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ABSTRACT
We present SMT4SMTL - the first tool for deciding the bounded
satisfiability of Metric Temporal Logic (MTL) and the existential
fragment of Strategic Metric Temporal Logic (SMTL), interpreted
over timed multi-agent systems represented by networks of timed
automata. The tool combines Satisfiability Modulo Theories (SMT)
techniques and Parametric Bounded Model Checking algorithms.
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1 INTRODUCTION AND CHALLENGES
The paper presents the tool SMT4SMTL for solving the bounded
satisfiability problem for the existential fragment of Strategic Metric
Temporal Logic (SMTL) [21] andMTL [6, 24]. This is a problem to de-
cide whether an SMTL formula is satisfiable on a timed multi-agent
system under some initial restrictions. SMT4SMTL implements a
new method of SAT checking [21], which combines Satisfiability
Modulo Theories (SMT) techniques and Parametric Bounded Model
Checking algorithms. The bounded approach can be used only for
the existential fragment of SMTL. Our method consists in synthe-
sising a model as the product of agents represented by a Parametric
Network of Timed Automata (PNTA), for an SMTL formula express-
ing the property. Parameters are used in guards, invariants, and
to specify transitions and actions. Given an additional knowledge
about the system’s structure, some parameters can be replaced with
fixed values. We encode the SMTL formula and the runs of PNTA
unfolded to a depth 𝑘 , as an SMT problem instance, which is then
checked for satisfiability by an SMT-solver. If the answer is SAT,
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all parameter values from a model are returned by the SMT-solver.
Otherwise, the unfolding depth is increased.

The main challenge in solving the SAT problem of MTL and
SMTL is its high complexity. The SAT problem for MTL, so for
SMTL, is undecidable. In order to regain decidability ofMTL, cer-
tain semantic and syntactic restrictions are introduced [36]. Seman-
tic restrictions include adopting an integer-time model [6, 14, 16] or
a bounded-variation dense-time model [42] for which SAT is decid-
able. Syntactic restrictions concern: punctuality or non-singularity
[5], boundedness and safety [9, 34, 35]. Then, the SAT problem
becomes decidable and is EXPSPACE-complete. To the best of our
knowledge, SMT4SMTL is the only tool solving the SAT problem
for SMTL. However, there are tools for solving the SAT problem
for untimed strategic temporal logics [19, 20, 33].

2 APPLICATION DOMAIN
In recent years, significant efforts have been dedicated to verifying
strategic properties in Multi-Agent Systems (MAS) [2, 17, 18, 22,
23, 37, 41] expressed using formalisms such as Alternating-time
Temporal Logic ATL and ATL★ [7], as well as its generalization
Strategy Logic (SL) [31], also with several restrictions [1, 8, 28–30],
This research is supported by the tools like MOCHA [3], MCMAS
[27], STV [25, 26], or MCMAS-SLK [10–12]. The primary emphasis
lies on strategy synthesis, closely intertwined with model checking
[11, 12]. Model synthesis, in turn, involves the automatic construc-
tion of a model for a given formula, thereby verifying the existence
of such a model. SMTL finds application in specifying strategy-
oriented behavior and troubleshooting in real-time systems, which
are often complex and challenging to design, implement, and test,
requiring specialized skills and expertise. These systems are engi-
neered for real-time operation, demanding guaranteed responses
within specified periods or meeting particular deadlines [38, 39].
For instance, controllers in airplanes, cars, or industrial plants are
expected to complete tasks within reliable time constraints [43]. Ad-
ditional potential applications encompass real-time communication
and real-time strategy games.

3 THEORETICAL BACKGROUND
Strategic Metric Temporal Logic (SMTL) [21] extends Metric Tem-
poral Logic (MTL) by strategy operators ⟨⟨A⟩⟩∃ and ⟨⟨A⟩⟩∀ (preced-
ing MTL formulae) for specifying existential and universal (resp.)
strategic properties. Let 𝑝 ∈ AP be an atomic proposition, Id be
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a set agents, and J the set of all the intervals in R+ of the form
[𝑎, 𝑎], (𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏], [𝑎, 𝑏], (𝑎,∞), or [𝑎,∞), where 𝑎, 𝑏 ∈ N
and 𝑎 < 𝑏, and let I ∈ J . The syntax of SMTL (MTL) is defined by
the formulae 𝜙 (𝜓 , resp.) as follows:
𝜙 := 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ⟨⟨A⟩⟩∃𝜓 | ⟨⟨A⟩⟩∀𝜓,
𝜓 := 𝑝 | ¬𝑝 | 𝜓 ∧𝜓 | 𝜓 ∨𝜓 | 𝜓UI𝜓 | GI𝜓 , where 𝐴 ⊆ Id.
The operators UI and GI are read as “until in the interval I” and
“always in the interval I”. The operator FI is defined in the standard
way: FI𝜓 = trueUI𝜓 , where true := 𝑝 ∨ ¬𝑝 , for some 𝑝 ∈ AP.
Intuitively, ⟨⟨A⟩⟩∃𝜓 means that the agents of A have a collective
strategy s.t. it is possible to ensure𝜓 , while ⟨⟨A⟩⟩∀𝜓 means that the
agents of A have a strategy to inevitably ensure𝜓 . The fragment
of SMTL is called existential if it does not contain the subformulas
⟨⟨A⟩⟩∀𝜓 and the negation is applied to the propositions only.

SMTL is interpreted over concrete models of Continuous MAS
(CMAS), where each agent is represented by a timed automaton
[4] with asynchronous, strongly monotonic semantics and continu-
ous time. Thus, we assume that CMAS consists of 𝑛 agents, each
assigned a set of local actions, a set of local states, an initial local
state, a set of local clocks, a local transition relation defining possible
changes of local states (clocks can be reset), a local protocol that
assigns a non-empty set of available actions to each state, and a
state invariant function that assigns clock constraints to the local
states. The global states are tuples of the local states, and the global
transition relation is defined by the asynchronous composition of
the local transition relations of all agents. A strategy of agent 𝑖 is a
conditional plan that specifies what 𝑖 is going to do in any situation.
We focus on memoryless imperfect information strategies for each
agent 𝑖 , which intuitively, assigns a local action to each of its local
states. For more details of the logic and the encoding see [21].

The problem we are addressing is the determination of the satis-
fiability of an existential SMTL formula 𝜙 , i.e., SMT4SMTL checks
whether there is a model 𝑀 for 𝜙 . This is achieved by defining
a PNTA with meta-parameters specifying the number of timed
automata, as well as the number of their local states and transitions.
This network and 𝜙 are encoded in SMT using Boolean, Integer,
and Real variables. Finding a model involves determining values for
these variables. The algorithm terminates when either a model sa-
tisfying 𝜙 is discovered or when the memory/time limit is reached.

4 ARCHITECTURE AND TECHNOLOGY
There are three main modules of SMT4SMTL: GUI, BMC [21], and
Z3 SMT-solver[32]. GUI is a user friendly, interactive web client
implemented in TypeScript on the top of SvelteKit [15] and Cy-
toscape [13] libraries. It allows to edit graphically a formula as well
as PNTA and start the computations on the server side. The BMC
module, implemented in C++, encodes the problem using smtlibv2
standard, which is then checked for satisfiability by the Z3 SMT-
solver. When the computations are complete, the GUI visualizes
the results (see Fig. 1). For more details the reader is referred to the
tool website: https://smtl.ii.uws.edu.pl/.

5 EXPERIMENTAL EVALUATION
Tab. 1 displays an evaluation of SMT4SMTL performance using the
timed version of Dining Philosophers problem of [21] and the for-
mula 𝛼 = ⟨⟨𝐿𝑐𝑘⟩⟩ ∃

(
𝐹 [1,𝐸2 ) (

∧
𝑗∈𝑜𝑑𝑑𝑝 𝐸𝑎𝑡𝑖𝑛𝑔 𝑗 ) ∧ (∧𝑗∈𝑜𝑑𝑑𝑝 (𝐹 [0,∞)

SAT/UNSAT
statistics
[model]

[witness]

Docker container
SMTL formula

metaparameters
[constraints]

BMC4SMTL 
C++

Z3
SMT

Solver

Backend:NodeJS,Python

Web App: SvelteKit, TypeScript

Figure 1: SMT4SMTL architecture.

𝐻𝑢𝑛𝑔𝑟𝑦 𝑗 ∧ 𝐹 [0,∞)𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑗 ∧ 𝐹 [0,∞)𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑗 ))
)
- the lackey has a

strategy s.t. it is possible that all odd philosophers but the last one
meet at the table at some point of time between 1 and 𝐸2 and eat, and
all of the crucial philosophers’ locations must be reachable, where
𝑜𝑑𝑑𝑝 = { 𝑗 | 1 ≤ 𝑗 < 𝑝 ∧ 𝑗 𝑚𝑜𝑑 2 = 1}. The second part of Tab. 1 re-
ports the results for the crossroad system, inspired by [40]. The for-
mula 𝛽 =

∧
𝑖=1⟨⟨𝐿𝑐𝑘⟩⟩ ∃

(
𝐺 [0,∞) (𝑛𝑜𝐶𝑜𝑙∧𝐹 [0,5) (𝑖𝑛𝑖∧𝐹 [3,8) (𝑙𝑒𝑎𝑣𝑒𝑖∧

𝐹 [6,11)𝑜𝑢𝑡𝑖 )))
)
, where𝑛𝑜𝐶𝑜𝑙 =

∧
𝑖=1..𝑛−1, 𝑗=𝑖+1..𝑛 (¬𝑙𝑒𝑎𝑣𝑒𝑖∨¬𝑙𝑒𝑎𝑣𝑒 𝑗 ),

means that each car has a strategy s.t. it can drive trough the cross-
road without colliding with any other car. The meaning of the table
columns, from left to right, is: the parameter variant, the numbers
of philosophers/cars, agents, the length of a shortest path satisfying
the formula, time (in sec.) consumed by BMC / SMT-solver Z3, and
maximal memory usage (in GB). There are two parameter variants:
bSAT - everything is a parameter, no constraints imposed; Synth - a
controller synthesis: all agents but the controller are fully specified.
The experiments were performed on a server equipped with an Intel
Xeon Gold 6234 3.30GHz CPU and 192GB RAM running Ubuntu
Linux 22.04.3 LTS and Z3-solver v4.8.12. While not comprehensive,
the results show the potential of the method, especially for some
classes of SMTL formulae. The time of synthesis increases together
with the number of agents, their states and actions, and complexity
of the formulae. Clearly, the run-time decreases if the user provides
also a partial specification of the system to be synthesised.

𝛼 𝛽

Var p n k Time Mem n k Time Mem
bSAT 2 5 8 0.6 / 21.2 0.2 3 6 0.1 / 1.5 0.05

3 7 8 2.8 / 58.5 0.3 4 6 0.2 / 6.0 0.09
4 9 8 8.6 / 1416 1.6 5 6 0.4 / 17 0.17
5 11 8 23 / 3420 3.4 6 6 0.8 / 99 0.38

Synth 2 5 12 1.3 / 3.8 0.1 3 8 0.3 / 1.5 0.04
3 7 12 6.0 / 12.6 0.1 4 8 0.6 / 2.1 0.05
4 9 24 78 / 298 0.5 5 8 1.1 / 3.3 0.07
5 11 24 202 / 491 0.9 6 8 1.9 / 5.2 0.10

Table 1: Experimental results.

6 CONCLUSIONS
Our tool implements a novel technique for bounded satisfiability
checking of a fragment of SMTL. This marks a breakthrough in the
field, as SMT4SMTL stands out as the first tool capable of synthe-
sizing systems specified within a fragment of SMTL. The method
can also be applied to partially specified systems. The experiments
conducted demonstrate a high potential for this approach.
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