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ABSTRACT
The design of organizations is a complex and laborious task. It is
the subject of recent studies, which define models to automatically
perform this task. However, existing models constrain the space of
possible solutions by requiring a priori definitions of organizational
roles and usually are not suitable for planning resource use. This
paper presents GoOrg [1], a model that uses as input a set of goals
and a set of available agents to generate different arrangements of
organizational structures made up of synthesized organizational
positions. The most distinguishing characteristics of GoOrg are the
use of organizational positions instead of roles and that positions
are automatically synthesized rather than required as a priori de-
fined inputs. These features allow for the planning of organizational
resources at design time and increase the chance of finding feasi-
ble solutions. This paper also introduces a model extension that
illustrates how GoOrg can be extended to suit a specific domain.
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1 INTRODUCTION
Existing models for generating organizational structures for multi-
agent systems [2–5, 7] use the concept of roles which has many-to-
many relationships with agents and should be defined a priori by
the user. GoOrg uses organizational positions instead, which have
one-to-one relationships with agents [6], thus an organizational
structure made up of positions reflects resource demands. This al-
lows the user to know in advance (at design time) the resources
required for an organization to run. In GoOrg, positions are syn-
thesized rather than required as input. It creates a broader range of
possible solutions, increasing the possibility of finding structures
that the available agents can fill. GoOrg also addresses the challenge
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of choosing a solution among many possibilities, using quantified
characteristics for the problem domain.

2 GOORG MODEL
The GoOrg model considers only essential elements for an organiza-
tion’s design: goals, agents, organizational positions, features, and
the organizational structure. A goal 𝑔 ∈ 𝐺 ⊂ symbols is a desired
state of the world that the organization hopes to attain. An agent
𝑎 ∈ 𝐴 ⊂ symbols is an entity that acts to achieve the goals it is
committed to. A position 𝑝 ∈ 𝑃 ⊂ symbols is a place-holder for an
agent in an organization. Positions represent the agents necessary
for an organization to function. The agent who occupies a posi-
tion is in charge of achieving the goals assigned to that position.
The goals assigned to a position 𝑝 are specified by the function
𝑔𝑝 . The function 𝑎𝑝 specifies the agent occupying the position 𝑝 ,
considering that 𝑝 is a “free position” when 𝑎𝑝 (𝑝) = 𝜖 .

𝑔𝑝 : 𝑃 → 2𝐺 , ∀𝑝 ∈ 𝑃 , 𝑔𝑝 (𝑝) ≠ {}, 𝑎𝑝 : 𝑃 → 𝐴 ∪ {𝜖}

An agent cannot be bound tomore than one position (i.e.,∀𝑝, 𝑝′ ∈
𝑃 , (𝑝 ≠ 𝑝′) ∧ (𝑎𝑝 (𝑝) ≠ 𝜖) ∧ (𝑎𝑝 (𝑝′) ≠ 𝜖) ⇒ (𝑎𝑝 (𝑝) ≠ 𝑎𝑝 (𝑝′))).
To check if an agent can occupy a position, GoOrg compares the
features that an agent has to the features that the goals assigned
to a position have. A feature 𝑓 is an n-tuple, in which the first
element is a symbol. Besides the first element, optionally, a feature
may have other elements (𝑒2, ..., 𝑒𝑛). The function 𝑓𝑔 specifies the
features required by a goal. The function 𝑓𝑎 specifies the features
an agent has.

𝑓 : ⟨𝑠𝑦𝑚𝑏𝑜𝑙 , 𝑒2, . . . , 𝑒𝑛⟩, 𝑓 ∈ 𝐹 , 𝑓𝑔 : 𝐺 → 2𝐹 , 𝑓𝑎 : 𝐴 → 2𝐹

GoOrg considers that each organizational structure is a particular
description of an organization. An organizational structure 𝑜 is
represented as a tuple.

𝑜 : ⟨𝐺,𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝⟩
Each generated organization has attributes that quantify it. GoOrg

defines the attribute feasibility represented as 𝜅 (𝑜), a real number
in the range [0,1]. If every organizational position has an agent to
occupy it, the organization is considered feasible (𝜅 (𝑜) = 1).

𝜅 (𝑜) = |{𝑎𝑝 (𝑝) |𝑎𝑝 (𝑝) ≠ 𝜖 , 𝑝 ∈ 𝑃}|
|𝑃 |

3 GOORG4PROD: AN EXTENSION OF GOORG
GoOrg must be extended to address the requirements of each do-
main. GoOrg4Prod generates structures of positions responsible
for production activities in a factory. To address it, GoOrg4Prod
specifies that organizational goals are associated with workloads,
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as efforts that should be performed by skilled agents. Thus, a work-
load 𝑤 represents a demanded effort 𝑒 ∈ R+ which requires a skill
𝑠 ∈ 𝑆 ⊂ symbols to be performed.

𝑤 : ⟨𝑠, 𝑒⟩,𝑤 ∈𝑊 ,𝑤𝑔 : 𝐺 → 2𝑊

Fig. 1 highlights the organizational attributes and features added
by GoOrg4Prod to extend the GoOrg model. GoOrg4Prod matches
agents and positions using skills. It uses workloads to calculate the
organization’s efficiency, which among other attributes can be used
to choose organizations based on the user’s preferences.
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Figure 1: GoOrg4Prod model.

GoOrg4Prod considers that organizational positions may have
superordinate-subordinate relationships, which are represented
as “is superior of” relationships. The function 𝑠𝑝 : 𝑃 → 𝑃 ∪ {𝜖}
records the position 𝑝′, which is the immediate superordinate of the
position 𝑝 . If 𝑝 has “no superordinate”, 𝑠𝑝 (𝑝) = 𝜖 . In this extension
of GoOrg, an organizational structure is defined as follows:

𝑜 : ⟨𝐺,𝐴, 𝑃, 𝐹, 𝑔𝑝, 𝑓𝑔, 𝑓𝑎, 𝑎𝑝, 𝑠𝑝,𝑤𝑔⟩
For generating structures, GoOrg4Prod perform a search in the

space, applying three structure transformations: (i) 𝑎𝑑𝑑𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟 (𝑔)
synthesizes a superordinate position and assigns the goal 𝑔 to it; (ii)
𝑎𝑑𝑑𝑆𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (𝑔, 𝑝′) synthesizes the position 𝑝 as subordinate of
𝑝′ and assigns the goal 𝑔 to 𝑝; and (iii) 𝑗𝑜𝑖𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑔, 𝑝) assigns
the goal 𝑔 to a previously synthesized position 𝑝 .

Based on superordinate-subordinate relationships, each struc-
ture’s height is calculated. It refers to how centralized and bureau-
cratic an hierarchical organization is. Based on how the goals are
distributed across positions, the generality is calculated. An organi-
zation with high generality requires agents with more skills, i.e.,
more generalist agents, and the opposite requires more specialist
agents. With the feature workload, the efficiency of an organization
can be quantified. It indicates how close the combined capacity of
the agents, who will occupy the synthesized positions, is to the ex-
pected efforts considering the given goals. For choosing an organiza-
tion among the list of solutions, a partial order relation representing
the user’s preferences is defined as >

𝜌 in which 𝑜 >
𝜌 𝑜′ means that 𝑜

is preferred to 𝑜′. Each organizational attribute (or its complement)
is a criterion 𝑐 . A priority order is represented by a natural number
𝛾 ∈ Γ, in which 𝑐1 is the most important criterion for the user. For
instance, if two criteria were set (Γ = {1, 2}), 𝑜 >

𝜌 𝑜′ is defined as:
𝑜 >

𝜌 𝑜′ ⇐⇒ [𝑐1 (𝑜) > 𝑐1 (𝑜′) ∨ (𝑐1 (𝑜) = 𝑐1 (𝑜′) ∧ 𝑐2 (𝑜) > 𝑐2 (𝑜′)).
GoOrg4Prod checks the organization’s feasibility by matching the
features of the available agents and of the synthesized positions.

4 RESULTS
As a motivating scenario, the agents have to access a database to get
orders, get boxes from shelves, move them near the conveyor belt,

and finally pick items from the boxes to place on the head of the
conveyor belt. These activities are specified as the goals FeedPro-
duction, GetBox, MoveBox$0, MoveBox$1 and PlaceBox that
are associated with workloads. Some skills are required to achieve
these goals: dbaccess, lift, move and pnp (pick and place).

It is assumed that the user prefers the most generalist, efficient
and flat structure in this priority order, and there are three kinds of
agents available: LE, an agent with the skills lift and database access
for lifting boxes on shelves and to program access to an external
database; BT, an agent with the skill move for moving boxes around
the floor; and PP, an agent with the skill pick and place for picking
items from the box and placing them on the conveyor belt.

For this problem, GoOrg4Prod has produced 1,646 organizational
structure candidates, each having all the given goals assigned to
positions. The left-hand side of Fig. 2 presents the candidate #1,
which has only one organizational position. In this structure, one
agent alone is responsible for achieving all organizational goals.
This solution has 100% of generality since all positions (only one in
this case) are assigned to all goals. It also has the minimum height
and has the highest efficiency for this problem. Although it is the
best candidate according to the user’s preferences, this solution
is not feasible since there is no available agent that has all four
required skills (db access, lift, move and pnp).
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Figure 2: The best (left) and the first feasible candidate (right).

The right-hand side of Fig. 2 presents the candidate #134, which
is another of the flattest candidates (just one hierarchy level). How-
ever, it has lower generality compared to the candidate #1 and it has
lower efficiency (as it has three positions). Although it is not the
ideal solution (candidate #1), taking the given available agents and
the user’s preferences, this candidate is GoOrg4Prod’s first choice
since it is the first one that is 100% feasible.

5 CONCLUSION
GoOrg has only the fundamental elements that are found in any
organizational design. It is extensible for dealing with the speci-
ficity and complexity of each domain. This study adopted positions
instead of roles for designing organizational structures. The reason
is that positions carry the same advantage of the roles in respect to
being detached from named agents, while numerically reflecting
the need for resources. It means that the feasibility for a specific
state of an organization can be checked during the design. The
generated candidates have quantified attributes which enables a
multi-criteria approach to choose the “best” organization.
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