 𝑜
more valuable than the bundle containing all items worse than 𝑜 .
Formally, let 𝐴 and 𝐵 be two bundles. If agent 𝑖 DL-prefers bundle
𝐴 over 𝐵, then there exists an integer 𝑘 , such that 𝑖 SD-prefers 𝐴′

over 𝐵′, where 𝐴′ (resp. 𝐵′) is the set of the 𝑘 most preferred items
in 𝐴 (resp. 𝐵).

Additivity means that agents have additive cardinal valuations of
the items, although the allocator does not know the exact function.
Additive valuation means that each agent assigns a numeric value
to each item and that their value to a bundle is the sum of the value
of all the items in the bundle.

2.1 DL Dominance
Using DL dominance, we can compare two bundles in the ordinal
setting and thus give a concrete definition of fairness. We mainly
considered the DL version of EFX (DL-EFX) and MMS (DL-MMS),
which are the relaxed versions of EF and PROP, respectively.

Theorem 2.1. Given any instance with arbitrary ordinal prefer-
ences, an allocation that is simultaneously DL-EFX, DL-MMS exists
and can be computed in polynomial time [1].

The theorem is proven by constructing an algorithm that can
always find such an allocation given any instance, and the main
technique behind the algorithm is the exchange graph. Similarly to
the envy cycle procedure [6], the exchange graph aims to cease the
envy relationships between agents by exchanging. However, instead
of exchange bundles, the exchange graph tries to exchange single
items among a chain of agents. This procedure allows the algorithm
to handle envy relationships without affecting the structure of
agents’ bundles and is crucial to maintaining the MMS property.

2.2 Possible and Necessary Fairness
Another way to extend the ordinal preference over bundles is by
additivity. We assume that each agent has an underlying cardinal
additive valuation function that is consistent with their ordinal
preference. Since we do not actually know the exact valuation func-
tion, we prompt two variations of fairness notions in this setting:
possible and necessary fairness. We say that an allocation satisfies
a certain possible fairness notion if there exists at least one set of
cardinal valuations consistent with the provided ordinal rankings
that fulfills the fairness criterion when those cardinal valuations are
considered the true valuations of the agents. Similarly, necessary
fairness demands that, for every unique cardinal valuation that
aligns with the provided ordinal preference, the allocation must
guarantee the fairness criteria under the cardinal realization.

Following the above discussion, we can define possible EFX (p-
EFX), possible MMS (p-MMS), necessary EFX (n-EFX) and necessary
MMS (n-MMS).

Since DL dominance can be expressed by additive cardinal valu-
ations, possible versions of fair notions are weaker than their DL
counterparts. Hence, we have a stronger result for possible fairness.

Theorem 2.2. For any instance with ordinal preferences, an allo-
cation that is simultaneously p-EFX, p-MMS, and balanced exists and
can be computed in polynomial time [1].

Necessary fairness, on the other hand, is much more difficult to
achieve. In fact, necessary EFX and necessary MMS do not always
exist. Given an ordinal preference profile, one can have a DL car-
dinal valuation where the best item is much better than the rest;
however, there exists another valid valuation where each item is of
similar value with minor difference. Although both are consistent
with ordinal preference, the two cardinal valuations require largely
different allocation structures to satisfy fairness, rendering it im-
possible to consistently find an allocation that satisfies the criteria
for necessary fairness.

3 INCENTIVE RATIO OF THE PROBABILISTIC
SERIAL RULE

In addition to the algorithms discussed above, ordinal preference is
also used as input to other allocation mechanisms, among which
a well-studied one is the Probabilistic Serial (PS) Rule [2]. The PS
Rule is a randomized allocation rule for indivisible items. In this
mechanism, each agent will have an ordinal ranking over of items,
and agents will try to ‘consume’ all the items. Agents have the same
consumption rate and start at the same time. We assume that each
item also has the same size. Agents will consume items according
to their ordinal preferences, and the mechanism ends after all items
are consumed. An agent’s consumed share of a certain item is
considered the probability that they can get it.

The PS Rule satisfied many desirable properties, such as envy-
freeness, proportionality, and Pareto efficiency. However, the mech-
anism is not truthful since an agent can misreport their ordinal
preference in order to gain more profit than reporting their real
preference. A benchmark to measure this ability to manipulate is
the incentive ratio [3]. The incentive ratio denotes the ratio between
the highest value one agent can gain by manipulating their reported
preference and the value they get when reporting according to their
real preference. Note that no cardinal valuations of agents are re-
quired, since the ratio accounts for the worst-case scenario among
all additive valuation functions. We have researched the incentive
ratio for the PS Rule and extended an existing result [11] to a more
general setting.

Theorem 3.1. The incentive ratio of Probabilistic Serial is at most
2 − 1

2𝑛−1 [5].

4 FUTURE DIRECTIONS
Our findings indicate that, while possible fairness is achievable,
necessary fairness presents significant challenges. It remains to be
seen whether necessary fairness can always exist in some restricted
settings or whether there are any approximations. Regarding the
incentive ratio of the PS Rule, though the incentive ratio of the case
where items are more than agents are tightly bounded, we believe
that there exists a more accurate bound when agents are no fewer
than items, which remains to be discovered.
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