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ABSTRACT
This paper is an extended abstract version of "Price of Anarchy

of Traffic Assignment with Exponential Cost Functions [5]". We

study a routing game where vehicles, selfish agents, independently

choose routes to minimize travel delays from road congestion. We

focus on exponential latency functions, unlike prior research using

polynomial functions like BPR.We calculate a tight upper bound for

the price of anarchy and compare it with the BPR function. Results

indicate that the exponential function has a lower upper bound

for traffic volumes below road capacity than the BPR function.

Numerical analysis using real-world data shows that the exponen-

tial function closely approximates road latency with even tighter

parameters, resulting in a relatively lower upper bound.
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1 INTRODUCTION
The traffic assignment problem is modelled as a congestion game

[2], where each player’s cost depends on their chosen route and

the number of others taking the same path. Road travel time is

determined by the number of vehicles on each road, according to

independent cost functions for each road in the network[7]. This

paper explores vehicle behaviour in a road network using game

theory, focusing on selfish decision-making and global optimization

[8], and autonomous driving in various traffic conditions, discussing
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decentralized control (selfish behaviour) and centralized control

(global optimization).

2 PROBLEM FORMULATION
We define a road network as a directed multigraph 𝐺 = (𝑉 , 𝑃)
with a set of nodes (positions) 𝑉 and a set of edges (roads) 𝑃 . An

origin-destination (𝑜, 𝑑) ∈ 𝑉 ×𝑉 is a pair of locations and 𝑂𝐷 =

{(𝑜𝑖 , 𝑑𝑖 ) : ∀𝑖 ∈ [1, 𝑘], 𝑜𝑖 ∈ 𝑉 ,𝑑𝑖 ∈ 𝑉 \ {𝑜𝑖 }} denotes the set of all
such origin-destinations in 𝐺 . A route 𝛾 is a simple path linked

between an (𝑜, 𝑑). Let Γ𝑖 ≠ ∅ denote all possible routes for (𝑜𝑖 , 𝑑𝑖 )
and Γ =

⋃
𝑖∈[1,𝑘 ] Γ𝑖 define all possible routes of 𝐺 . A traffic flow

𝑓 : Γ → R+ is a function that maps each route 𝛾 to a positive

number that represents the traffic volume (number of vehicles

per hour) of that route, and we use 𝑓𝛾 as a shorthand for 𝑓 (𝛾) to
simplify notation. We define the traffic demand 𝑟𝑖 ∈ R as the total

number of vehicles per hour travelling between 𝑜𝑖 and 𝑑𝑖 . We say

that a flow 𝑓 is feasible if and only if it satisfies

∑
𝛾 ∈Γ𝑖 𝑓 (𝛾) = 𝑟𝑖

for all 𝑖 ∈ [1, 𝑘], and we let 𝐹 denote the set of all feasible flows.

Furthermore, we define 𝑓𝑝 =
∑
𝛾 ∈Γ:𝑝∈𝛾 𝑓𝛾 as the traffic flow of the

road 𝑝 for a feasible flow 𝑓 . Each road 𝑝 ∈ 𝑃 has a non-negative,

differentiable and non-decreasing cost function 𝑙𝑝 : R→ R that

takes the traffic flow 𝑓𝑝 of that road as its input and that outputs

the travel time (in seconds) for a vehicle to drive along that road.

We use L to denote the set of all possible cost functions, and, for

some given road network 𝐺 , we use 𝐿 : 𝑃 → L to denote the

function that maps each road 𝑝 to its corresponding cost function

𝑙𝑝 . For a feasible traffic flow, the travel time of a route is 𝑙𝛾 (𝑓𝛾 ) =∑
𝑝∈𝛾 𝑙𝑝 (𝑓𝑝 ) and the cost of a vehicle is the travel time of the route

it selected. Furthermore, we define 𝐶 (𝑓 ) = ∑
𝑝∈𝑃 𝑙𝑝 (𝑓𝑝 ) 𝑓𝑝 as the

social cost incurred by the feasible flow 𝑓 . An instance of the traffic

assignment problem is now defined as a tuple (𝐺, ⃗⃗𝑟, 𝐿), where𝐺 and

𝐿 are as above, and

⃗⃗
𝑟 = (𝑟1, . . . , 𝑟𝑘 ) is a tuple containing the traffic

demand 𝑟𝑖 of each origin-destination (𝑜𝑖 , 𝑑𝑖 ). Given an instance

(𝐺, ⃗⃗𝑟, 𝐿), a feasible flow 𝑓 ∗ ∈ 𝐹 is a user equilibrium (𝑈𝐸) flow
if and only if for any origin-destination 𝑖 ∈ [1, 𝑘] and any 𝛾 ∈ Γ𝑖
with 𝑓 ∗𝛾 > 0, we have 𝑙𝛾 (𝑓 ∗𝛾 ) ≤ 𝑙𝛾 ′ (𝑓 ∗

𝛾 ′ ) for any 𝛾 ′ ∈ Γ𝑖 and a

feasible flow 𝑓 ′ ∈ 𝐹 is a system optimum (𝑆𝑂) flow if and only if

𝐶 (𝑓 ′) = min𝑓 ∈𝐹 𝐶 (𝑓 ). The price of anarchy (𝑃𝑂𝐴) of an instance

is 𝑃𝑜𝐴(𝐺, ⃗⃗𝑟, 𝐿) := 𝐶 (𝑈𝐸 )
𝐶 (𝑆𝑂 ) in which defined as the ratio between the

social cost of the 𝑈𝐸 flow and the social cost of the 𝑆𝑂 flow.
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3 POAWITH EXPONENTIAL FUNCTIONS
We are interested in instances of the traffic assignment problem

where each road has an exponential cost function. Specifically, we

assume that for each road 𝑝 ∈ 𝑃 , the cost function can be expressed

as:

𝑙𝑝 (𝑓𝑝 ) = 𝑎𝑒𝑏𝑓𝑝 + 𝑐 (1)

where 𝑓𝑝 is the traffic flow of road 𝑝 , and 𝑎, 𝑏, and 𝑐 are non-

negative coefficients, and we will sometimes stress this by writing

them as 𝑎𝑝 , 𝑏𝑝 , and 𝑐𝑝 instead for each road. Note that, for any

instance (𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ), there is a unique user equilibrium flow [3, 4],

where 𝐿𝑒𝑥𝑝 is a set of exponential cost functions.

Definition 3.1. (Anarchy Value [6]) Let (𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ) be an instance
with exponential cost functions, and let 𝑓 ∗ denote its user equilib-
rium flow. Then the anarchy value 𝜙𝑝 (

⃗⃗
𝑟 ) of a road 𝑝 is defined as

follows:

𝜙𝑝 (
⃗⃗
𝑟 ) := [𝜆𝑝𝜇𝑝 + (1 − 𝜆𝑝 )]−1 (2)

where 𝜆𝑝 ∈ [0, 1] is the solution of the equation 𝑙∗𝑝 (𝜆𝑝 𝑓 ∗𝑝 ) =

𝑙𝑝 (𝑓 ∗𝑝 ) and 𝜇𝑝 is defined as 𝜇𝑝 :=
𝑙𝑝 (𝜆𝑝 𝑓 ∗𝑝 )
𝑙𝑝 (𝑓 ∗𝑝 )

∈ [0, 1].

Lemma 3.2. For any function 𝑙 of the form of Eq.(1) and for any
positive value 𝑥 ∈ R+, there is a unique value 𝜆 ∈ [0, 1] that solves
the equation 𝑙∗ (𝜆𝑥) = 𝑙 (𝑥) (where 𝑙∗ (𝜆𝑥) := 𝑑

𝑑𝜆𝑥
(𝜆𝑥 · 𝑙 (𝜆𝑥)) is the

marginal cost function of 𝑙 (𝜆𝑥)).

Lemma 3.3. For any instance (𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ), we have:
𝑃𝑜𝐴(𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ) ≤ 𝜙 (𝐿𝑒𝑥𝑝 )

3.1 Upper Bound of the POA
Lemma 3.4. For any instance (𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ), let 𝑓 ∗ denote its user

equilibrium flow. The anarchy value 𝜙𝑝 (
⃗⃗
𝑟 ) of any road 𝑝 ∈ 𝑃 with

cost functions of the form 𝑙 (𝑥) = 𝑎𝑒𝑏𝑥 + 𝑐 , where 𝑎, 𝑏, and 𝑐 are
non-negative coefficients, satisfies:

𝜙𝑝 (
⃗⃗
𝑟 ) ≤ 𝑏𝑥∗

𝑏𝑥∗ + 2 −𝑊 (𝑒𝑏𝑥∗+1) − 1

𝑊 (𝑒𝑏𝑥∗+1 )
(3)

where𝑊 (·) is the Lambert𝑊 function [1] and 𝑥∗ = 𝑓 ∗𝑝 is the UE
flow of the road 𝑝 .

Lemma 3.5. The expression 𝑥

𝑥+2−𝑊 (𝑒𝑥+1 )− 1

𝑊 (𝑒𝑥+1 )
is monotoni-

cally increasing for 𝑥 > 0.

Theorem 3.6. For any instance (𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ) with exponential cost
functions, the price of anarchy satisfies the following.

𝑃𝑜𝐴(𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ) ≤
ˆ𝑏𝑟

ˆ𝑏𝑟 + 2 −𝑊 (𝑒 ˆ𝑏𝑟+1) − 1

𝑊 (𝑒 ˆ𝑏𝑟+1 )

(4)

where 𝑟 :=
∑
𝑖∈[1,𝑘 ] 𝑟𝑖 and ˆ𝑏 := max𝑝∈𝑃 𝑏𝑝 .

3.2 Tightness of the Upper Bound
Theorem 3.7. For any positive numbers ˆ𝑏 and 𝑟 , there exists an

instance (𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ) (see Fig 1) with exponential cost functions, for

which 𝑃𝑜𝐴(𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ) is exactly equal to
ˆ𝑏𝑟

ˆ𝑏𝑟+2−𝑊 (𝑒 ˆ𝑏𝑟+1 )− 1

𝑊 (𝑒 ˆ𝑏𝑟+1 )

.

Figure 1: A Variant of Pigou’s example

3.3 Alternative Upper Bound
Lemma 3.8. For any non-negative 𝑥 , we have

𝑥
𝑙𝑜𝑔 (𝑥+1) ≤ 𝑥

𝑥+2−𝑊 (𝑒𝑥+1 )− 1

𝑊 (𝑒𝑥+1 )
≤ 2𝑥

𝑙𝑜𝑔 (𝑥+1)

Theorem 3.9. For any instance (𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ) with exponential cost
functions, its price of anarchy satisfies:

𝑃𝑜𝐴(𝐺, ⃗⃗𝑟, 𝐿𝑒𝑥𝑝 ) ≤ 2
ˆ𝑏𝑟

𝑙𝑜𝑔 ( ˆ𝑏𝑟+1)

where 𝑟 :=
∑
𝑖∈[1,𝑘 ] 𝑟𝑖 and ˆ𝑏 := max𝑝∈𝑃 𝑏𝑝 .

4 NUMERICAL RESULTS

Figure 2: Real-world Data Curve Fit

We used two regions of the Australian NSW data as a basis. We

consider each of these regions as a single road segment of a road

network, and for each of them, we try to fit the real-world data

with an exponential function and with a BPR function. Looking at

the results in Fig.2 and Table 1 we see that the fit of the exponential

function is slightly better than that of the BPR function, which is

evidence to verify the validity of the exponential function.

Region 𝑚 𝑛 𝑡0 𝑅2

BPR Sydney 0.04671 8.12 139 0.7847

Parramatta 0.03452 5.598 100.7 0.6434

EXP Sydney 0.004602 7.325 138.5 0.7856

Parramatta 0.02734 4.956 100.3 0.6443

Table 1: Curve Fit Results

5 CONCLUSION
The paper investigates the upper bound price of anarchy in road

networks with exponential latency functions. It explores the impact

of changes in traffic demand on this upper bound, comparing it

to the BPR function. Real traffic data supports the validity of the

exponential cost function, which provides higher accuracy than the

BPR function, especially when traffic rates are lower than capacity.
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