
Generating and Choosing Organizations for
Multi-Agent Systems - Extended Abstract

Cleber J. Amaral
Instituto Federal de Santa Catarina

São José, Brazil
cleber.amaral@ifsc.edu.br

Jomi F. Hübner
Universidade Federal de Santa

Catarina
Florianópolis, Brazil
jomi.hubner@ufsc.br

Stephen Cranefield
University of Otago

Dunedin, New Zealand
stephen.cranefield@otago.ac.nz

ABSTRACT
The design of organizations is a complex and laborious task. It is
the subject of recent studies, which define models to automatically
perform this task. However, existing models constrain the space of
possible solutions by requiring a priori definitions of organizational
roles and usually are not suitable for planning resource use. This
paper presents GoOrg [1], a model that uses as input a set of goals
and a set of available agents to generate different arrangements of
organizational structures made up of synthesized organizational
positions. The most distinguishing characteristics of GoOrg are the
use of organizational positions instead of roles and that positions
are automatically synthesized rather than required as a priori de-
fined inputs. These features allow for the planning of organizational
resources at design time and increase the chance of finding feasi-
ble solutions. This paper also introduces a model extension that
illustrates how GoOrg can be extended to suit a specific domain.

KEYWORDS
Organization design, Organizational structure, Automated design.

ACM Reference Format:
Cleber J. Amaral, Jomi F. Hübner, and Stephen Cranefield. 2024. Generating
and Choosing Organizations for Multi-Agent Systems - Extended Abstract.
In Proc. of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024,
IFAAMAS, 3 pages.

1 INTRODUCTION
Existing models for generating organizational structures for multi-
agent systems [2–5, 7] use the concept of roles which has many-to-
many relationships with agents and should be defined a priori by
the user. GoOrg uses organizational positions instead, which have
one-to-one relationships with agents [6], thus an organizational
structure made up of positions reflects resource demands. This al-
lows the user to know in advance (at design time) the resources
required for an organization to run. In GoOrg, positions are syn-
thesized rather than required as input. It creates a broader range of
possible solutions, increasing the possibility of finding structures
that the available agents can fill. GoOrg also addresses the challenge

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

of choosing a solution among many possibilities, using quantified
characteristics for the problem domain.

2 GOORG MODEL
The GoOrg model considers only essential elements for an organiza-
tion’s design: goals, agents, organizational positions, features, and
the organizational structure. A goal 𝑔 ∈ 𝐺 ⊂ symbols is a desired
state of the world that the organization hopes to attain. An agent
𝑎 ∈ 𝐴 ⊂ symbols is an entity that acts to achieve the goals it is
committed to. A position 𝑝 ∈ 𝑃 ⊂ symbols is a place-holder for an
agent in an organization. Positions represent the agents necessary
for an organization to function. The agent who occupies a posi-
tion is in charge of achieving the goals assigned to that position.
The goals assigned to a position 𝑝 are specified by the function
𝑔𝑝 . The function 𝑎𝑝 specifies the agent occupying the position 𝑝 ,
considering that 𝑝 is a “free position” when 𝑎𝑝 (𝑝) = 𝜖 .

𝑔𝑝 : 𝑃 → 2𝐺 , ∀𝑝 ∈ 𝑃 , 𝑔𝑝 (𝑝) ≠ {}, 𝑎𝑝 : 𝑃 → 𝐴 ∪ {𝜖}

An agent cannot be bound tomore than one position (i.e.,∀𝑝, 𝑝′ ∈
𝑃 , (𝑝 ≠ 𝑝′) ∧ (𝑎𝑝 (𝑝) ≠ 𝜖) ∧ (𝑎𝑝 (𝑝′) ≠ 𝜖) ⇒ (𝑎𝑝 (𝑝) ≠ 𝑎𝑝 (𝑝′))).
To check if an agent can occupy a position, GoOrg compares the
features that an agent has to the features that the goals assigned
to a position have. A feature 𝑓 is an n-tuple, in which the first
element is a symbol. Besides the first element, optionally, a feature
may have other elements (𝑒2, ..., 𝑒𝑛). The function 𝑓𝑔 specifies the
features required by a goal. The function 𝑓𝑎 specifies the features
an agent has.

𝑓 : ⟨𝑠𝑦𝑚𝑏𝑜𝑙 , 𝑒2, . . . , 𝑒𝑛⟩, 𝑓 ∈ 𝐹 , 𝑓𝑔 : 𝐺 → 2𝐹 , 𝑓𝑎 : 𝐴 → 2𝐹

GoOrg considers that each organizational structure is a particular
description of an organization. An organizational structure 𝑜 is
represented as a tuple.

𝑜 : ⟨𝐺,𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝⟩
Each generated organization has attributes that quantify it. GoOrg

defines the attribute feasibility represented as 𝜅 (𝑜), a real number
in the range [0,1]. If every organizational position has an agent to
occupy it, the organization is considered feasible (𝜅 (𝑜) = 1).

𝜅 (𝑜) = |{𝑎𝑝 (𝑝) |𝑎𝑝 (𝑝) ≠ 𝜖 , 𝑝 ∈ 𝑃}|
|𝑃 |

3 GOORG4PROD: AN EXTENSION OF GOORG
GoOrg must be extended to address the requirements of each do-
main. GoOrg4Prod generates structures of positions responsible
for production activities in a factory. To address it, GoOrg4Prod
specifies that organizational goals are associated with workloads,

JAAMAS Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2824

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

as efforts that should be performed by skilled agents. Thus, a work-
load 𝑤 represents a demanded effort 𝑒 ∈ R+ which requires a skill
𝑠 ∈ 𝑆 ⊂ symbols to be performed.

𝑤 : ⟨𝑠, 𝑒⟩,𝑤 ∈𝑊 ,𝑤𝑔 : 𝐺 → 2𝑊

Fig. 1 highlights the organizational attributes and features added
by GoOrg4Prod to extend the GoOrg model. GoOrg4Prod matches
agents and positions using skills. It uses workloads to calculate the
organization’s efficiency, which among other attributes can be used
to choose organizations based on the user’s preferences.

organisational
position

organisational
structuregoal

composed ofin charge of

11..* 1..* 1

* 1

*

agent
is bound to

*

* 0/1

0/1

feature
has

has

*

attribute

feasibility

has
1
4

height

generality efficiency

skill workload are
are

is superior of

Figure 1: GoOrg4Prod model.

GoOrg4Prod considers that organizational positions may have
superordinate-subordinate relationships, which are represented
as “is superior of” relationships. The function 𝑠𝑝 : 𝑃 → 𝑃 ∪ {𝜖}
records the position 𝑝′, which is the immediate superordinate of the
position 𝑝 . If 𝑝 has “no superordinate”, 𝑠𝑝 (𝑝) = 𝜖 . In this extension
of GoOrg, an organizational structure is defined as follows:

𝑜 : ⟨𝐺,𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝,𝑤𝑔⟩
For generating structures, GoOrg4Prod perform a search in the

space, applying three structure transformations: (i) 𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟 (𝑔)
synthesizes a superordinate position and assigns the goal 𝑔 to it; (ii)
𝑎𝑑𝑑𝑆𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (𝑔, 𝑝′) synthesizes the position 𝑝 as subordinate of
𝑝′ and assigns the goal 𝑔 to 𝑝; and (iii) 𝑗𝑜𝑖𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑔, 𝑝) assigns
the goal 𝑔 to a previously synthesized position 𝑝 .

Based on superordinate-subordinate relationships, each struc-
ture’s height is calculated. It refers to how centralized and bureau-
cratic an hierarchical organization is. Based on how the goals are
distributed across positions, the generality is calculated. An organi-
zation with high generality requires agents with more skills, i.e.,
more generalist agents, and the opposite requires more specialist
agents. With the feature workload, the efficiency of an organization
can be quantified. It indicates how close the combined capacity of
the agents, who will occupy the synthesized positions, is to the ex-
pected efforts considering the given goals. For choosing an organiza-
tion among the list of solutions, a partial order relation representing
the user’s preferences is defined as >

𝜌 in which 𝑜 >
𝜌 𝑜′ means that 𝑜

is preferred to 𝑜′. Each organizational attribute (or its complement)
is a criterion 𝑐 . A priority order is represented by a natural number
𝛾 ∈ Γ, in which 𝑐1 is the most important criterion for the user. For
instance, if two criteria were set (Γ = {1, 2}), 𝑜 >

𝜌 𝑜′ is defined as:
𝑜 >

𝜌 𝑜′ ⇐⇒ [𝑐1 (𝑜) > 𝑐1 (𝑜′) ∨ (𝑐1 (𝑜) = 𝑐1 (𝑜′) ∧ 𝑐2 (𝑜) > 𝑐2 (𝑜′)).
GoOrg4Prod checks the organization’s feasibility by matching the
features of the available agents and of the synthesized positions.

4 RESULTS
As a motivating scenario, the agents have to access a database to get
orders, get boxes from shelves, move them near the conveyor belt,

and finally pick items from the boxes to place on the head of the
conveyor belt. These activities are specified as the goals FeedPro-
duction, GetBox, MoveBox$0, MoveBox$1 and PlaceBox that
are associated with workloads. Some skills are required to achieve
these goals: dbaccess, lift, move and pnp (pick and place).

It is assumed that the user prefers the most generalist, efficient
and flat structure in this priority order, and there are three kinds of
agents available: LE, an agent with the skills lift and database access
for lifting boxes on shelves and to program access to an external
database; BT, an agent with the skill move for moving boxes around
the floor; and PP, an agent with the skill pick and place for picking
items from the box and placing them on the conveyor belt.

For this problem, GoOrg4Prod has produced 1,646 organizational
structure candidates, each having all the given goals assigned to
positions. The left-hand side of Fig. 2 presents the candidate #1,
which has only one organizational position. In this structure, one
agent alone is responsible for achieving all organizational goals.
This solution has 100% of generality since all positions (only one in
this case) are assigned to all goals. It also has the minimum height
and has the highest efficiency for this problem. Although it is the
best candidate according to the user’s preferences, this solution
is not feasible since there is no available agent that has all four
required skills (db access, lift, move and pnp).

Organisation

Agents

FeedProduction
GetBox

MoveBox$0
MoveBox$1
PlaceBox

p0
db access

lift
move
pnp

LE
db acess
lift

BT
move

PP
pnp

FeedProduction
GetBox

p0

MoveBox$0
MoveBox$1

p1

db access
lift

LE
db acess
lift

BT
move

PP
pnp

move

Organisation

Agents

PlaceBox

p2

pnp

Figure 2: The best (left) and the first feasible candidate (right).

The right-hand side of Fig. 2 presents the candidate #134, which
is another of the flattest candidates (just one hierarchy level). How-
ever, it has lower generality compared to the candidate #1 and it has
lower efficiency (as it has three positions). Although it is not the
ideal solution (candidate #1), taking the given available agents and
the user’s preferences, this candidate is GoOrg4Prod’s first choice
since it is the first one that is 100% feasible.

5 CONCLUSION
GoOrg has only the fundamental elements that are found in any
organizational design. It is extensible for dealing with the speci-
ficity and complexity of each domain. This study adopted positions
instead of roles for designing organizational structures. The reason
is that positions carry the same advantage of the roles in respect to
being detached from named agents, while numerically reflecting
the need for resources. It means that the feasibility for a specific
state of an organization can be checked during the design. The
generated candidates have quantified attributes which enables a
multi-criteria approach to choose the “best” organization.

ACKNOWLEDGMENTS
The research was partially funded by Project AG-BR Petrobras and
Programme PrInt CAPES-UFSC “Automação 4.0”.

JAAMAS Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2825

REFERENCES
[1] Cleber J. Amaral, Jomi F. Hübner, and Stephen Cranefield. 2023. Generating and

choosing organisations for multi-agent systems. Autonomous Agents and Multi-
Agent Systems 37, 2 (24 Sep 2023), 41. https://doi.org/10.1007/s10458-023-09623-8

[2] Scott A DeLoach and E Matson. 2004. An Organizational Model for Designing
Adaptive Multiagent Systems. In The AAAI-04 Workshop on Agent Organizations:
Theory and Practice (AOTP 2004). AAAI Press, San Jose, USA, 66–73.

[3] Bryan Horling and Victor Lesser. 2008. Using quantitative models to search for
appropriate organizational designs. Autonomous Agents and Multi-Agent Systems
16, 2 (2008), 95–149. https://doi.org/10.1007/s10458-007-9020-y

[4] Carles Sierra, Jordi Sabater, J. Augusti, and Pere Garcia. 2004. The SADDE Method-
ology: Social agents design driven by equations. Methodologies and software
engineering for agent systems. Springer - Boston (2004). https://doi.org/10.1007/1-
4020-8058-1_13

[5] Mark Sims, Daniel Corkill, and Victor Lesser. 2008. Automated organization design
for multi-agent systems. Autonomous Agents and Multi-Agent Systems 16, 2 (2008).
https://doi.org/10.1007/s10458-007-9023-8

[6] Samantha Slade. 2018. Going Horizontal: Creating a Non-Hierarchical Organization,
One Practice at a Time. Berrett-Koehler Publishers, Inc., Oakland, CA. 1–204 pages.

[7] Young-Pa So and Edmund H Durfee. 1998. Designing Organizations for Computa-
tional Agents. Computational Organization Theory (Simulating Organizations) 2
(1998), 47–64. https://doi.org/10.1007/BF00127275

JAAMAS Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2826

https://doi.org/10.1007/s10458-023-09623-8
https://doi.org/10.1007/s10458-007-9020-y
https://doi.org/10.1007/1-4020-8058-1_13
https://doi.org/10.1007/1-4020-8058-1_13
https://doi.org/10.1007/s10458-007-9023-8
https://doi.org/10.1007/BF00127275

	Abstract
	1 Introduction
	2 GoOrg Model
	3 GoOrg4Prod: An Extension of GoOrg
	4 Results
	5 Conclusion
	Acknowledgments
	References

