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ABSTRACT
We study a novel setting in Online Markov Decision Processes

(OMDPs) where the loss function is chosen by a non-oblivious strate-
gic adversary who follows a no-external regret algorithm. In this

setting, we first demonstrate that MDP-Expert, an existing algo-

rithm that works well with oblivious adversaries can still apply

and achieve a policy regret bound of O(
√︁
𝑇 log(𝐿) +𝜏2

√︁
𝑇 log( |𝐴|))

where 𝐿 is the size of adversary’s pure strategy set and |𝐴| denotes
the size of agent’s action space. Considering real-world games

where the support size of a NE is small, we further propose a new

algorithm: MDP-Online Oracle Expert (MDP-OOE), that achieves

a policy regret bound of O(
√︁
𝑇 log(𝐿) + 𝜏2

√︁
𝑇𝑘 log(𝑘)) where 𝑘

depends only on the support size of the NE. MDP-OOE leverages

the key benefit of Double Oracle in game theory and thus can solve

games with prohibitively large action space. Finally, to better under-

stand the learning dynamics of no-regret methods, under the same

setting of no-external regret adversary in OMDPs, we introduce an

algorithm that achieves last-round convergence result to a NE. To

our best knowledge, this is first work leading to the last iteration

result in OMDPs.
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1 INTRODUCTION
Reinforcement Learning (RL) provides a general solution frame-

work for optimal decision-making under uncertainty, where the

agent aims to minimise its cumulative loss while interacting with

the environment. While RL algorithms have shown empirical and
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theoretical successes in stationary environments, it is an open chal-

lenge to deal with non-stationary environments in which the loss

function and/or the transition dynamics change over time [6]. In

tackling non-stationary environments, we are interested in design-

ing learning algorithms that can achieve no-regret guarantee [4],

where the regret is defined as the difference between the accumu-

lated total loss and the total loss of the best fixed stationary policy

in hindsight.

There are online learning algorithms that can achieve no-external

regret property with changing loss function (but not changing tran-

sition dynamics), either in the full-information [4] or the bandit [7]

settings. However, most existing solutions are established based

on the key assumption that the adversary is oblivious, meaning the

changes in loss functions do not depend on the historical trajecto-

ries of the agent. This crucial assumption limits the applicability

of no-regret algorithms to many RL fields, particularly multi-agent

reinforcement learning (MARL) [9]. In a multi-agent system, since

all agents are learning simultaneously, one agent’s adaption on

its strategy will make the environment non-oblivious from other

agents’ perspective. Therefore, to find the optimal strategy for each

player, one must consider the strategic reactions of others rather

than regarding them as purely oblivious. As such, studying no-

regret algorithms against a non-oblivious adversary is a pivotal

step in adapting existing online learning techniques into MARL

settings.

In this paper, we relax the assumption of the oblivious adversary

in OMDPs and study a new setting where the loss function is chosen

by a strategic agent that follows a no-external regret algorithm.

This setting can be used in applications within economics to model

systems and firms [5], for example, an oligopoly with a dominant

player, or ongoing interactions between industry players and an

authority (e.g., a government that acts as an order-setting body).

Under this setting, we study how the agent can achieve different

goals such as no-policy regret and last-round convergence.

2 MDP-ONLINE ORACLE EXPERT
ALGORITHM

We consider OMDPs where at each round 𝑡 ∈ N, an adversary can

choose the loss function 𝒍𝑡 based on the agent’s history {𝜋1, . . . , 𝜋𝑡−1}.
Formally, we have OMDPs with finite state space 𝑆 ; finite action set

at each state 𝐴; and a fixed transition model 𝑃 . The agent’s starting

state, 𝑥1, is distributed according to some distribution 𝜇0 over 𝑆 . At

time 𝑡 , given state 𝑥𝑡 ∈ 𝑆 , the agent chooses an action 𝑎𝑡 ∈ 𝐴, then
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Algorithm 1 MDP-Online Oracle Expert

1: Initialise: Sets 𝐴1

0
, . . . 𝐴𝑆

0
of effective strategy set in each state

2: for 𝑡 = 1 to ∞ do
3: 𝜋𝑡 = 𝐵𝑅(¯𝒍)
4: if 𝜋𝑡 (𝑠, .) ∈ 𝐴𝑠

𝑡−1
for all 𝑠 then

5: 𝐴𝑠
𝑡 = 𝐴𝑠

𝑡−1
for all 𝑠

6: Using the expert algorithm 𝐵𝑠 with effective strategy set

𝐴𝑠
𝑡 and the feedback 𝑄𝜋𝑡 ,𝒍𝑡 (𝑠, .)

7: else if there exists 𝜋𝑡 (𝑠, .) ∉ 𝐴𝑠
𝑡−1

then
8: 𝐴𝑠

𝑡 = 𝐴𝑠
𝑡−1

∪ 𝜋𝑡 (𝑠, .) if 𝜋𝑡 (𝑠, .) ∉ 𝐴𝑠
𝑡−1

9: 𝐴𝑠
𝑡 = 𝐴𝑠

𝑡−1
∪ 𝑎 if 𝜋𝑡 (𝑠, .) ∈ 𝐴𝑠

𝑡−1
where a is randomly

selected from the set 𝐴/𝐴𝑠
𝑡−1

.

10: Reset the expert algorithm 𝐵𝑠 with effective strategy set

𝐴𝑠
𝑡 and the feedback 𝑄𝜋𝑡 ,𝒍𝑡 (𝑠, .)

11: end if
12:

¯𝒍 =
∑𝑇
𝑖=𝑇𝑖

𝒍𝑡
13: end for

the agent moves to a new random state 𝑥𝑡+1 which is determined by

the fixed transition model 𝑃 (𝑥𝑡+1 |𝑥𝑡 , 𝑎𝑡 ). Simultaneously, the agent

receives an immediate loss 𝒍𝑡 (𝑥𝑡 , 𝑎𝑡 ), in which the loss function

𝒍𝑡 : 𝑆 × 𝐴 → 𝑅 is bounded in [0, 1] |𝐴 |× |𝑆 |
and chosen by the ad-

versary from a simplex Δ𝐿 := {𝒍 ∈ R |𝑆 | |𝐴 | |𝒍 = ∑𝐿
𝑖=1

𝑥𝑖 𝒍𝑖 ,
∑𝐿
𝑖=1

𝑥𝑖 =

1, 𝑥𝑖 ≥ 0 ∀𝑖} where {𝒍1, 𝒍2, . . . , 𝒍𝐿} are the loss vectors of the ad-
versary. We assume zero-sum game setting where the adversary

receives the loss of −𝒍𝑡 (𝑥𝑡 , 𝑎𝑡 ) at round 𝑡 and consider popular full

information feedback [1, 4], meaning the agent can observe the loss

function 𝒍𝑡 after each round 𝑡 .

The MDP-Online Oracle Expert (MDP-OOE) algorithm can be de-

scribed as follows. MDP-OOE maintains a set of effective strategies

𝐴𝑠
𝑡 in each state. In each iteration, the best response with respect to

the average loss function will be calculated. If all the actions in the

best response are included in the current effective strategy set 𝐴𝑠
𝑡

for each state, then the algorithm continues with the current set 𝐴𝑠
𝑡

in each state. Otherwise, the algorithm updates the set of effective

strategies in step 8 and 9 of Algorithm 1. We define the period of

consecutive iterations as one time window 𝑇𝑖 in which the set of

effective strategy 𝐴𝑠
𝑡 stays fixed, i.e., 𝑇𝑖 :=

{
𝑡
�� |𝐴𝑠

𝑡 | = 𝑖
}
. Intuitively,

since both the agent and the adversary use a no-regret algorithm to

play, the average strategy of both players will converge to the NE

of the game. Under the small NE support size assumption, the size

of the agent’s effective strategy set is also small compared to the

whole pure strategy set (i.e., |𝐴| |𝑆 | ). MDP-OOE ignores the pure

strategies with poor average performance and only considers ones

with high average performance. The regret bound of MDP-OOE

can be given as follows:

Theorem 2.1. Suppose the agent uses Algorithm 1 in our online
MDPs setting, then the policy regret with respect to the best fixed
policy in hindsight can be bounded by:

𝑅𝑇 (𝜋) = O(𝜏2

√︁
𝑇𝑘 log(𝑘) +

√︁
𝑇 log(𝐿)),

where 𝑘 is the number of time windows.

In order to prove the above theorem, we first consider the regret

with respect to the policy’s stationary distribution. The full proof

can be found in the main paper [2]. Notably, Algorithm 1 will not

only reduce the regret bound in the case the number of strategy set

𝑘 is small, it also reduces the computational hardness of computing

expert algorithm when the number of experts is prohibitively large.

MDP-Online Oracle Algorithm with 𝜖-best response. In
Algorithm 1, in each iteration the agent needs to calculate the exact

best response to the average loss function
¯𝒍 . Since calculating the

exact best response is computationally hard and maybe infeasible

in many situations [8], an alternative way is to consider 𝜖-best

response. That is, in each iteration in Algorithm 1, the agent can

only access to a 𝜖-best response to the average loss function, where

𝜖 is a predefined parameter. In this situation, we provide the regret

analysis for Algorithm 1 as follows.

Theorem 2.2. Suppose the agent only accesses to 𝜖-best response
in each iteration when following Algorithm 1. If the adversary follows
a no-external regret algorithm then the average strategy of the agent
and the adversary will converge to 𝜖-Nash equilibrium. Furthermore,
the algorithm has 𝜖-regret.

The full proof is given in Appendix A in [2]. Theorem 2.2 implies

that by following MDP-OOE, the agent can optimise the accuracy

level (in terms of 𝜖) based on the data that it receives to obtain the

convergence rate and regret bound accordingly.

3 LAST-ROUND CONVERGENCE TO NE
In this section, we investigate OMDPs where the agent not only

aims to minimize the regret but also stabilize the strategies. This

is motivated by the fact that changing strategies through repeated

games may be undesirable (e.g., see Dinh et al. [3]). In online learn-

ing literature, minimizing regret and achieving the system’s sta-

bility are often two conflict goals. That is, if all player in a system

follows a no-regret algorithm (e.g., MWU, FTRL) to minimise the

regret, then the dynamic of the system will become chaotic and the

strategies of players will not converge in the last round [3].

The Last-Round Convergence OMDP algorithm can be described

as follows. At each odd round, the agent follows the NE strategy

𝜋∗ so that in the next round, the strategy of the adversary will not

deviating from the current strategy. Then, at the following even

round, the agent chooses a strategy such that 𝒅𝜋𝑡 is a direction to-

wards the NE strategy of the adversary. Depending on the distance

between the current strategy of the adversary and its NE, the agent

will choose a step size 𝛼𝑡 such that the strategy of adversary will

approach the NE. The full detail of Last-Round Convergence algo-

rithm can be found in Algorithm 3 in [2]. The following theorem

provides the convergence result for the algorithm:

Theorem 3.1. Assume that the adversary follows the MWU algo-
rithm with non-increasing step size 𝜇𝑡 such that lim𝑇→∞

∑𝑇
𝑡=1

𝜇𝑡 =

∞ and there exists 𝑡 ′ ∈ N with 𝜇𝑡 ′ ≤ 1

3
. If the agent follows Last-

Round Convergence (Algorithm 3 in [2]) then there exists a Nash
equilibrium 𝒍∗ for the adversary such that 𝑙𝑖𝑚𝑡→∞𝒍𝑡 = 𝒍∗ almost
everywhere and 𝑙𝑖𝑚𝑡→∞𝜋𝑡 = 𝜋∗.

The Last-Round Convergence algorithm also applies in situations

where the adversary follows different learning dynamics such as

Follow the Regularized Leader or linear MWU [3](i.e., see Section

6 in [2]). Since both the agent and the adversary converge to a NE,

the NE is also the best fixed strategy in hindsight. Consequently,

Last-Round Convergence algorithm is also a no-regret algorithm

where the regret bound depends on the convergence rate to the NE.
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