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ABSTRACT
We present an expanded version of our tool STV for model checking
of strategic abilities. The new version adds support for knowledge
and uncertainty operators, thus enabling the verification of proper-
ties such as privacy, anonymity, and strategic information flow. All
of that is available through a web interface, with no need to install
or configure the software by the user.
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1 INTRODUCTION
Model checking of multi-agent systems allows for formal verifi-
cation of their relevant properties. An important group of such
properties concerns the ability of agents to achieve (or prevent)
a given state of affairs [2, 5, 18, 20]. This is often combined with
requirements regarding the agents’ knowledge or uncertainty. For
example, one can address the ability of a voter 𝑣 to eventually
know whether her vote has been registered correctly for candidate
𝑗 (voter-verifiability), or to maintain the coercer’s uncertainty about
the value of the vote (vote privacy). The former requirement can be
specified in the epistemic extension of alternating-time temporal
logic ATLK [12, 22] by the formula ⟨⟨𝑣⟩⟩F(𝐾𝑣vote𝑣,𝑗 ∨ 𝐾𝑣¬vote𝑣,𝑗 ).
The latter is captured in ATLH by ⟨⟨𝑣⟩⟩G𝐻 ≥𝑘

𝑐 (vote𝑣,1, . . . , vote𝑣,𝑛),
where 𝐻 is the uncertainty modality proposed recently in [21], 𝑛 is
the number of candidates in the election, and 𝑘 says how many bits
of uncertainty we want on the side of the coercer. Here, we propose
a new extension of our experimental tool STV [13, 15], that allows
to verify such specifications for models of asynchronous MAS.
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Related work. A number of model checkers for agent logics have
been proposed over the last 25 years. Of those, MCK [9] addresses
only epistemic properties; Mocha [1], the PRISM family [6], STV [13,
15], and most Strategy Logic extensions of MCMAS [4] admit only
strategic-temporal operators. MCMAS [16] and MCMAS-SLK [3]
allow for strategic and epistemic modalities, but concentrate on
perfect information strategies. Our new proposal, STV+KH, com-
bines verification of memoryless imperfect information strategies
with specifications of agents’ knowledge. Even more importantly, it
allows for the analysis of how agents can influence the information
flow and the quantitative uncertainty in the system.
Application domain. STV+KH addresses formal verification of
MAS, which is a nontrivial problem [7]. Anonymity, privacy, and
effective information exchange are essential requirements for many
systems. STV+KH offers a user-friendly environment for the anal-
ysis of such requirements, including a GUI and a flexible model
specification language. Moreover, STV+KH has a strong pedagog-
ical valor, as it can be used for an intuitive introduction to the
complicated subject of strategic reasoning and model checking of
strategic logics. The previous versions of STV have already been
used in tutorials and graduate courses at IJCAI, PRIMA, and ESSAI.

2 FORMAL BACKGROUND
Modules. The main part of the input is given by a set of asyn-
chronous modules [11, 17], where local states are labelled with
valuations of state variables. The transitions are valuations of input
variables controlled by the other modules. The global model of the
MAS is defined by the asynchronous product of its modules.
Strategies. A strategy is a conditional plan that specifies what the
agent(s) are going to do in every possible situation [2, 20]. Here,
we consider the case of imperfect information memoryless strategies,
represented by functions from the agent’s local states to its available
actions. The outcome of a strategy from state 𝑞 consists of all the
infinite paths starting from 𝑞 and consistent with the strategy.
Logic. Given a model 𝑀 and a state 𝑞 in the model, the formula
⟨⟨𝐴⟩⟩𝜑 holds in 𝑀,𝑞 iff there exists a strategy for agents 𝐴 that
makes 𝜑 true on all the outcome paths starting from any state
indistinguishable from 𝑞 [2, 20]. Moreover, 𝐾𝑎𝜑 holds in 𝑀,𝑞 iff 𝜑
is true in every state 𝑞′ indistinguishable from 𝑞 for 𝑎 [8]. Finally,
𝐻 ≤𝑟
𝑎 (𝜑1, . . . , 𝜑𝑛) holds iff the number of possible valuations for

(𝜑1, . . . , 𝜑𝑛) in 𝑎’s indistinguishability class can be represented on 𝑟
bits. I.e., the Hartley measure of uncertainty for 𝑎 is at most 𝑟 [21].
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Figure 1: Simple voting model with 1 voter and 2 candidates.

Example scenario. As a working example, we use the Asynchro-
nous Simple Voting scenario [10]. The model consists of 𝑘 voters
and a single coercer. Figure 1 presents the global model with one
voter. There are several propositional variables in the model: vote𝑖, 𝑗 :
whether the voter 𝑖 has voted for the candidate 𝑗 ; pun𝑖 : whether
the voter 𝑖 was punished or not; finish𝑖 : whether the voter 𝑖 has
finished the voting process and her interactions with the coercer.
The voter first casts her vote, then decides whether to share its
value with the coercer. Finally, she waits for the coercer’s decision
to punish her or to refrain from punishment. The coercer has two
available actions per voter: to punish (or not) the voter.

3 TECHNOLOGY AND USAGE
STV+KH does explicit-state model checking. That is, the global
states and transitions of the model are represented explicitly in the
memory of the verification process. The user can load and parse
the input specification from a text file that defines the modules,
i.e., local automata representing the agents. The generated models
and the verification results are visualised in an intuitive web-based
graphical interface. The verification algorithms are implemented
in C++, and the GUI in Typescript, using the Angular framework.

The tool is available at stv.cs-htiew.com. The video demonstra-
tion of the tool is available at youtu.be/yDuK_Vsr8sQ. Example
specifications can be found at stv-docs.cs-htiew.com. The current
version of STV+KH allows to: generate and display the composi-
tion of a set of modules into the model of a multi-agent system;
provide local specifications for modules, and compute the global
specification as their conjunction; verify an ATLK and/or ATLH
reachability or safety formula with knowledge and/or uncertainty
operators (nested strategic operators are not allowed); display the
verification result including the relevant truth values.

4 EXPERIMENTAL EVALUATION
We evaluate the performance of the new operators on two bench-
marks: the Simple Voting example from Section 2, and the much
more sophisticated family of models for the voting protocol Se-
lene [14, 19]. All times are given in seconds. The timeout was set to

#V States Time Result
1 15 0.005 False
2 133 0.008 False
3 1071 0.097 False
4 8461 1.559 False
5 66855 52.493 False
6 timeout

Table 1: Results for Simple Voting: 2 candidates, formula 𝜙1
#V States 𝜙1 𝜙2 𝜙3

Time Res. Time Res. Time Res.
1 1267 0.1 False 0.1 True 0.1 False
2 38530 2.5 False 2.7 True 2.6 False
3 2195950 180.7 False 200.4 True 184.3 False
4 timeout

Table 2: Results for Selene with 3 candidates
3ℎ. The test platform was a server with ninety-six 2.40 GHz Intel
Xeon Platinum 8260 CPUs, 991 GB RAM, and 64-bit Linux.
Simple Voting. For Simple Voting, we used the ATLK formula:

𝜙1 ≡ ⟨⟨𝑐⟩⟩G((finish ∧ vote𝑖, 𝑗 ) → 𝐾𝑐vote𝑖, 𝑗 )
Thus, 𝜙1 expresses the undesirable property of strategic anonymity
breach, saying that the coercer can ensure that the coercer knows
the value of 𝑖’s vote whenever the election comes to an end and
voter 𝑖 has voted for candidate 𝑗 . We use 𝑖 = 𝑗 = 1 in all experiments.
The experimental results are shown in Table 1. STV+KH was able
to verify up to 6 agents (5 voters and 1 coercer). The formula was
false in all instances, i.e., no anonymity breach was found.
Selene. For Selene, we first verified 𝜙1, showing that the coercer
cannot gain exact knowledge about the voter’s vote also in that case
(see the results in Table 2). Then, we verified the ATLH formulas

𝜙2 ≡ ⟨⟨𝑐⟩⟩G(finish → 𝐻 ≤2
𝑐 (vote𝑖,1, vote𝑖,2, . . . , vote𝑖,𝑛)),

which turned to be true in all instances, and
𝜙3 ≡ ⟨⟨𝑐⟩⟩G(finish → 𝐻 ≤1

𝑐 (vote𝑖,1, vote𝑖,2, . . . , vote𝑖,𝑛)),
whichwas always false. Thus, the coercer can reduce his uncertainty
about the voter’s vote to at most 2 bits, but not further down to 1
bit. Throughout the experiments, we used 𝑖 = 1 and 𝑛 = 3. We were
able to verify up to 4 agents (3 voters and 1 coercer).

5 CONCLUSIONS
We present STV+KH: a substantial extension of the STV model
checker, augmented with modalities for agents’ knowledge and
quantitative uncertainty. The experiments show that the verifi-
cation of anonymity-related properties using STV+KH performs
similarly to model checking “vanilla” strategic properties, reported
in [13–15]. Thus, we gain significant expressivity with little price
in terms of complexity and performance.
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