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ABSTRACT
Recent years have witnessed considerable progress in model-based

reinforcement learning research. Inspired by the significant im-

provement in sample efficiency, researchers have explored its ap-

plication in multi-agent scenarios to mitigate the huge demands

in training data of multi-agent reinforcement learning (MARL)

approaches. However, existing methods retain the training frame-

work designed for single-agent settings, resulting in inadequate

promotion of multi-agent cooperation. In this work, we propose a

novel model-based MARL method called Multi-Agent Counterfac-

tual Dreamer (MACD). MACD introduces a centralized imagina-

tion with decentralized execution (CIDE) framework to generate

higher-quality pseudo data for policy learning, thus further im-

proving the algorithm’s sample efficiency. Moreover, we address

the credit assignment and non-stationary challenges by perform-

ing an additional counterfactual trajectory based on the learned

world model. We provide a theoretical proof that this counterfactual

policy update rule maximizes the multi-agent learning objective.

Empirical studies validate the superiority of our method in terms

of sample efficiency, training stability, and final cooperation perfor-

mance when compared with several state-of-the-art model-free and

model-based MARL algorithms. Ablation studies and visualization

demonstration further underscore the significance of both the CIDE

framework and the counterfactual module in our approach.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) has received a signifi-

cant amount of attention to address the multi-agent cooperation

challenge [13, 22]. Numerous algorithms have been proposed to

solve intrinsic problems of multi-agent learning, including credit

assignment [17], non-stationary training [41], and, notably, the

huge demand for training data due to the exponential growth in the

joint state-action space [6, 43]. Model-based RL has been proven to

be a powerful tool for enhancing the sample efficiency [9]. A world

model is established to serve as a digital replica of the environment,

thereby augmenting the pseudo training data through imagination

rollouts [9, 30]. However, the main efforts in this direction have

been paid on single-agent settings, making MARL lags thus far.

Attempts have been made to integrate model-based techniques

with MARL algorithms [6, 35], exemplified by the incorporation of

Dreamer V2 [10] into multi-agent cooperative scenarios. However,

these studies employ a fully decentralized world model to recon-

struct the agents’ local observation transition process, resulting in

imprecise pseudo data to describe the global system state transi-

tion. Furthermore, previous methods just utilize the world model

as a pseudo data sampler to enhance sample efficiency, without

leveraging it to address the credit assignment and non-stationary

challenges in MARL training.

To address the aforementioned challenges, lots of model-free

MARL approaches have been proposed. The credit assignment prob-

lem requires methods to allocate the global reward appropriately

according to agents’ contributions. Implicit algorithms adopt the

value factorization to allocate contributions among agents during

joint training [3, 8]. Other approaches use a counterfactual module

or Shapley theory to allocate the global rewards explicitly via state

value functions [16, 31]. However, since the value functions used to
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assign credit can only maintain accuracy around the current policy

distribution, these model-free methods fail in accurate contribu-

tion evaluation. In contrast, the world model in model-based RL

can provide an accurate prediction capability with a wider range.

Besides, since an agent needs to evaluate the impact of the other

agents’ policy changes on its own dynamics, the emergence of the

non-stationary issue undermines the training stability. Some meth-

ods treat the system as a unified agent during training to ensure a

stationary training process [22, 27]. Communication [4, 19], sequen-

tial update [15, 33], and opponent analysis [28, 44] are also used to

stabilize the training process. However, these methods still exhibit

shortcomings in training efficiency, as they require interaction with

the true environment to estimate the impacts of policy changes.

In this paper, our objective is to incorporate the model-based

techniques to address inherent challenges in MARL, including sam-

ple efficiency, credit assignment, and non-stationary challenges. To

this end, we introduceMACD, a novel model-basedMARL approach,

to provide a more stable and more efficient training framework. (1)

We propose a centralized imagination with decentralized execution

(CIDE) framework to improve the sample efficiency by producing

higher-quality pseudo data. We also incorporate techniques from

the state-of-the-art (SOTA) Dreamer V3 [11] algorithm to build

our world model. (2) We propose a model-based counterfactual

module to generate counterfactual imagination trajectories to eval-

uate an agent’s contribution. A theoretical analysis is provided to

prove that this counterfactual policy update rule maximizes the

multi-agent learning objective, addressing the credit assignment

and non-stationary challenges. (3) We compare MACD with several

SOTA model-free and model-based MARL algorithms. Empirical

results demonstrate that MACD outperforms baselines in terms

of sample efficiency, training stability, and final cooperation per-

formance. Ablation results underscore the significance of both the

CIDE framework and the counterfactual module, and the long-term

prediction demonstration visualizes the reconstruction and predic-

tion accuracy of our CIDE framework.

2 PRELIMINARIES
2.1 Problem Formulation
The cooperative multi-agent task can be considered as a partially

observable stochastic game with a team reward. It can be defined

as a tuple 𝒰 = {N , 𝛾, S,O,A,T,R}, where N is the agent set, and

𝑛 = |N | is the number of agents. 𝛾 is the discount factor, S is the
global state space, and O = {𝑂𝑖 }𝑛𝑖=1 is the joint observation space,

with 𝑂𝑖 being the observation space of agent 𝑖 . Similarly, A =

{𝐴𝑖 }𝑛𝑖=1 is the joint action space, with 𝐴𝑖 being the action space of

agent 𝑖 . T(𝑠𝑡+1 |𝑠𝑡 , 𝒂𝑡 ) is the transition function, and R is the reward

function. The system receives a team reward 𝑟𝑡+1 = R(𝑠𝑡 , 𝒂𝑡 ) based
on changes in the global state. The state value function 𝑉 𝝅 (𝑠) of
the system is defined as the discounted accumulated return under

state 𝑠 , and the Q function adds the joint action 𝒂 as a condition:

𝑉 𝝅 (𝑠) = E𝝅 [
∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 |𝑠𝑡 = 𝑠]

𝑄𝝅 (𝑠, 𝒂) = E𝝅 [
∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 |𝑠𝑡 = 𝑠, 𝒂𝑡 = 𝒂]
(1)

Besides, the advantage function 𝐴𝝅 (𝑠, 𝒂) = 𝑄𝝅 (𝑠, 𝒂) −𝑉 𝝅 (𝑠) can
evaluate the joint action 𝒂 with lower variance.

2.2 Explicit Credit Assignment Techniques
Current MARL methods with explicit credit assignment leverage

counterfactual value or Shapley theory [25] to directly allocate

team rewards according to their estimation of agents’ contributions,

thereby transforming the training process into policy updates for

each individual agent. For instance, difference rewards assert that

team rewards can be allocated using a shaped reward formula:

R(𝑠𝑡 , 𝒂𝑡 ) − R(𝑠𝑡 , {𝑑, 𝒂−𝑖,𝑡 }), where −𝑖 represents the other agents
excluding agent 𝑖 , and 𝑑 denotes a default action like a zero vector.

Similarly, COMA [7] takes this idea to marginalize agent 𝑖’s action

according to its policy to calculate a counterfactual advantage value:

𝐴COMA

𝑖 (𝑠, 𝒂) = 𝑄𝝅
𝑖 (𝑠, 𝒂) −

∑︁
𝑎′
𝑖

𝜋𝑖 (𝑎′𝑖 |ℎ𝑖 )𝑄
𝝅 (𝑠, {𝑎′𝑖 , 𝒂−𝑖 }) (2)

where ℎ𝑖 is the observation-action history of agent 𝑖 . At timestep 𝑡 ,

ℎ𝑖,𝑡 = {𝑜𝑖,0, 𝑎𝑖,0, ..., 𝑜𝑖,𝑡−1, 𝑎𝑖,𝑡−1, 𝑜𝑖,𝑡 }. Somemethods employ similar

techniques to assess agent contributions through the marginaliza-

tion of agent actions [18, 42].

Shapley value methods aim to assess individual agents’ contri-

butions by determining their marginal impact on the overall return

across all agent coalitions [31, 32]. For any agent coalition denoted

as 𝑐 ∈ N , its Q function can be expressed as the discounted cumula-

tive return, assuming that agent actions not present in the coalition

are replaced with default actions:

𝑄𝝅 (𝑠, 𝒂; 𝑐) = E𝝅 [
∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 |𝑠𝑡 = 𝑠, 𝒂 = {𝑎 𝑗 } 𝑗∈𝑐∪{𝑎ℓ = 𝑑}ℓ∈N\𝑐 ]

(3)

The advantage values calculated by the Shapley theory is calculated

as follows:

𝐴
Shapley

𝑖
(𝑠𝑡 , 𝒂𝑡 ) =

∑︁
𝑐∈N\{𝑖 }

|𝑐 |!(𝑛 − |𝑐 | − 1)!
𝑛!

SV
𝝅
𝑖 (𝑠𝑡 , 𝒂𝑡 ; 𝑐) (4)

where SV
𝝅
𝑖
(𝑠𝑡 , 𝒂𝑡 ; 𝑐) = 𝑄𝝅 (𝑠𝑡 , 𝒂𝑡 ; {𝑐, 𝑖}) − 𝑄𝝅 (𝑠𝑡 , 𝒂𝑡 ; 𝑐). Although

the Shapley value has been widely applied in the cooperative game

theory, their demand in calculating for all possible coalitions makes

it difficult to apply to complex multi-agent tasks.

2.3 Single- and Multi-Agent Dreamer
Framework

Dreamer series algorithms [9–11] are the SOTA model-based meth-

ods. They adopt the Recurrent State-Space Model (RSSM) model

to establish an efficient world model, which follows an encoder-

decoder structure.

RSSM =


Recurrent model: ℎ𝑡 = 𝑓𝜙 (ℎ𝑡−1, 𝑧𝑡−1, 𝑎𝑡−1)
Representation model: 𝑧𝑡 ∼ 𝑞𝜙 (𝑧𝑡 |ℎ𝑡 , 𝑜𝑡 )
Transition predictor: 𝑧𝑡 ∼ 𝑝𝜙 (𝑧𝑡 |ℎ𝑡 )
Observation predictor: 𝑜𝑡 ∼ 𝑝𝜙 (𝑜𝑡 |ℎ𝑡 , 𝑧𝑡 )
Reward predictor: 𝑟𝑡 ∼ 𝑝𝜙 (𝑟𝑡 |ℎ𝑡 , 𝑧𝑡 )
Discount predictor: 𝛾𝑡 ∼ 𝑝𝜙 (𝛾𝑡 |ℎ𝑡 , 𝑧𝑡 )

The fundamental idea of the RSSM is to convert the state tran-

sition within the original state space into that within the latent
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Figure 1: The framework of MA-RSSM. (a) Differences between MACD and vanilla framework. (b) Centralized imagination
worldmodel, in which the agent reconstructs the transitions on the whole system. (c) Centralized rollout within the imagination
space. The communication block aggregates inputs from all agents to generate 𝑒𝑖,𝑡 for agent 𝑖.

state space. The agent employs a recurrent model to produce the

hidden state ℎ𝑡 , taking into account the previous latent state 𝑧𝑡−1,
previous action 𝑎𝑡−1, and historical information from the previ-

ous hidden state ℎ𝑡−1. This hidden state serves as input for the

transition predictor, which generates the prior latent state 𝑧𝑡 . Addi-

tionally, the posterior latent state is derived from the representation

model, adjusting the prior latent state based on 𝑜𝑡 to correct for

deviations during interactions with the true environment. The la-

tent states are trained to reconstruct observations, rewards, and

terminal signals, thereby enhancing their representational capacity.

The agent’s policy is optimized using the pseudo data generated

through interactions with the world model.

MAMBA is the first Dreamer-style method in MARL [6]. It ex-

tends the RSSM from the single-agent setting to the multi-agent set-

ting, alongside the utilization of the Proximal Policy Optimization

(PPO) [24] algorithm for policy optimization. MAMBA introduces

a fully-decentralized world model to adapt to decision-making and

training within multi-agent environments. As shown in the vanilla

framework of Figure 1 (a), each agent maintains an individualized

local world model, enabling decentralized rollouts based on latent

states generated by these models. Although an agent can access

other agents’ information through a communication block, its world

model only replicates the transition of its local observations. This

might result in the latent states containing only local observation

information, potentially affecting algorithm performance.

3 METHOD
In this section, we introduce Multi-Agent Counterfactual Dreamer

(MACD), a novel model-based MARL algorithm by introducing a

centralized imagination with decentralized execution (CIDE) frame-

work and a model-based counterfactual module. Figure 1 (a) shows
the differences between MACD and vanilla framework. During the

world model learning phase, our CIDE framework reconstructs

global variables in a centralized manner, thereby assisting the

algorithm in generating higher-quality pseudo data to facilitate

subsequent policy learning. During the policy learning phase, the

counterfactual module addresses the credit assignment and non-

stationary problem in MARL based on the counterfactual trajectory

generated by the learned world model, improving training stability

and final cooperation performance.

3.1 Multi-Agent World Model Learning for
Centralized Imagination

We follow the Dreamer series to establish a world model to replicate

the environment into an imagination space. As shown in Figure 1

(a), the vanilla framework employed by MAMBA [6] and its modifi-

cation [35] only reconstructs the transition process of agent’s local

observations. Consequently, the agent’s latent state contains solely

local information, thereby leading to instability in the policy train-

ing process. In this section, we introduce a centralized imagination

world model to generate pseudo data of higher quality.

Multi-Agent Recurrent State-Space Model (MA-RSSM) for
Centralized Imagination. Inmulti-agent settings, an agent cannot

deduce the complete system’s state transitions solely from its own

local information. To this end, we utilize a communication block

𝑔𝜙 (·) to consolidate the local information of all agents, producing

a communication feature 𝒆𝑡 to enrich its informational content. We

present our centralized imagination world model as follows:

MA-RSSM =


Communication block: 𝒆𝑡 = 𝑔𝜙 (𝒛𝑡−1, 𝒂𝑡−1)
Recurrent model: ℎ𝑖,𝑡 = 𝑓𝜙 (ℎ𝑖,𝑡−1, 𝑒𝑖,𝑡 )
Representation model: 𝑧𝑖,𝑡 ∼ 𝑞𝜙 (𝑧𝑖,𝑡 |ℎ𝑖,𝑡 , 𝑜𝑖,𝑡 )
Transition predictor: 𝑧𝑖,𝑡 ∼ 𝑝𝜙 (𝑧𝑖,𝑡 |ℎ𝑖,𝑡 )
State predictor: 𝑠𝑡 ∼ 𝑝𝜙 (𝑠𝑡 |𝒉𝑡 , 𝒛𝑡 )
Reward predictor: 𝑟𝑡 ∼ 𝑝𝜙 (𝑟𝑡 |𝒉𝑡 , 𝒛𝑡 )
Discount predictor: 𝛾𝑡 ∼ 𝑝𝜙 (𝛾𝑡 |𝒉𝑡 , 𝒛𝑡 )

The variables’ meanings inMA-RSSM are identical to those in RSSM,

except for the addition of the subscript "𝑖" to denote the agent 𝑖 .

The MA-RSSM part of our centralized imagination world model is

the same as that of the decentralized world model. It can provide

agent-specific latent states for scalable agent decision-making.
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In contrast to the fully-decentralized world model, we aim to

reconstruct the transition on the whole system from the perspective

of all agents, thus providing centralized imagination capability for

the world model. To this end, we present the centralized predic-

tors, as shown in Figure 1 (b), to serve as decoders in the world

model, thus further improving the quality of pseudo data gener-

ated within the imagination space. We utilize system-wide states

[ℎ𝑖,𝑡 , 𝑧𝑖,𝑡 ]𝑛𝑖=1 to reconstruct the global states 𝑠𝑡 , team rewards 𝑟𝑡 ,

and continuation flags 𝛾𝑡 in a centralized manner. The continuation

flag denotes episode termination and serves as an additional dis-

count in the computation of accumulated discounted rewards. By

reconstructing these global variables, this approach guarantees that

the information embedded within the latent state space compre-

hensively supports the modeling of the system’s state transitions.

Loss function. The multi-agent world model should use the

posterior latent state generated by the representation model to re-

construct global variables while minimizing the difference between

the representation model and the transition predictor. The loss

function in Dreamer V3 is improved by emphasizing the update of

the posterior distribution. We follow the suggestion in Dreamer V3

[11] to present the final loss function as follows:

L(𝜙) = L
pred

(𝜙) + 𝛽
dyn

L
dyn

(𝜙) + 𝛽repLrep (𝜙) (5)

where 𝛽
dyn

= 0.5 and 𝛽rep = 0.1. The sub loss functions are:

L
pred

(𝜙) = − ln 𝑝𝜙 (𝑠𝑡 |𝒙𝑡 ) − ln 𝑝𝜙 (𝑟𝑡 |𝒙𝑡 ) − ln 𝑝𝜙 (𝛾𝑡 |𝒙𝑡 )
L
dyn

(𝜙) = 𝐷KL [sg(𝑞𝜙 (𝑧𝑖,𝑡 |ℎ𝑖,𝑡 , 𝑜𝑖,𝑡 )) | |𝑝𝜙 (𝑧𝑖,𝑡 |ℎ𝑖,𝑡 )]
Lrep (𝜙) = 𝐷KL [sg(𝑝𝜙 (𝑧𝑖,𝑡 |ℎ𝑖,𝑡 ) | |𝑞𝜙 (𝑧𝑖,𝑡 |ℎ𝑖,𝑡 , 𝑜𝑖,𝑡 ))]

(6)

where 𝒙𝑡 = {𝑥𝑖,𝑡 }𝑛𝑖=1 and 𝑥𝑖,𝑡 = [ℎ𝑖,𝑡 , 𝑧𝑖,𝑡 ] are the model states

for simplification, L
pred

(𝜙) is the prediction loss aimed at enhanc-

ing the accuracy of the predictors, L
dyn

(𝜙) and Lrep (𝜙) represent
the KL divergence losses designed to reduce the distance between

the prior and posterior latent state distributions. This reduction

minimizes the difference between pseudo data generated from the

imagination space and actual data obtained from the true environ-

ment. The stop gradient operator is denoted as sg(·).
Twohot symlog prediction. Given that reward prediction in-

volves scalar regression, conventional network architectures may

encounter difficulties. Following the approach of Dreamer V3 [11],

we adopt the twohot symlog module as the final output head for the

reward predictor. This module employs two 𝐷-dimensional vectors

to represent a scalar value. The first vector
®𝑏 encompasses values

within a linear space range. The second vector is derived from a

scalar 𝑦 through the following twohot encoding procedure [14]:

twohot(𝑦) 𝑗 =


| ®𝑏𝑘+1 − 𝑦 |/| ®𝑏𝑘+1 − ®𝑏𝑘 | if 𝑗 = 𝑘

| ®𝑏𝑘 − 𝑦 |/| ®𝑏𝑘+1 − ®𝑏𝑘 | if 𝑗 = 𝑘 + 1

0 else

(7)

where 𝑘 is the index where 𝑦 locates in vector 𝑏, the subscripts

denote the index of vectors. Conversely, given a vector ®ℓ , a scalar
can be computed by symexp( ®ℓ𝑇 · ®𝑏). In the world model learning,

the ground-truth reward is firstly transformed by symlog(·) func-
tion to shrink its value range and then encoded as a vector via

twohot(symlog(𝑟𝑡 )). Hence, the probability likelihood in Eq. (5)

can be calculated using the reward predictor’s output vector.
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Figure 2: The counterfactual advantage module employed to
assess the agent’s contribution to the multi-agent system.

Network structure. We utilize the Transformer architecture

[29] for the communication block and centralized predictors, while

incorporating the GRU cell [5] to implement the recurrent nature

to the MA-RSSM. We also follow the suggestion of Dreamer V3 to

use SiLU [1] as the activation function of networks and add layer

normalization between each two layers.

3.2 Counterfactual Credit Assignment for
Policy Learning

In this work, we use the agent-wise model states 𝑎𝑖,𝑡 ∼ 𝜋𝑖 (·|𝑥𝑖,𝑡 )
to make decisions for each agent to implement the decentralized
execution. We utilize the learned world model to train agent policies

in the policy learning phase. As denoted in Figure 1 (c), the world

model is used as a data sampler to generate pseudo data for MARL

training. The start points of one rollout should use the observation

𝒐𝑡 from true environments to generate posterior latent states. Then,

the transition predictor is used to generate pseudo data recurrently

without accessing the true environment. The rewards and continu-

ation flags are predicted via joint model states 𝒙𝑡 in a centralized

manner. These pseudo data are used to optimize the policies.

In the critic learning phase, since the centralized imagination

leads to the same state value estimation for all agents, we use the

joint model states to estimate the state value, leading to the critic

network𝑉 (𝒙𝑡 ;𝜓 ). The critic also uses the twohot symlog module as

the final output head, leading to the following critic loss function:

Lcritic (𝜓 ) = −E𝑡 [ln𝑉 (𝐺𝑡 |𝒙𝑡 ;𝜓 )] (8)

where 𝐺𝑡 =
∑𝐻−1
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 + 𝛾𝐻𝑉 (𝒙𝑡+𝐻 ) is the discounted accu-

mulated reward calculated by the pseudo data,𝐻 is the imagination

horizon, and𝜓 is the parameter of the critic.

In the actor learning phase, we utilize the worldmodel to perform

an additional counterfactual trajectory in the imagination space to

evaluate agents’ contributions. Figure 2 shows the proposed model-

based counterfactual module built upon the world model to address

credit assignment. It evaluates the contribution of agent 𝑖 under

(𝒙𝑡 , 𝒂𝑡 ) via the following counterfactual advantage 𝐴MACD

𝑖,𝑡
:

𝐴MACD

𝑖,𝑡 = 𝑄̂𝝅 (𝒙𝑡 , 𝒂𝑡 ;𝐻𝑐 ) − 𝑄̂𝝅 (𝒙𝑡 , {𝑑, 𝒂−𝑖,𝑡 };𝐻𝑐 )

𝑄̂𝝅 (𝒙𝑡 , 𝒂𝑡 ;𝐻𝑐 ) =
𝐻𝑐−1∑︁
𝑘=0

𝛾𝑘𝑟 ′
𝑡+𝑘+1 + 𝛾

𝐻𝑐𝑉 𝝅 (𝒙′𝑡+𝐻𝑐
)

(9)

where 𝑄̂𝝅 (𝒙𝑡 , 𝒂𝑡 ;𝐻𝑐 ), 𝑟 ′𝑡 , and 𝒙′𝑡 are the estimated Q values, pre-

dicted rewards, and model states via an additional rollout. This

rollout starts from 𝒙𝑡 , and the first action executed in the imagina-

tion space is 𝒂𝑡 . Then, the transition predictor is used to generate

pseudo data recurrently by executing joint policy 𝝅 for 𝐻𝑐 steps,
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meaning that the actions of all agents are generated by the joint

policy 𝝅 within the counterfactual rollout. The calculation process

of 𝑄̂𝝅 (𝒙𝑡 , {𝑑, 𝒂−𝑖,𝑡 };𝐻𝑐 ) is similar, except that the starting action

for agent 𝑖 is the default action 𝑑 , which in practice is usually set

to zero. By masking an agent’s action and assessing the resulting

impact on the discounted accumulated reward, the counterfactual

module evaluates agent 𝑖’s contribution for credit assignment. In

contrast to model-free explicit MARL methods [7, 39], we employ a

worldmodel derived from supervised training to eliminate problems

like overestimation in the state value function, thereby providing

more accurate allocations. Besides, this counterfactual advantage

is always estimated using up-to-date joint policies, eliminating the

necessity for the algorithm to account for changes in other agents’

policies, thereby mitigating non-stationary issues in MARL.

Next, we present a theoretical analysis to illustrate that the

counterfactual advantage can be used to optimize global returns.

Without compromising the validity of our conclusions, we use

𝝅 (𝒂 |𝑠) = 𝝅 (𝒂 |𝒙 (𝑠)) = Π𝑛
𝑖=1

𝜋𝑖 (𝑎𝑖 |𝑥𝑖 ) to denote the joint policy, as

the mapping from 𝑠 to 𝒙 is injective. Hence, the expected return of

the multi-agent system can be expressed as follows:

𝜂 (𝝅) = E𝑠0,𝒂0,...

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
(10)

where 𝑠0 ∼ 𝑝0 (𝑠), 𝒂𝑡 ∼ 𝝅 (𝒂𝑡 |𝑠𝑡 ), 𝑠𝑡+1 ∼ T(𝑠𝑡+1 |𝑠𝑡 , 𝒂𝑡 ), meaning

that the data is sampled according to the policy 𝝅 .

Theorem 3.1. For agent 𝑖 in a multi-agent system, if its policy 𝜋̃𝑖
is obtained via improving the following objective, the optimization
target in Eq. (10) can be improved:

𝑀′
𝝅 (𝝅̃) = 𝜂 (𝝅) +

∑︁
𝑠

𝑝𝝅 (𝑠)
∑︁
𝒂

𝝅̃ (𝒂 |𝑠)𝐴MACD

𝑖 −𝐶 · 𝐷max

KL
(𝜋̃𝑖 , 𝜋𝑖 )

(11)

where 𝐴MACD

𝑖
= 𝑄𝝅 (𝑠, {𝑎𝑖 , 𝒂−𝑖 }) − 𝑄𝝅 (𝑠, {𝑑, 𝒂−𝑖 }) is the counter-

factual advantage, 𝑑 is the default action, 𝝅 is the current joint policy,
𝝅̃ (𝒂 |𝑠) = 𝝅̃ (𝒂 |𝒙 (𝑠)) = 𝜋̃𝑖 (𝑎𝑖 |𝑥𝑖 )𝝅−𝑖 (𝒂−𝑖 |𝒙−𝑖 ) is the updated policy.

The proof of this theorem can be found in Appendix A. This theo-

rem indicates that agent policies can be improved by optimizing the

counterfactual advantage. However, in practice, the loss function in

Eq. (11) is hard to be implemented. Therefore, we employ the Prox-

imal Policy Optimization (PPO) [24] algorithm to optimize agent

policies in the policy learning phase. Furthermore, implementing

sequential policy updates for agents entails substantial compu-

tational complexity, so we choose to update all agents’ policies

synchronously as an approximation of the theorem’s conclusion.

We train the actor by improving the following function:

LMACD

actor
(𝜃 ) = E𝑡

[ 𝑛∑︁
𝑖=1

min(𝜌𝑖,𝑡𝐴MACD

𝑖,𝑡 ,

clip(𝜌𝑖,𝑡 , 1 − 𝜖, 1 + 𝜖)𝐴MACD

𝑖,𝑡 )
] (12)

where 𝜃 is the joint policy’s parameter, 𝜖 is the clip coefficient,

𝜌𝑖,𝑡 = 𝜋𝑖 (𝑎𝑖,𝑡 |𝒙𝑖,𝑡 ;𝜃 )/𝜋𝑖 (𝑎𝑖,𝑡 |𝒙𝑖,𝑡 ;𝜃old) is the probability ratio that

measures the difference between 𝜋𝑖 (𝜃 ) and 𝜋𝑖 (𝜃old). In the vanilla

PPO algorithm for multi-agent settings [37], the importance sam-

pling ratio should be Π𝑛
𝑖=1

𝜌𝑖,𝑡 due to state values derived from

old joint policies. However, our computation of counterfactual ad-

vantage values always uses up-to-date joint policies, mitigating

Algorithm 1: MACD Algorithm

1 Initialize the parameters 𝜙 , 𝜃 ,𝜓 , and a replay buffer Menv;

2 for episode ℓ = 1, 2, 3, ... do
3 # Interacting with the True Environment

4 Interact for an episode and store true data into Menv;

5 # Model Learning Phase

6 for model epoch = 1, 2, 3, ... do
7 Sample transition sequence from Menv;

8 Use world model to generate posterior latent states;

9 Update 𝜙 by minimizing L(𝜙);
10 end
11 # Policy Learning Phase

12 for imagination epoch = 1, 2, 3, ... do
13 Sample transition sequence from Menv;

14 Use world model to generate posterior latent states;

15 Perform imagination rollout for pseudo interaction;

16 for PPO epoch = 1, 2, 3, ... do
17 Perform counterfactual rollout for 𝐴MACD

𝑖,𝑡
;

18 Update 𝜃 by maximizing LMACD

actor
(𝜃 ) ;

19 Update𝜓 by minimizing Lcritic (𝜓 );
20 end
21 end
22 end

non-stationarity by omitting the importance sampling term and

thus stabilizing policy learning.

3.3 Overall Training Algorithm
The overall algorithm is built upon our CIDE framework, which

combines the centralized imagination of the world model and the

decentralized decision-making of the actor. As detailed in Algo-

rithm 1, we conduct model and policy learning after the end of each

episode. In the model learning phase, we sample some state transi-

tion sequences fromMenv to generate posterior latent states, which

are subsequently utilized as inputs for the centralized predictors to

jointly reconstruct global variables. In the policy learning phase,

posterior latent states are also generated based on samples from

Menv, serving as starting points for imagination rollouts. In the

rollout process, the rewards and continuation flags are predicted in

a centralized manner, and the actions are generated by the actors

in a decentralized manner. This process generates a large amount

of pseudo data used for policy training. It is worth noting that

each policy update leverages counterfactual imaginations gener-

ated based on the up-to-date policies, aiming to promptly rectify

the impact of changes in other agents’ policies on agent 𝑖 , thereby

mitigating the non-stationary problem.

4 EXPERIMENTS
In this section, we conduct an empirical study ofMACDon StarCraft

Multi-Agent Challenge (SMAC) [23] and the multi-agent version

of Mujoco (MA-Mujoco) [20]. Our evaluation involves compar-

isons between our approach and advanced model-free and model-

based MARL algorithms. The empirical findings demonstrate the
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Figure 3: Comparisons against SOTA model-free and model-based baselines on MA-Mujoco. Solid curves represent the mean of
runs over 5 different random seeds, and shaded regions correspond to the confidence intervals. The evaluation metric is the
average return of one episode, and MACD achieves the SOTA performance among all experimental methods.

Table 1: Mean and Std of the Winning Rates in SMAC

Map Steps MACD MAG MAMBA MAPPO QMIX HASAC

2s3z 50k 80(15) 65(15) 60(9) 3(1) 24(4) 2(1)

3s_vs_4z 100k 73(16) 64(10) 34(8) 0(0) 0(0) 0(0)

MMM 100k 83(11) 25(5) 48(11) 2(1) 4(3) 0(0)

3s5z 200k 60(14) 15(4) 17(5) 17(5) 0(0) 0(0)

3s_vs_5z 200k 57(12) 17(11) 9(7) 0(0) 0(0) 0(0)

5m_vs_6m 200k 48(19) 47(12) 24(10) 0(0) 0(0) 0(0)

enhanced sample efficiency, training stability, and final cooperation

performance achieved by our method. Additionally, we undertake

a series of ablation experiments to substantiate the effectiveness of

our CIDE framework and counterfactual advantage module.

4.1 Comparative Evaluation
Baselines. We conduct a comparative analysis ofMACDwith SOTA

model-based MARL methods: MAMBA [6] and MAG [35]. MAMBA

is notable as the first MARL algorithm that leverages the Dreamer

framework, while MAG builds upon MAMBA’s foundation by in-

corporating considerations of multi-step model rollout errors. We

compare our approach with advanced model-free MARL methods,

specifically MAPPO [37], HATD3 [41], and MAT [33] for continu-

ous action spaces in MA-Mujoco experiments, and MAPPO, QMIX

[22], and HASAC [41] for discrete action spaces in SMAC. The codes

of these algorithms are all open-source, and the hyper-parameters

are all optimized separately to attain their optimal performance.

Environment. We conduct experiments on SMAC andMA-Mujoco

environments. SMAC is a cooperative multi-agent benchmark with

discrete actions, involving two teams engaged in combat. One team

is controlled by a game bot, while the other is managed by MARL

algorithms. In contrast, MA-Mujoco is a widely-used cooperative

multi-agent benchmark with continuous action space, where each

scenario involves a robot with multiple joints organized into prede-

fined groups and controlled by different agents. Agents are limited

to observing the states of their assigned joints and can take actions

to adjust their angles. Both environments share global rewards

reflecting overall system performance. MA-Mujoco aims for higher

robot speed with smaller action amplitudes, while SMAC pursues

victory in combat. Details can be found in Appendix B.

Results. Table 1 displays SMAC results, indicating average win-

ning rates and standard deviations (std) derived from five repeated

experiments. MACD outperforms comparative methods within the

given training timesteps. Figure 3 presents the learning curves of

MA-Mujoco experiments, with each curve being the result of av-

eraging five repeated experiments. HATD3 exhibits satisfactory

performance on 4-agent Ant but fails in other scenarios. Con-

versely, model-based methods exhibit superior performance across

a broader range of scenarios due to the presence of world models,

overcoming limitations encountered by model-free methods related

to exploration and other factors.

The shadows in theMAG andMAMBA’s curves reveal their train-

ing instability due to the fully-decentralized world model, leading to

insufficient global information for effective agent decision-making.

Consequently, these algorithms sometimes fail to stabilize their

training process, resulting in average returns even below -100000

in some trials. In contrast to all baseline methods, MACD demon-

strates significantly superior sample efficiency and cooperation

performance, while also maintaining the best stability through-

out the experiments. Its utilization of the CIDE-based framework

reduces true-world interactions and enhances training stability

through the centralized imagination paradigm. The incorporation

of the counterfactual module offers an enhanced approach to assign

global rewards and address non-stationary challenges, ultimately

leading to more efficient learning targets for the actors.

4.2 Ablation Studies
In this section, we conduct several ablation experiments to inves-

tigate the effect of our CIDE framework and the counterfactual

module. Figure 4 shows the ablation experiment results on the

2-Agent HalfCheetah scenario of MA-Mujoco.

Counterfactual Advantage. We devise three ablation methods to

underscore the significance of our counterfactual module. Specifi-

cally, MACD-RMCO entails the removal of the counterfactual mod-

ule, aligning it with the conventional PPO advantage computation.
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Figure 5: Prediction error analysis. (a) The long-term prediction demonstration on 2-Agent HalfCheetah. The first three images
derive from real-world interaction data, while the following images stem from imagination rollout. All trajectories share
identical action sequences and start from the same initial states and random seeds. (b) Imagination horizon’s impact on
prediction errors for robot global state with MACD-CIDE and MACD-DIDE methods.
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Figure 4: Ablation results of the CIDE framework and the
counterfactual advantage module.

MACD-COMA and MACD-Shapley substitute our counterfactual

module with other credit assignment methodologies, as detailed in

Eq. (2) and Eq. (4), respectively. Experimental results show that the

performance of MACD-Shapley is inferior to that of MACD, which

could be attributed to the fact that designating the agent’s action as

the default action is not entirely equivalent to the agent exiting the

game, thus failing to fulfill the conditions for the original Shapley

theory, resulting in ineffective credit assignment. MACD-COMA’s

underperformance may be attributed to its inefficient marginal op-

eration. Furthermore, MACD-RMCO exhibits inferior performance

compared with MACD but surpasses MAMBA due to the presence

of CIDE, which enhances the efficiency of the world model.

CIDE Framework. We remove the proposed CIDE framework and

refer this method to MACD-DIDE (decentralized imagination with

decentralized execution). Specifically, this method entails convert-

ing the global state predictor into local observation predictors. The

world model of MACD-DIDE reconstructs local observations from

each agent’s perspective, which diminishes the representational

capacity of latent states and subsequently diminishes the system’s

decision-making performance. This is evident in the curves pre-

sented in Figure 4. We also investigate the changes in global state

prediction errors of CIDE and DIDE world models as the imagina-

tion horizon increases. Figure 5 (b) demonstrates that increasing

the horizon results in a corresponding increase in prediction error,

while CIDE exhibits significantly lower errors compared with DIDE.

The mean and error bars are calculated from 256 random episodes.

To further demonstrate the superiority of our CIDE framework,

we utilize Figure 5 to visually depict the state sequence in the 2-

Agent HalfCheetah scenario. The first line in Figure 5 represents

ground-truth robot states, and the second and third lines represent

robot states reconstructed by CIDE-based and DIDE-based MACD,

respectively. We divide a single episode into two distinct stages. The

first stage spans timesteps 0 to 14, during which the agents interact

with the true environment. During this stage, the agents can utilize

observations to generate posterior latent state 𝒛𝑡 using the repre-
sentation model for robot state reconstruction, as indicated by blue

boxes in Figure 5. As depicted, both the CIDE and DIDE frameworks

effectively predict the global state. The second stage encompasses

timestep 15 to 50, where the agents utilize the transition predictor

of the learned world model to conduct imagination rollouts. During

this stage, the agents employ imagined latent states 𝒛̂𝑡 for robot
state prediction, as red boxes indicate. The trajectories derived from

both the CIDE and DIDE method use identical action sequences,

acquired from true environmental decisions. Figure 5 indicates that

the CIDE-based method excels in achieving higher performance for

long-term predictions, while the DIDE-based framework maintains

accuracy only up to ten timesteps. These findings underscore the

superior global state reconstruction and prediction capabilities of

our CIDE framework, supporting pseudo data of higher quality.

Counterfactual Horizon. To further investigate the impact of

our counterfactual module, we conduct an ablation experiment by

varying the counterfactual rollout horizon 𝐻𝑐 . A horizon of zero

entails estimating the counterfactual advantage solely through the

critic network, akin to COMA, whose performance is greatly influ-

enced by its critic networks. Increasing the horizon appropriately

enhances the accuracy of value estimations, as reward predictions

are obtained through supervised learning, thereby providing greater

precision. Figure 6 illustrates that as the horizon increases from

0 to 8, the algorithm’s average return improves. However, further

increasing the horizon leads to a decline in performance due to ac-

cumulating errors in the world model, which affects the accuracy of
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Figure 6: Counterfactual horizon’s impact on the average
return and the training time.

counterfactual advantage estimation. We normalize the consumed

hours relative to the maximum value in the red curve of Figure 6.

The results indicate that when the horizon is set to 20, the required

training time for the same timesteps is five times longer than when

the horizon is 1. Considering both performance and time complex-

ity, the algorithm’s optimal performance occurs at a horizon of 8.

However, compared with other algorithms, superior performance

is still achieved with a horizon greater than 1.

5 RELATEDWORKS
Inspired by the progress made bymodel-based RLmethods in single-

agent settings, recent works attempt to apply model-based RL tech-

niques to MARL training. AORPO [40] employs a decentralized

environment model and opponent models to improve sample effi-

ciency via adaptive opponent-wise rollouts. MAMBPO [34] formu-

lates a model-based MARL approach, exhibiting superior sample

efficiency in multi-robot tasks. MBOM [38] considers the improve-

ment of the opponent policies and uses the environment model

to obtain the best response. Besides, CPS [2] employs a coordina-

tion graph to identify the state-action pairs in the most urgent

need of updating, effectively addressing the cooperation challenges

in large-scale and discrete environments. MDBS [36] introduces

model-based shields to monitor and rectify unsafe behaviors in

MARL agents. These works adopt a naive framework for their

world models, leading to the low efficiency of the rollout in the

imagination space. MAMBA extends Dreamer from the single-agent

setting to the multi-agent setting [6]. Leveraging Dreamer’s long-

term prediction capabilities in policy training, MAMBA achieves

superior sample efficiency compared to model-free MARL methods.

MAG [35] extends MAMBA by treating model rollout as a multi-

step decision-making process, mitigating the cumulative errors in

pseudo data. However, their fully-decentralized MA-RSSM leads

to imprecise prediction of the global state transition of the whole

system. In contrast, MACD incorporates the CIDE framework to

tackle this issue, resulting in an improvement in pseudo data qual-

ity. Moreover, these methods have not fully leveraged the potential

of world models in addressing fundamental challenges in MARL

training, including the non-stationary and credit assignment issues.

Some MARL methods try to address the credit assignment prob-

lem by allocating the contribution for each agent. QMIX [22] and

its modifications [8, 21, 26] adopt a joint value function to guide

the update of agent policies for implicit credit assignment. Explicit

methods try to use the impact of agent actions on global rewards to

evaluate the contribution of agents to the whole system. COMA [7]

is a model-free MARL method that adopts the joint value function

to marginalize agent actions, thus evaluating its contribution via the

counterfactual advantage. SQDDPG [32] uses the ShapleyQ value as

the critic in the deep deterministic policy gradient algorithm to dis-

tribute the global reward. SHAQ [31] derives the Shapley-Bellman

operation to further fill the gap in SQDDPG on theoretical guaran-

tees of convergence. DAE [17] establishes a model-based reward

predictor and reshapes the global reward into a potential-based

difference reward. The theoretical and empirical results show its

performance in credit assignment. Han et. al [12] present a one-step
world model to compute the Shapley advantage for each agent to

guide the update of decentralized policies. However, these methods

rely on state value functions, which inaccurately estimate values

beyond the current policy distribution, leading to imprecise contri-

bution allocation. In contrast, MACD employs a supervise-learned

world model to establish a model-based counterfactual module for

more efficient and precise contribution evaluation.

6 CONCLUSION
This study introduces MACD, a novel model-based MARL approach

addressing sample efficiency, credit assignment, and non-stationary

challenges via world models. We present a centralized imagina-

tion with decentralized execution (CIDE) framework to extend the

multi-agent version of RSSM. The centralized predictors within

this framework contribute to the reconstruction of the overall sys-

tem’s state transition process, thereby improving the generation of

higher-quality pseudo data and, consequently, enhancing sample

efficiency. Furthermore, to address the credit assignment and non-

stationary challenges, MACD employs a counterfactual module to

evaluate an agent’s contribution to the whole system. This module

replaces an agent’s actions with default actions and calculates their

impact on global rewards through an additional counterfactual

trajectory. A theoretical analysis is established to prove that this

counterfactual policy update rule maximizes the multi-agent learn-

ing objective. Comparative evaluations between MACD and SOTA

model-free and model-based methods demonstrate MACD’s ability

to consistently achieve optimal sample efficiency and cooperation

performance across multiple scenarios. MACD also obtains themost

stable training performance compared with MAMBA and MAG on

MA-Mujoco experiments. We validate the efficacy of our proposed

CIDE framework and counterfactual module through exhaustive

ablation studies and visualization demonstration. Furthermore, we

analyze the influence of the counterfactual horizon on the method’s

performance. In future work, we intend to harness MACD’s precise

prediction capabilities to address real-world challenges.
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