
SMT4SMTL: a Tool for SMT-Based Satisfiability Checking of SMTL
Demonstration Track

Artur Niewiadomski
University of Siedlce

Siedlce, Poland
artur.niewiadomski@uws.edu.pl

Maciej Nazarczuk
University of Siedlce

Siedlce, Poland
maciej.nazarczuk@uws.edu.pl

Mateusz Przychodzki
University of Siedlce

Siedlce, Poland
mateusz.przychodzki@uws.edu.pl

Magdalena Kacprzak
Bialystok University of Technology

Bialystok, Poland
m.kacprzak@pb.edu.pl

Wojciech Penczek
Institute of Computer Science, PAS

Warsaw, Poland
w.penczek@ipipan.waw.pl

Andrzej Zbrzezny
Jan Dlugosz University
in Czestochowa, Poland
a.zbrzezny@ujd.edu.pl

ABSTRACT
We present SMT4SMTL - the first tool for deciding the bounded
satisfiability of Metric Temporal Logic (MTL) and the existential
fragment of Strategic Metric Temporal Logic (SMTL), interpreted
over timed multi-agent systems represented by networks of timed
automata. The tool combines Satisfiability Modulo Theories (SMT)
techniques and Parametric Bounded Model Checking algorithms.

KEYWORDS
Strategic MTL; Bounded Satisfiability; SMT
ACM Reference Format:
Artur Niewiadomski, Maciej Nazarczuk, Mateusz Przychodzki, Magdalena
Kacprzak, Wojciech Penczek, and Andrzej Zbrzezny. 2024. SMT4SMTL: a
Tool for SMT-Based Satisfiability Checking of SMTL: Demonstration Track.
In Proc. of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024,
IFAAMAS, 3 pages.

1 INTRODUCTION AND CHALLENGES
The paper presents the tool SMT4SMTL for solving the bounded
satisfiability problem for the existential fragment of Strategic Metric
Temporal Logic (SMTL) [21] andMTL [6, 24]. This is a problem to de-
cide whether an SMTL formula is satisfiable on a timed multi-agent
system under some initial restrictions. SMT4SMTL implements a
new method of SAT checking [21], which combines Satisfiability
Modulo Theories (SMT) techniques and Parametric Bounded Model
Checking algorithms. The bounded approach can be used only for
the existential fragment of SMTL. Our method consists in synthe-
sising a model as the product of agents represented by a Parametric
Network of Timed Automata (PNTA), for an SMTL formula express-
ing the property. Parameters are used in guards, invariants, and
to specify transitions and actions. Given an additional knowledge
about the system’s structure, some parameters can be replaced with
fixed values. We encode the SMTL formula and the runs of PNTA
unfolded to a depth 𝑘 , as an SMT problem instance, which is then
checked for satisfiability by an SMT-solver. If the answer is SAT,

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

all parameter values from a model are returned by the SMT-solver.
Otherwise, the unfolding depth is increased.

The main challenge in solving the SAT problem of MTL and
SMTL is its high complexity. The SAT problem for MTL, so for
SMTL, is undecidable. In order to regain decidability ofMTL, cer-
tain semantic and syntactic restrictions are introduced [36]. Seman-
tic restrictions include adopting an integer-time model [6, 14, 16] or
a bounded-variation dense-time model [42] for which SAT is decid-
able. Syntactic restrictions concern: punctuality or non-singularity
[5], boundedness and safety [9, 34, 35]. Then, the SAT problem
becomes decidable and is EXPSPACE-complete. To the best of our
knowledge, SMT4SMTL is the only tool solving the SAT problem
for SMTL. However, there are tools for solving the SAT problem
for untimed strategic temporal logics [19, 20, 33].

2 APPLICATION DOMAIN
In recent years, significant efforts have been dedicated to verifying
strategic properties in Multi-Agent Systems (MAS) [2, 17, 18, 22,
23, 37, 41] expressed using formalisms such as Alternating-time
Temporal Logic ATL and ATL★ [7], as well as its generalization
Strategy Logic (SL) [31], also with several restrictions [1, 8, 28–30],
This research is supported by the tools like MOCHA [3], MCMAS
[27], STV [25, 26], or MCMAS-SLK [10–12]. The primary emphasis
lies on strategy synthesis, closely intertwined with model checking
[11, 12]. Model synthesis, in turn, involves the automatic construc-
tion of a model for a given formula, thereby verifying the existence
of such a model. SMTL finds application in specifying strategy-
oriented behavior and troubleshooting in real-time systems, which
are often complex and challenging to design, implement, and test,
requiring specialized skills and expertise. These systems are engi-
neered for real-time operation, demanding guaranteed responses
within specified periods or meeting particular deadlines [38, 39].
For instance, controllers in airplanes, cars, or industrial plants are
expected to complete tasks within reliable time constraints [43]. Ad-
ditional potential applications encompass real-time communication
and real-time strategy games.

3 THEORETICAL BACKGROUND
Strategic Metric Temporal Logic (SMTL) [21] extends Metric Tem-
poral Logic (MTL) by strategy operators ⟨⟨A⟩⟩∃ and ⟨⟨A⟩⟩∀ (preced-
ing MTL formulae) for specifying existential and universal (resp.)
strategic properties. Let 𝑝 ∈ AP be an atomic proposition, Id be

Demonstration Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2815

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

a set agents, and J the set of all the intervals in R+ of the form
[𝑎, 𝑎], (𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏], [𝑎, 𝑏], (𝑎,∞), or [𝑎,∞), where 𝑎, 𝑏 ∈ N
and 𝑎 < 𝑏, and let I ∈ J . The syntax of SMTL (MTL) is defined by
the formulae 𝜙 (𝜓 , resp.) as follows:
𝜙 := 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ⟨⟨A⟩⟩∃𝜓 | ⟨⟨A⟩⟩∀𝜓,
𝜓 := 𝑝 | ¬𝑝 | 𝜓 ∧𝜓 | 𝜓 ∨𝜓 | 𝜓UI𝜓 | GI𝜓 , where 𝐴 ⊆ Id.
The operators UI and GI are read as “until in the interval I” and
“always in the interval I”. The operator FI is defined in the standard
way: FI𝜓 = trueUI𝜓 , where true := 𝑝 ∨ ¬𝑝 , for some 𝑝 ∈ AP.
Intuitively, ⟨⟨A⟩⟩∃𝜓 means that the agents of A have a collective
strategy s.t. it is possible to ensure𝜓 , while ⟨⟨A⟩⟩∀𝜓 means that the
agents of A have a strategy to inevitably ensure𝜓 . The fragment
of SMTL is called existential if it does not contain the subformulas
⟨⟨A⟩⟩∀𝜓 and the negation is applied to the propositions only.

SMTL is interpreted over concrete models of Continuous MAS
(CMAS), where each agent is represented by a timed automaton
[4] with asynchronous, strongly monotonic semantics and continu-
ous time. Thus, we assume that CMAS consists of 𝑛 agents, each
assigned a set of local actions, a set of local states, an initial local
state, a set of local clocks, a local transition relation defining possible
changes of local states (clocks can be reset), a local protocol that
assigns a non-empty set of available actions to each state, and a
state invariant function that assigns clock constraints to the local
states. The global states are tuples of the local states, and the global
transition relation is defined by the asynchronous composition of
the local transition relations of all agents. A strategy of agent 𝑖 is a
conditional plan that specifies what 𝑖 is going to do in any situation.
We focus on memoryless imperfect information strategies for each
agent 𝑖 , which intuitively, assigns a local action to each of its local
states. For more details of the logic and the encoding see [21].

The problem we are addressing is the determination of the satis-
fiability of an existential SMTL formula 𝜙 , i.e., SMT4SMTL checks
whether there is a model 𝑀 for 𝜙 . This is achieved by defining
a PNTA with meta-parameters specifying the number of timed
automata, as well as the number of their local states and transitions.
This network and 𝜙 are encoded in SMT using Boolean, Integer,
and Real variables. Finding a model involves determining values for
these variables. The algorithm terminates when either a model sa-
tisfying 𝜙 is discovered or when the memory/time limit is reached.

4 ARCHITECTURE AND TECHNOLOGY
There are three main modules of SMT4SMTL: GUI, BMC [21], and
Z3 SMT-solver[32]. GUI is a user friendly, interactive web client
implemented in TypeScript on the top of SvelteKit [15] and Cy-
toscape [13] libraries. It allows to edit graphically a formula as well
as PNTA and start the computations on the server side. The BMC
module, implemented in C++, encodes the problem using smtlibv2
standard, which is then checked for satisfiability by the Z3 SMT-
solver. When the computations are complete, the GUI visualizes
the results (see Fig. 1). For more details the reader is referred to the
tool website: https://smtl.ii.uws.edu.pl/.

5 EXPERIMENTAL EVALUATION
Tab. 1 displays an evaluation of SMT4SMTL performance using the
timed version of Dining Philosophers problem of [21] and the for-
mula 𝛼 = ⟨⟨𝐿𝑐𝑘⟩⟩ ∃

(
𝐹 [1,𝐸2) (

∧
𝑗∈𝑜𝑑𝑑𝑝 𝐸𝑎𝑡𝑖𝑛𝑔 𝑗) ∧ (∧𝑗∈𝑜𝑑𝑑𝑝 (𝐹 [0,∞)

SAT/UNSAT
statistics
[model]

[witness]

Docker container
SMTL formula

metaparameters
[constraints]

BMC4SMTL
C++

Z3
SMT

Solver

Backend:NodeJS,Python

Web App: SvelteKit, TypeScript

Figure 1: SMT4SMTL architecture.

𝐻𝑢𝑛𝑔𝑟𝑦 𝑗 ∧ 𝐹 [0,∞)𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑗 ∧ 𝐹 [0,∞)𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑗))
)
- the lackey has a

strategy s.t. it is possible that all odd philosophers but the last one
meet at the table at some point of time between 1 and 𝐸2 and eat, and
all of the crucial philosophers’ locations must be reachable, where
𝑜𝑑𝑑𝑝 = { 𝑗 | 1 ≤ 𝑗 < 𝑝 ∧ 𝑗 𝑚𝑜𝑑 2 = 1}. The second part of Tab. 1 re-
ports the results for the crossroad system, inspired by [40]. The for-
mula 𝛽 =

∧
𝑖=1⟨⟨𝐿𝑐𝑘⟩⟩ ∃

(
𝐺 [0,∞) (𝑛𝑜𝐶𝑜𝑙∧𝐹 [0,5) (𝑖𝑛𝑖∧𝐹 [3,8) (𝑙𝑒𝑎𝑣𝑒𝑖∧

𝐹 [6,11)𝑜𝑢𝑡𝑖)))
)
, where𝑛𝑜𝐶𝑜𝑙 =

∧
𝑖=1..𝑛−1, 𝑗=𝑖+1..𝑛 (¬𝑙𝑒𝑎𝑣𝑒𝑖∨¬𝑙𝑒𝑎𝑣𝑒 𝑗),

means that each car has a strategy s.t. it can drive trough the cross-
road without colliding with any other car. The meaning of the table
columns, from left to right, is: the parameter variant, the numbers
of philosophers/cars, agents, the length of a shortest path satisfying
the formula, time (in sec.) consumed by BMC / SMT-solver Z3, and
maximal memory usage (in GB). There are two parameter variants:
bSAT - everything is a parameter, no constraints imposed; Synth - a
controller synthesis: all agents but the controller are fully specified.
The experiments were performed on a server equipped with an Intel
Xeon Gold 6234 3.30GHz CPU and 192GB RAM running Ubuntu
Linux 22.04.3 LTS and Z3-solver v4.8.12. While not comprehensive,
the results show the potential of the method, especially for some
classes of SMTL formulae. The time of synthesis increases together
with the number of agents, their states and actions, and complexity
of the formulae. Clearly, the run-time decreases if the user provides
also a partial specification of the system to be synthesised.

𝛼 𝛽

Var p n k Time Mem n k Time Mem
bSAT 2 5 8 0.6 / 21.2 0.2 3 6 0.1 / 1.5 0.05

3 7 8 2.8 / 58.5 0.3 4 6 0.2 / 6.0 0.09
4 9 8 8.6 / 1416 1.6 5 6 0.4 / 17 0.17
5 11 8 23 / 3420 3.4 6 6 0.8 / 99 0.38

Synth 2 5 12 1.3 / 3.8 0.1 3 8 0.3 / 1.5 0.04
3 7 12 6.0 / 12.6 0.1 4 8 0.6 / 2.1 0.05
4 9 24 78 / 298 0.5 5 8 1.1 / 3.3 0.07
5 11 24 202 / 491 0.9 6 8 1.9 / 5.2 0.10

Table 1: Experimental results.

6 CONCLUSIONS
Our tool implements a novel technique for bounded satisfiability
checking of a fragment of SMTL. This marks a breakthrough in the
field, as SMT4SMTL stands out as the first tool capable of synthe-
sizing systems specified within a fragment of SMTL. The method
can also be applied to partially specified systems. The experiments
conducted demonstrate a high potential for this approach.

ACKNOWLEDGMENTS
M. Kacprzak was supported by the Bialystok University of Technol-
ogy within the grant WZ/WI-IIT/2/2022. W. Penczek was supported
by NCBR Poland under the PolLux/FNR-CORE project SpaceVote
(POLLUX-XI/14/SpaceVote/2023) and PHCPoloniumprojectMoCcA.

Demonstration Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2816

https://smtl.ii.uws.edu.pl/

REFERENCES
[1] Erman Acar, Massimo Benerecetti, and Fabio Mogavero. 2019. Satisfiability in

Strategy Logic Can Be Easier than Model Checking. Proceedings of the AAAI
Conference on Artificial Intelligence 33, 01 (2019), 2638–2645.

[2] Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. 2007. Alternating-
time Temporal Logics with Irrevocable Strategies. In Proceedings of the TARK
Conference, Dov Samet (Ed.). 15–24.

[3] Rajeev Alur, Luca de Alfaro, Radu Grosu, Thomas A. Henzinger, M. Kang,
Christoph M. Kirsch, Rupak Majumdar, Freddy Y. C. Mang, and Bow-Yaw Wang.
2001. JMOCHA: A Model Checking Tool that Exploits Design Structure. In Proc.
of the ICSE Conference. IEEE Computer Society, 835–836.

[4] Rajeev Alur and David Dill. 1992. The Theory of Timed Automata. In Real-Time:
Theory in Practice, J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg
(Eds.). Springer Berlin Heidelberg, 45–73.

[5] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. 1996. The Benefits of
Relaxing Punctuality. J. ACM 43, 1 (1996), 116–146.

[6] Rajeev Alur and Thomas A. Henzinger. 1993. Real-Time Logics: Complexity and
Expressiveness. Information and Computation 104, 1 (1993), 35–77.

[7] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time
Temporal Logic. J. ACM 49(5) (2002), 672–713.

[8] Francesco Belardinelli, Alessio Lomuscio, Aniello Murano, and Sasha Rubin. 2017.
Verification of Broadcasting Multi-Agent Systems against an Epistemic Strategy
Logic. In Proc. of the IJCAI Conference, Carles Sierra (Ed.). 91–97.

[9] Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. 2008. On
Expressiveness and Complexity in Real-Time Model Checking. In Automata,
Languages and Programming, Proc. of the ICALP Conference (LNCS, Vol. 5126).
Springer, 124–135.

[10] Petr Cermák, Alessio Lomuscio, Fabio Mogavero, and Aniello Murano. 2014.
MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Speci-
fications. In Computer Aided Verification - Proc. of the CAV Conference (LNCS,
Vol. 8559), Armin Biere and Roderick Bloem (Eds.). Springer, 525–532.

[11] Petr Cermák, Alessio Lomuscio, Fabio Mogavero, and Aniello Murano. 2018.
Practical Verification of Multi-Agent Systems against SLK Specifications. Inf.
Comput. 261, Part (2018), 588–614.

[12] Petr Cermák, Alessio Lomuscio, and Aniello Murano. 2015. Verifying and Synthe-
sising Multi-Agent Systems against One-Goal Strategy Logic Specifications. In
Proc. of the AAAI Conference on Artificial Intelligence, Blai Bonet and Sven Koenig
(Eds.). AAAI Press, 2038–2044.

[13] Max Franz, Christian T. Lopes, Gerardo Huck, Yue Dong, Onur Sumer, and Gary D.
Bader. 2015. Cytoscape.js: a Graph Theory Library for Visualisation and Analysis.
Bioinformatics 32, 2 (2015), 309–311.

[14] Carlo A. Furia and Paola Spoletini. 2008. Tomorrow and All our Yesterdays: MTL
Satisfiability over the Integers. In Theoretical Aspects of Computing - ICTAC 2008
(LNCS, Vol. 5160). Springer, 126–140.

[15] Rich Harris. 2024. Svelte Kit: The Fastest Way to Build Svelte Apps.
https://kit.svelte.dev/.

[16] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. 1992. What Good are Dig-
ital Clocks?. In Automata, Languages and Programming, W. Kuich (Ed.). Springer
Berlin Heidelberg, 545–558.

[17] Wojciech Jamroga and Wiebe van der Hoek. 2004. Agents that Know How to
Play. Fundamenta Informaticae 63, 2-3 (2004), 185–219.

[18] Magdalena Kacprzak, Alessio Lomuscio, andWojciech Penczek. 2004. Verification
of Multi-Agent Systems via Unbounded Model Checking. In Proc. of the 3rd Int.
Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS’04), N. R. Jennings,
C. Sierra, L. Sonenberg, and M. Tambe (Eds.), Vol. II. ACM, 638–645.

[19] Magdalena Kacprzak, Artur Niewiadomski, and Wojciech Penczek. 2020. SAT-
Based ATL Satisfiability Checking. In Proc. of the Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR’20), D. Calvanese, E. Erdem, and
M. Thielscher (Eds.). 539–549.

[20] Magdalena Kacprzak, Artur Niewiadomski, and Wojciech Penczek. 2021. Satisfi-
ability Checking of Strategy Logic with Simple Goals. In Proc. of the Int. Conf.
on Principles of Knowledge Representation and Reasoning, (KR’21), M. Bienvenu,
G. Lakemeyer, and E. Erdem (Eds.). 400–410.

[21] Magdalena Kacprzak, Artur Niewiadomski, Wojciech Penczek, and Andrzej
Zbrzezny. 2023. SMT-Based Satisfiability Checking of Strategic Metric Tem-
poral Logic. In Proc. of the ECAI Conference (Frontiers in Artificial Intelligence and
Applications, Vol. 372). IOS Press, 1180–1189.

[22] Magdalena Kacprzak and Wojciech Penczek. 2004. Unbounded Model Checking
for Alternating-time Temporal Logic. In Proc. of the Int. Conf. on Autonomous

Agents and Multi-Agent Systems (AAMAS’04), N. R. Jennings, C. Sierra, L. Sonen-
berg, and M. Tambe (Eds.), Vol. II. ACM, 646–653.

[23] Magdalena Kacprzak and Wojciech Penczek. 2005. Fully Symbolic Unbounded
Model Checking for Alternating-time Temporal Logic. Auton. Agents Multi Agent
Syst. 11, 1 (2005), 69–89.

[24] Ron Koymans. 1990. Specifying Real-Time Properties with Metric Temporal
Logic. Real-Time Syst. 2, 4 (1990), 255–299.

[25] Damian Kurpiewski, Wojciech Jamroga, and Michal Knapik. 2019. STV: Model
Checking for Strategies under Imperfect Information. In Proc. of the Int. Conf. on
Autonomous Agents and Multi-Agent Systems (AAMAS’19). 2372–2374.

[26] Damian Kurpiewski, Witold Pazderski, Wojciech Jamroga, and Yan Kim. 2021.
STV+Reductions: Towards Practical Verification of Strategic Ability Using Model
Reductions. In Proc. of the Int. Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS’21). ACM, 1770–1772.

[27] Alessio Lomuscio and Franco Raimondi. 2006. Model Checking Knowledge, Strate-
gies, and Games in Multi-Agent Systems. In Proc. of the Int. Conf. on Autonomous
Agents and Multi-Agent Systems (AAMAS’06). 161–168.

[28] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. 2014.
Reasoning About Strategies: On the Model-Checking Problem. ACM Trans.
Comput. Log. 15, 4 (2014), 34:1–34:47.

[29] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. 2017.
Reasoning about Strategies: on the Satisfiability Problem. Log. Methods Comput.
Sci. 13, 1 (2017).

[30] Fabio Mogavero, Aniello Murano, and Luigi Sauro. 2013. On the Boundary of
Behavioral Strategies. In 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS. IEEE Computer Society, 263–272.

[31] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. 2010. Reasoning About
Strategies. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2010 (LIPIcs, Vol. 8). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 133–144.

[32] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an Efficient SMT Solver. In
Proc. of the TACAS Conference (LNCS, Vol. 4963). Springer-Verlag, 337–340.

[33] Artur Niewiadomski, Magdalena Kacprzak, Damian Kurpiewski, Michal Knapik,
Wojciech Penczek, and Wojciech Jamroga. 2020. MsATL: A Tool for SAT- Based
ATL Satisfiability Checking. In Proc. of the Int. Conf. on Autonomous Agents
and Multi-Agent Systems (AAMAS’20. International Foundation for Autonomous
Agents and Multiagent Systems, 2111–2113.

[34] Joël Ouaknine and James Worrell. 2006. Safety Metric Temporal Logic Is Fully
Decidable. In Tools and Algorithms for the Construction and Analysis of Systems.
Springer Berlin Heidelberg, 411–425.

[35] Joël Ouaknine and James Worrell. 2007. On the Decidability and Complexity of
Metric Temporal Logic over Finite Words. Logical Methods in Computer Science
Volume 3, Issue 1 (2007).

[36] Joël Ouaknine and James Worrell. 2008. Some Recent Results in Metric Tem-
poral Logic. In Formal Modeling and Analysis of Timed Systems. Springer Berlin
Heidelberg, 1–13.

[37] Marc Pauly. 2002. A Modal Logic for Coalitional Power in Games. J. Log. Comput.
12, 1 (2002), 149–166.

[38] Christine Rochange. 2016. Parallel Real-Time Tasks, as Viewed byWCETAnalysis
and Task Scheduling Approaches. In 16th International Workshop on Worst-Case
Execution Time Analysis (WCET 2016) (Open Access Series in Informatics (OA-
SIcs), Vol. 55), Martin Schoeberl (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 11:1–11:11.

[39] Abhishek Singh. 2023. Cutting-plane Algorithms for Preemptive Uniprocessor
Scheduling Problems. Real-Time Systems (2023), 1–50.

[40] Masoud Tabatabaei, Wojciech Jamroga, and Peter Y. A. Ryan. 2016. Expressing
Receipt-Freeness and Coercion-Resistance in Logics of Strategic Ability: Prelim-
inary Attempt. In Proc. of the 1st International Workshop on AI for Privacy and
Security, PrAISe@ECAI 2016. ACM, 1:1–1:8.

[41] Dirk Walther, Wiebe van der Hoek, and Michael J. Wooldridge. 2007. Alternating-
time Temporal Logic with Explicit Strategies. In Proc. of the 11th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK-2007), Dov Samet (Ed.).
269–278.

[42] Thomas Wilke. 1994. Specifying Timed State Sequences in Powerful Decidable
Logics and Timed Automata. In Proceedings of the Third International Symposium
Organized Jointly with the Working Group Provably Correct Systems on Formal
Techniques in Real-Time and Fault- Tolerant Systems (ProCoS). Springer-Verlag,
694–715.

[43] Marilyn Wolf. 2023. Chapter 5 - Program Design and Analysis. In Computers as
Components (fifth edition ed.), Marilyn Wolf (Ed.). Morgan Kaufmann, 219–319.

Demonstration Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2817

	Abstract
	1 Introduction and Challenges
	2 Application Domain
	3 Theoretical Background
	4 Architecture and Technology
	5 Experimental Evaluation
	6 Conclusions
	Acknowledgments
	References

