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ABSTRACT
Flight delays can significantly affect airline operations. Airlines

use inline recovery actions (e.g., speeding up aircraft cleaning) to

mitigate the effect of flight delays. Inline (or tactical) recovery for

disruptions mostly relies on human expertise that is locally opti-

mal (e.g., at an airport-level). Because an airline is a complex and

stochastic network of dependencies, a locally optimal action may

be globally sub-optimal. Considering global effects for inline recov-

ery is computationally challenging with conventional algorithmic

approaches for optimization. We complement existing approaches

with Stochastic Minplus with State (SMS), a novel agent-based

approach for inline recovery. SMS generalizes message passing

algorithms for a state-dependent stochastic airline network with

resource constraints. We evaluate our approach on a real-world air-

line network with around 4,000 flights per day for two regimes with

1) normal delays, and 2) interrupted operations. As baselines, we use

approaches based on greedy local optimality, integer programming

(IP), and constraint programming (CP). Our evaluation shows that:

1) a globally informed SMS improves over greedy locally optimal

approach by 24.7% in quality, 2) SMS achieves solutions that are

better by 14.1% (10.6%) in quality and 7x (9x) in computation time

over IP (CP) with timeout, and 3) SMS achieves solutions within 5%

of the optimal solution for simpler problem instances.
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1 INTRODUCTION
Controllable delays: Flight delays are estimated to have cost air-

lines and passengers (PAX) in the USA around $33 billion in 2019

[2]. Airlines need to pay for perishable airport usage time. Further,
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PAX and crew inherit delays of their flights, and may miss connec-

tions at hub airports. At a planning level, an airline schedule aims

to handle delays through in-built buffers in the schedule. However,

despite the best of planning, flight operations deviate from the plan.

For example, in 2019, about 21% flights in the USA had more than 15

minutes of arrival delay [26]. At an operational level, delays occur

despite the schedule buffers. About 70% of operational delays are

estimated to be under an airline’s control [1].

Inline recovery: When an incoming flight arrives late, an airline

has a few inline control levers to handle the delay. These include

deploying additional resources for cleaning the aircraft, holding a

departing flight for connecting PAX, etc. (details in Section 2). These

control levers come at a cost (e.g., of labor) and an associated benefit

(e.g., reduced departure delay). The inline/tactical recovery problem,

therefore, is to dynamically decide the appropriate recovery action

for a flight at the Airline Operations Control Center. Because the

airline network is complex and individual actors (e.g, a gate man-

ager) have individual airport-level local metrics for optimality (e.g,

turn-around delay for gate operations at that airport), the decision

making for inline recovery in practice is highly localized at the

airport-level, typically manual, and based on rules of thumb and

department-specific performance targets [12].

Global vs local:While local and manual decision making for inline

recovery is fast, it is most likely sub-optimal. First, the decision

maker cannot take the perspective of the entire airline network due

to the sheer complexity involved. Second, even if they intuitively

understand the current state of the network (e.g., congestion by

time-of-day patterns), the effect of the decisions may appear later

in the network and not be directly quantifiable manually. Third,

different human operators may make varying and highly subjective

calls on local inline recovery for the same network state leading to

unpredictable operations. As we show in our evaluation, a locally

optimal action may not be globally efficient. Therefore, there is a

need for automated decision support for global inline recovery.

Challenges: Automated global inline recovery is non-trivial due to

the complex dependencies between local actions and global effects.

First, the reward for actions is non-linear. For example, delayed

connecting PAX either miss or don’t miss the connection depending

on the time for which a departing flight is held. Second, the action

taken for recovering one flight affects other flights locally. For

example, a flight spending more time at a gate than scheduled

would delay a subsequent flight at the same gate. Third, the action

taken for recovering one flight affects other flights globally. A flight

𝑓𝑗 departing late (primary delay) from an airport 𝐴 𝑗 to 𝐴𝑖 could

result in a subsequent late departure (secondary delay) of the next

flight 𝑓𝑖 departing from 𝐴𝑖 . Fourth, airport resources for recovery
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are constrained. Finally, incoming airline crew need to be eligible

for operating their outgoing next flight. Excess delay might push

them off a shift boundary and make them illegal for a take-off. Thus,

local actions cause higher-order global effects and considering them

for decision making can be computationally challenging.

Problem statement: At time 𝑡 , given the currently known global

state 𝑠𝑡 of a set of flights as a boundary condition, our goal is to

identify, in a computationally efficient manner, the global inline

recovery actions of all flights of the airline, departing across all

airports, over a future optimization horizon [𝑡+𝐿, 𝑡+𝐿+𝐻 ]. In prac-

tice, the problem would be solved by the operations control center

of the airline using data feeds from all airports. This computa-

tion is to be repeated continuously in a rolling horizon fashion for

𝑡 = 0, 𝛿, 2𝛿, · · · . To handle the global effect, we choose a suitably

large horizon 𝐻 as described in Section 6. To handle randomness,

the stochastic optimization objective is to minimize a weighted

combination of expected business performance metrics (departure

delays of flights and missed PAX connections), and the determinis-
tic cost of recovery actions. The constraints need to handle delay

propagation and resource availability for recovery at airports. Be-

cause resources for inline recovery need to be moved across an

airport, decision making and implementation need to be separated

by a lead-time 𝐿. Because the operating conditions are highly dy-

namic, the control timestep 𝛿 cannot be too large. The time for

decision making is limited, thus making conventional optimization

unsatisfactory either in the compute time required or the quality of

solution obtained. Thus, heuristic methods are resorted to but they

may not always incorporate the uncertainty in airline operations.

Our approach: We overcome these challenges and complement

existing works with SMS (Stochastic MinPlus with State), a scal-

able message-passing algorithm for inline recovery, based on the

MaxPlus algorithm [27]. Our focus in this work is on reducing air-

craft delays and missed PAX connections. In MaxPlus, agents A𝑖

coordinate their actions to maximize a joint objective with purely

action-dependent cost functions defined on nodes and edges of the

coordination graph. In SMS, we generalize MaxPlus for airline op-

erations in the following ways. First, we exploit the structure of the

problem explicitly using a coordination graph for airline operations

to capture the interactions between flights and PAX. Second, we

augmentMaxPlus with a state (the inherited delay of an aircraft,

explained in Section 2). Third, we incorporate uncertainty by eval-

uating the message passing payoff functions as stochastic averages

of various optimization scenarios in a simulation environment to

identify the common optimal actions that minimize (hence, the
MinPlus) the expected costs across all the scenarios. Last, we model

resource constraints for inline recovery through a novel way of

resolving potential conflicts using the payoff functions.

Implementation and evaluation:We evaluate our approach on a

simulated environment calibrated with real-world data from a lead-

ing North American airline (anonymized for business requirements)

with about 4,000 flights a day across 126 airports. We consider the

following approaches as baselines for SMS: a do-nothing NOOP

approach that does no inline recovery, a Greedy approach that is lo-

cally optimal, and two conventional optimization approaches based

on constraint programming (CP) and integer (non-linear) program-

ming (IP). All the algorithms except NOOP are implemented in a

model-predictive rolling horizon fashion with (forecasted) scenario-

based optimization. Each approach is finally evaluated over a set

of stochastic evaluation scenarios that is different from the set of

forecasted scenarios but the same across the tested algorithms. The

performance metrics are: 1) a combination of business metrics (cost

of departure delays, cost of missed PAX connections, and cost of

recovery actions), and 2) the computation time. To summarize, our

specific contributions include the following:
• Wemodel inline recovery for intelligent airline operations as

a stochastic optimization problem that captures higher-order

network-wide effects of airport-level local recovery actions.

• We design an agent-based approach for integrated inline

recovery in airline operations. Our approach exploits domain

knowledge encoded as a coordination graph to achieve scale

for real-time decision making.

• We evaluate our approach on a simulated environment cali-

brated with real-world airline data against several baselines

for two different operating regimes: normal delays due to

business as usual (BAU) and higher delays due to irregular

operations (IROP) at geographically close airports.

Our key findings include the following:
• A globally informed SMS outperforms a locally optimal

Greedy approach by 26.3% (24.7%) in the BAU (IROP) regime.

• On realistic problem instances where CP and IP need a time-

out, in the IROP regime, SMS improves over IP (CP) by 14.1%

(10.6%) in business cost, and by 7x (9x) in compute time.

On simpler problem instances where CP or IP completes to

optimality, SMS is within 5% of the optimal CP or IP cost.

• All globally informed control strategies (SMS,CP, IP) identify

a sweet-spot that occurs due to the domain constraints as

the result of two opposing network effects: increasing global

delays and reducing global impact of delays.

• SMS achieves scale because 1) its complexity for the air-

lines domain can be approximated by a linear function of

the problem size (in terms of the number of flights in the

coordination graph), and 2) it handles resource constraints

in a novel way through the message passing functions. CP

and IP fail to scale because their constraints and variables

grow non-linearly with the problem size.

The rest of the paper is organized as follows. Section 2 presents

a brief background of integrated inline recovery in airline opera-

tions and surveys related work. Section 3 presents the optimization

problem statement formally. Section 4 presents the details of our

solution. Section 5 presents the experimental setup used for evalua-

tion. Section 6 presents the results of the evaluation and discusses

the limitations of our approach. Section 7 concludes.

2 BACKGROUND
Actions for inline recovery: Airline disruption recovery is a

well-researched problem in literature, as reviewed in [14]. Such

a disruption recovery involves schedule recovery, aircraft recov-

ery, crew recovery, passenger recovery, or a combination of two

or more. Studies have used a variety of recovery actions such as

flight delay, flight cancellation, aircraft swap, cruise speed control,

PAX itinerary change, and quick ground turn-around [14]. Quick

ground turn-around has shown promise in reducing flight delays
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[24] and intentional delay (i.e., ‘hold’) of connecting flights can

reduce missed PAX connections [20, 24]. A recovery action has a

cost (typically, airport resources or personnel) and a specific impact

on the delay (increase/decrease). Common actions used for inline

recovery that we consider in this paper are:

• Surge: Additional cleaning crew, baggage handlers, etc. speed
up the turn-around process. Due to resource constraints, only

few flights can surge simultaneously at an airport.

• Parallelize: The turn-around process can be sped up by

allowing PAX to board when the aircraft is being refueled.

Because this needs the fire brigade to be near the aircraft,

only few flights can be parallelized simultaneously.

• Hold: The departing flight waits at a gate for incoming PAX.

The resource cost is the gate time. If the gate is shared across

airlines, the airport can impose a delay cost on the waiting

airline. Hold can be of various durations (we choose 5 min,

10 min, 15 min) and each is a separate action.

• No intervention (NOOP) is always a feasible action. Section
5 describes the delay change and resource cost of each of the

six possible actions in our model.

Effect of recovery actions: In airline operations, an incoming

flight is "turned around" as an outgoing flight after deboarding,

cleaning, baggage handling, boarding, etc. Figure 1 illustrates turn-

around processes of two aircraft at an airport. A tail or physical

Surge/parallelize resources

Hold flight

Time 

Figure 1: Turn-around process and inline recovery

aircraft T1 arrives as flight 𝑓𝑗 at the actual (scheduled) time of

arrival 𝑎𝑡𝑎 𝑗 (𝑠𝑡𝑎 𝑗 ), and takes off as flight 𝑓𝑖 at the actual (scheduled)

departure time 𝑎𝑡𝑑𝑖 (𝑠𝑡𝑑𝑖 ). The arrival delay 𝑑
𝐴
𝑗
≜ 𝑎𝑡𝑎 𝑗 − 𝑠𝑡𝑎 𝑗 is the

difference between actual and scheduled times of arrival of 𝑓𝑗 . The

arrival delay 𝑑𝐴
𝑗
of flight 𝑓𝑗 becomes the inherited delay 𝑑𝐼

𝑖
of flight

𝑓𝑖 . If 𝑑
𝐼
𝑖
≥ 0 and the schedule between 𝑓𝑗 and 𝑓𝑖 has no buffer time,

then the departure delay is given by 𝑑𝐷
𝑖

= 𝑑𝐼
𝑖
+ 𝜂𝐺

𝑖
, where 𝜂𝐺

𝑖
is a

random ground delay (in this case, shown as positive). However, if

we speed up the turn-around process by 𝜎𝑖 by surging/parallelizing

resources as an inline recovery, then 𝑑𝐷
𝑖

= 𝑑𝐼
𝑖
+ 𝜂𝐺

𝑖
− 𝜎𝑖 . Provided

𝜂𝐺
𝑖

< 𝜎𝑖 , the inline action attenuates the delay propagation in the

network through a net reduction in the inherited delay. Similarly,

𝑑𝐴
𝑖

= 𝑑𝐷
𝑖

+ 𝜂𝐴
𝑖
, i.e., the arrival delay is the sum of the departure

delay and any randomness 𝜂𝐴
𝑖
encountered in the airtime due to,

say, weather conditions. A dual case is illustrated for the tail T2.
Here, 𝑓𝑘 arrives ahead of schedule, so 𝑑𝐼

𝑙
, the inherited delay of

𝑓𝑙 , is negative. The ground delay 𝜂𝐺
𝑙

is negative, so the flight is

ready for take-off at time 𝑠𝑡𝑑𝑙 if early departures are disallowed.

However, if flight 𝑓𝑙 is held for incoming PAX connecting from a

delayed arrival flight 𝑓𝑗 , then we have the departure delay 𝑑𝐷
𝑙

= 𝜎𝑙 ,

where the inline hold action increases the departure delay by 𝜎𝑙 to

accommodate incoming PAX. Inline actions can thus increase or

decrease the departure delays of outgoing flights.

Optimization methods: Different optimization methods used for

recovery include constraint programming [6], integer program-

ming [10, 16], mixed integer linear programming [9, 17, 25], and

conic quadratic mixed integer programming [4, 7]. These exact

optimization techniques do not scale for a large number of flights

and hence, may not be suitable for inline recovery. Thus, heuristic

approaches [8, 15, 21, 28, 29] have been developed which, though

sub-optimal, can give quick solutions suitable for inline recovery.

However, these heuristic approaches do not always account for

uncertainty in airline operations. To incorporate such an uncer-

tainty, the above methods may be combined with simulations [6],

resulting in ‘simheuristics’ [13]. Digital twins may also be used to

analyze, model, and optimize airline operations [5].

MaxPlus algorithm:MaxPlus [18, 27] is an algorithm for joint

action selection over coordination graphs that is based on passing

payoff messages along edges. It is an anytime heuristic that can

scale to large graphs. It is computationally faster than similar exact

methods of joint action selection like variable elimination. While it

provably converges to the optimal solution for cycle-free graphs, it

has also been shown empirically to work well for graphs with cycles.

The benefits of this algorithm have been demonstrated in domains

like multi-drone delivery [11] and urban traffic lights control [19].

3 PROBLEM STATEMENT
Figure 2 presents an overview of the problem. At each control

timestep 𝑡 , Optimize-actions chooses actions a∗ to minimize the

total business cost over a horizon 𝐻 ranging from 𝑡+𝐿 to 𝑡+𝐿+𝐻

using either our approach or one of the baselines. The global impact

is modeled by considering all flights of the airline departing in 𝐻

across all airports. 𝐿 is the lead time for implementing actions.

Known airline state

Forecasted 
airline state

Live airline 
operations

Recommended 
recovery actions

Modeled state

Figure 2: Overview of inline recovery

Objective: The objective function, 𝑂 to be minimized is defined as

a function of the actions a chosen for all flights to be optimized in

the horizon. It is a weighed sum of the missed PAX connections,

departure delays of flights, and the cost of the interventions:

𝑂 (a) = E𝜼

𝑤𝑃

∑︁
𝑗𝑖

𝑀𝐶 ( 𝑗, 𝑖) +
∑︁
𝑖

𝑤𝐷𝑖
𝑑𝐷𝑖

 +
∑︁
𝑖

𝐶 (𝑎𝑖 ) (1)

a∗ = argmin

a
𝑂 (a) (2)

Here,𝑤𝑃 is the cost incurred per missed PAX (assumed constant),

𝑀𝐶 ( 𝑗, 𝑖) is the number of missed PAX connections from flight 𝑓𝑗 to
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𝑓𝑖 ,𝑤𝐷𝑖
is the cost per unit of departure delay (assumed to depend

on the airport), and 𝐶 (𝑎𝑖 ) is the cost of the intervention action 𝑎𝑖 .

Because the missed connections and the delays are stochastic, we

consider their expectation (E[.]) over the intrinsic random quanti-

ties𝜼, namely, the random ground𝜂𝐺
𝑖
and air𝜂𝐴

𝑖
delays encountered

by each flight 𝑓𝑖 . The cost of actions are assumed deterministic. The

key constraints are as follows:

∀𝑡 ′
𝑡 ′∈[𝑡,𝑡+𝐻 ]∀𝑘

©«
∑︁

𝑖,𝑡 ′ ∈ 𝑡𝑎𝑝𝑖

𝑎𝑖𝑘 ≤ 𝑅𝑘
ª®¬ (3)

∀𝑖, 𝑏𝑖 = 𝑠𝑡𝑎 𝑗 + 𝑑𝐴𝑗 (4)

∀𝑖, 𝑑𝐼𝑖 = 𝑑𝐴𝑗 (5)

∀𝑖, 𝑑𝐷𝑖 = max(max(𝑑𝐼𝑖 + 𝜂
𝐺
𝑖 − 𝑏𝑢𝑓𝑖 , 0) + 𝜎 (𝑎𝑖 ), 0) (6)

∀𝑖, 𝑒𝑖 = 𝑠𝑡𝑑𝑖 + 𝑑𝐷𝑖 (7)

∀𝑖, 𝑑𝐴𝑖 = 𝑑𝐷𝑖 + 𝜂𝐴𝑖 (8)

Resource constraints: Constraint 3 ensures that at any time, the

number of recovery resources used by all flights 𝑓𝑖 for each type

of action 𝑘 does not exceed the resource count 𝑅𝑘 at each airport.

Specifically, if 𝑓𝑖 chooses action 𝑘 (making the binary variable 𝑎𝑖𝑘 =

1), a resource of type 𝑘 would be used during the entire turn-around

process duration 𝑡𝑎𝑝𝑖 of 𝑓𝑖 . Note that this resource constraint is

only enforced for flights departing from the same airport and have

potential overlaps in their turn-around processes.

Delay propagation constraints: Constraint 4 states that a flight 𝑓𝑖
starts its turn-around (at 𝑏𝑖 ) when the previous flight 𝑓𝑗 of the same

tail arrives, which in turn is at the sum of the scheduled time of

arrival 𝑠𝑡𝑎 𝑗 and its arrival delay 𝑑𝐴
𝑗
. Constraint 5 makes the inher-

ited delay of a flight 𝑑𝐼
𝑖
equal the arrival delay of its previous flight

𝑑𝐴
𝑗
. Constraint 6 relates the departure delay 𝑑𝐷

𝑖
to the inherited

delay; random ground-delay 𝜂𝐺
𝑖
; the built-in schedule buffer 𝑏𝑢𝑓𝑖 ;

and the delay change 𝜎 (𝑎𝑖 ) due to action 𝑎𝑖 for flight 𝑓𝑖 . The double
max formulation disallows early departures. Constraint 7 relates

the end-time of service 𝑒𝑖 to the scheduled time of departure 𝑠𝑡𝑑𝑖

and the departure delay 𝑑𝐷
𝑖
. Constraint 8 relates the arrival delay

of a flight 𝑑𝐴
𝑖
to its departure delay and the random air-delay 𝜂𝐴

𝑖
.

3.1 Stochastic Approximation Objective
Constraints 6 and 8 explicitly include external noise from ground

and air operations as in reality. Because the objective has compo-

nents that are non-linear functions of delays (e.g., PAX miss or do

not miss a connection), obtaining a closed form expression for the

expectation in the objective is non-trivial for an arbitrary initial

state of the network. Instead, we approximate the expectation of the

objective as a sample average across several evolutions of the net-

work (i.e., forecasted optimization scenarios) and obtain one common
action vector that optimizes the sample average. This is commonly

referred to as scenario-based optimization in literature. Specifically,

we obtain the actions to be chosen as 𝑎∗ = argmina �̂� (a) where

𝑂 (a) ≈ �̂� (a) ≜
∑𝑘=𝑁
𝑘=1

𝑂 (a, 𝜂𝑘 )
𝑁

(9)

for 𝑁 forecasted optimization scenarios. Once 𝜂𝑘 are sampled, the

optimization problem for �̂� can be solved using solvers. However, as

we show later, conventional optimizers can be too time consuming

to solve the problem in real-time for inline recovery.

4 SOLUTION APPROACH
We now describe Stochastic-Minplus-with-State (SMS) — our

agent-based approach for inline recovery. In MaxPlus, agents are

nodes in a coordination graph. Each agent exchanges messages

with its neighbors in the coordination graph to jointly coordinate

their actions to maximize a common global objective. The common

global objective is defined using node-level (𝜙𝑖 (𝑎𝑖 )) and edge-level

(𝜙𝑖 𝑗 (𝑎𝑖 , 𝑎 𝑗 )) deterministic cost functions of agent actions 𝑎𝑖 , 𝑎 𝑗 as∑︁
𝑣𝑖 ∈𝑉

𝜙𝑖 +
∑︁
𝑒𝑖 𝑗 ∈𝐸

𝜙𝑖 𝑗 (10)

Our approach: In SMS, we generalizeMaxPlus algorithm for in-

line recovery. Specifically, each flight in our approach is an agent

and a coordination graph is defined using domain knowledge to

model the interactions between flights. In addition, we include a

state for each agent and decide coordinated actions in a stochas-
tic environment. Thus, our approach allows state-dependent cost

functions as opposed to purely action-dependent cost functions.

Because we allow randomness, our approach can handle expecta-

tions as a joint objective rather than a deterministic function. The

state-dependent cost functions𝜙 ′
𝑖
and𝜙 ′

𝑖 𝑗
are obtained by evaluating

the 𝜙 functions in the original algorithm for specific states 𝑠𝑖 and 𝑠 𝑗
as 𝜙𝑖 (𝑎𝑖 ; 𝑠𝑖 ) and 𝜙𝑖 𝑗 (𝑎𝑖 , 𝑎 𝑗 ; 𝑠𝑖 , 𝑠 𝑗 ) As the state of a flight depends on
the actions taken by a previous flight, we use a fixed point-iteration
for state-updates between each message passing round.

4.1 Coordination Graph for Airline Operations
We start by constructing an undirected coordination graph 𝐺 =

(𝑉 , 𝐸). The vertex set 𝑉 is the set of flights 𝐹 departing in the

optimization window (of length𝐻 ). An undirected edge 𝑒𝑖 𝑗 is added

between flights 𝑓𝑖 and 𝑓𝑗 in 𝐺 if 𝑓𝑖 and 𝑓𝑗 share either the aircraft

or connecting PAX. Specifically, a tail edge is added to the graph

if the same physical aircraft serving as incoming flight 𝑓𝑗 departs

as outgoing flight 𝑓𝑖 . In this case the arriving delay 𝑑𝐴
𝑗
of flight 𝑓𝑗

becomes the inherited delay 𝑑𝐼
𝑖
of flight 𝑓𝑖 during state updates. A

PAX edge is added to the graph if PAX on incoming flight 𝑓𝑘 connect

to outgoing flight 𝑓𝑖 . So a delay of 𝑓𝑘 would influence the value of

connections missed by 𝑓𝑖 depending upon the arrival delay of 𝑓𝑘 and

the departing delay of 𝑓𝑖 . We allow a tail parent of a flight to also

be a PAX parent if needed with an adjusted cost function. Because

the tail-plan and the PAX connections are assumed to be known,

we treat the structure of the coordination graph as stationary in

each window. The extent of influence would, however, vary with

the individual inherited, arrival, and departure delays of the flights,

and the number of PAX connections.

4.2 State-Dependent Cost Functions
State: The state of each node (flight) 𝑓𝑖 in the graph is the inherited
delay 𝑑𝐼

𝑖
. We refer to nodes who have no neighbors departing ahead

of them in time in the graph as sources. The observed state 𝑑𝐼 of

the source nodes is obtained from the operational data as the result

of the implemented actions of the previous decision windows. For

the non-source nodes (whose actions are to be decided), the actions
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chosen as the algorithm progresses can be propagated through the

coordination graph to obtain a forecasted state. This is captured in

the procedure Update-State which uses Equations 4 – 8 to update

the forecasted state of the network.

Cost functions: The cost functions of nodes and edges in the

coordination graph are such that the sum of the node costs and

the edge costs defined in the MaxPlus objective in Equation 10

matches exactlywith the business optimization objectivementioned

in Equation 1. We expect the cost of an action 𝑎𝑖 of flight 𝑓𝑖 (𝐶𝑖 (𝑎𝑖 ))
to be the node cost of flight 𝑓𝑖 . However, for numerical stability, we

choose node cost to be zero; and instead, amortize the action cost

across all edges incident on the node as 𝑐′
𝑖
(𝑎𝑖 ) ≜ 𝐶𝑖 (𝑎𝑖 )/Δ𝑖 where

Δ𝑖 is the degree of 𝑓𝑖 in 𝐺 . Given the states 𝑑𝐼
𝑖
and 𝑑𝐼

𝑗
of the flights

in an edge 𝑒𝑖 𝑗 in𝐺 , we define the edge cost functions for the actions
as follows. For a tail edge 𝑒𝑖 𝑗 , the cost of the edge is the average

weighted departure delay of the arriving and departing flights 𝑓𝑖 and

𝑓𝑗 , i.e., 𝜙
′
𝑖 𝑗
(𝑎𝑖 , 𝑎 𝑗 , 𝑑𝐼𝑖 , 𝑑

𝐼
𝑗
) ≜ (𝑤𝐷𝑖

𝑑𝐷
𝑖

+𝑤𝐷 𝑗
𝑑𝐷
𝑗
)/2 + 𝑐′

𝑖
(𝑎𝑖 ) + 𝑐′

𝑗
(𝑎 𝑗 ).

Because any non-boundary-condition flight occurs as part of two

tail edges, we divide the delay cost by 2. For boundary-condition

flights, we add the departure delay cost without dividing by 2. For

a PAX edge 𝑒𝑖 𝑗 , the cost 𝜙
′
𝑖 𝑗
(𝑎𝑖 , 𝑎 𝑗 , 𝑑𝐼𝑖 , 𝑑

𝐼
𝑗
) ≜ 𝑤𝑃𝑀𝐶 (𝑖, 𝑗) + 𝑐′

𝑖
(𝑎𝑖 ) +

𝑐′
𝑗
(𝑎 𝑗 ), i.e., the cost of the PAX who miss connections given the

inherited delays of the flights and the actions they take. With these

definitions, the objective in our SMS algorithm matches Equation 1.

This cost functions determination procedure, named Get-Cost, is

used in lines 3, 22, and 24 of the SMS Algorithm 1.

4.3 Algorithm SMS

Given the current state of the network in the coordination graph𝐺 ,

and an initial set of actions, SMS begins by initializing the graph

with an estimated state for all flights in the optimization window.

At the end of this step in line 2 in Algorithm 1, each flight 𝑓𝑖 has

an actual or estimated inherited delay 𝑑𝐼
𝑖
as the result of the initial

set of actions. Collectively the state of the network is represented

as the set of all inherited delays d𝐼 . The local cost functions 𝜙 ′
𝑘𝑖

and 𝜙 ′
𝑘𝑖 𝑗

are initialized in line 3 using the Get-Cost procedure. As

with MaxPlus, SMS proceeds in rounds till convergence. However,

we additionally consider stochastic optimization scenarios as in

Equation 9. These scenarios are parametrized as 𝜂𝑘 . For each 𝜂𝑘 ,

independent random samples of all unseen disturbances are drawn

from the ground delay and the air delay distributions. As in the

baseline IP and CP approaches, the objective is to identify the opti-

mal actions that minimize the sample averaged approximation of

the expected objective. Therefore, the actions for all flights are the

same across all the scenarios. In each round, a flight 𝑓𝑖 coordinates

with its neighbors 𝑓𝑗 to decide the action 𝑎∗
𝑖
that is the most benefi-

cial at a global level. To this end, in lines 6 through 10, each flight

𝑓𝑖 sends a message 𝜇𝑘𝑖 𝑗 to 𝑓𝑗 that is defined as follows:

𝜇𝑘𝑖 𝑗 (𝑎 𝑗 ) ≜ min

𝑎𝑖

©«𝜙 ′𝑘𝑖 (𝑎𝑖 ) + 𝜙 ′
𝑘𝑖 𝑗

(𝑎𝑖 , 𝑎 𝑗 ) +
∑︁

𝑙∈N𝑖−{ 𝑓𝑗 }
𝜇𝑘𝑙𝑖 (𝑎𝑖 )

ª®¬ (11)

The terms in Equation 11 also depend on the appropriate states

𝑑𝐼 and the scenario 𝜂𝑘 but we omit them for brevity. Intuitively,

through message 𝜇𝑘𝑖 𝑗 , the agent 𝑓𝑖 informs its neighbor 𝑓𝑗 (in sce-

nario 𝜂𝑘 ) about the effect of the action 𝑎 𝑗 chosen by 𝑓𝑗 when con-

sidering the local cost at 𝑓𝑖 (using 𝜙
′
𝑘𝑖
), the pairwise edge cost of

Algorithm 1: Stochastic-MinPlus-with-State (𝐺)

// Compute projected state of network assuming all

// flights choose no intervention action

1 a∗ = NOOP

2 d𝐼 = Update-State (𝐺, a∗)
3 ∀𝑖, 𝑗, 𝑘 𝜙 ′

𝑘𝑖
= 0, 𝜙 ′

𝑘𝑖 𝑗
= Get-Cost(𝐺, d𝐼 , a∗)

4 converged = False

5 while not converged
// Compute payoff messages 𝜇𝑘𝑖 𝑗 (𝑎 𝑗 ;𝜂𝑘 ) for each
// scenario 𝜂𝑘 using only actions while

// assuming the state does not change with action

// chosen

6 for each stochastic scenario 𝜂𝑘
7 for each flight 𝑓𝑖 in 𝐺

8 for each 𝑓𝑗 in neighbors N(𝑓𝑖 ) of 𝑓𝑖
9 for each action 𝑎 𝑗 of 𝑓𝑗
10 Compute 𝜇𝑘𝑖 𝑗 (𝑎 𝑗 ;𝜂𝑘 ) as per Eq. 11

// Compute the local payoff at each node 𝑓𝑖
// depending on how it affects its neighbors

11 for each stochastic scenario 𝜂𝑘
12 for each flight 𝑓𝑖 in 𝐺

13 for each action 𝑎𝑖 of 𝑓𝑖

14 𝑔𝑘𝑖 (𝑎𝑖 ;𝜂𝑘 ) = 𝜙 ′
𝑘𝑖
(𝑎𝑖 ;𝜂𝑘 ) +

∑︁
𝑗∈N𝑖

𝜇𝑘 𝑗𝑖 (𝑎𝑖 ;𝜂𝑘 )

// Choose optimal action for flight 𝑓𝑖
15 for each flight 𝑓𝑖 in 𝐺

16 𝑎∗𝑖 = argmin

𝑎𝑖

∑︁
𝑘

𝑔𝑘𝑖 (𝑎𝑖 ;𝜂𝑘 )

// Enforce resource constraints

17 for each flight 𝑓𝑖 in 𝐺

18 𝑎∗𝑖 = Resolve-Conflicts(𝐺, a∗, d𝐼 )
// Update state to be in sync with actions

// chosen in current round

19 d𝐼 = Update-State(𝐺, a∗)
// Compute state-dependent cost function

20 for each stochastic scenario 𝜂𝑘
21 for each flight 𝑓𝑖 in 𝐺

22 𝜙 ′
𝑘𝑖
(𝑎𝑖 , 𝑑𝐼𝑖 ;𝜂𝑘 ) = 0

23 for each neighbor 𝑓𝑗 of 𝑓𝑖

24 𝜙 ′
𝑘𝑖 𝑗

(𝑎𝑖 , 𝑎 𝑗 , 𝑑𝐼𝑖 , 𝑑
𝐼
𝑗
;𝜂𝑘 ) =

Get-Cost(𝐺, d𝐼 , a∗)

the interaction between 𝑓𝑖 and 𝑓𝑗 (using 𝜙 ′
𝑘𝑖 𝑗

), and the effects of

neighbors 𝑓𝑙 (in neighborhood N𝑖 ) other than 𝑓𝑗 (recursively using

previous estimates of 𝜇𝑘𝑙𝑖 ). Once an agent 𝑓𝑖 receives the 𝜇 messages

from all its neighbors 𝑓𝑗 , it consolidates the local payoff of its (i.e.,

𝑓𝑖 ’s) actions through the 𝑔𝑘𝑖 function in line 14.

Stochastic averaging: The 𝜇 and 𝑔 functions are computed by

each agent 𝑓𝑖 for every stochastic scenario 𝜂𝑘 . However, the optimal

action 𝑎∗
𝑖
for 𝑓𝑖 is chosen as that which minimizes the ensemble

averaged 𝑔 function in line 16. This is in line with our goal of

minimizing an expectation approximation as in Equation 9.

Resource constraints: We handle resource constraints by identi-

fying and resolving any conflicts in procedure Resolve-Conflicts

across flights departing from the same airport with overlapping

turn-arounds. Flights are ordered by increasing

∑
𝑘 𝑔𝑘𝑖 (𝑎∗𝑖 ;𝜂𝑘 )−
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Table 1: Cost and benefit of actions

Action Hub cost Spoke cost Delay change
(min)

NOOP 0 0 0

PARALLELIZE 600 400 -5

SURGE 1200 800 -10

HOLD_5 min 60 30 +5

HOLD_10 min 120 60 +10

HOLD_15 min 180 80 +15∑
𝑘 𝑔𝑘𝑖 (NOOP;𝜂𝑘 ), where 𝑎∗𝑖 is the optimal action chosen in line

16. Flights appearing earlier in this ordering get preference on the

shared resource. If no resource is free during the turn-around of a

flight, its optimal action is flipped to the next-best action given by

its 𝑔 function in line 14. This process is repeated for all the flights

and all the intervention actions till there are no more action flips.

At the end of Resolve-Conflicts, we get finalized optimal actions

in line 18 that adhere to the resource constraints as per Equation 3.

State and costs update: In SMS, an agent’s action (e.g., tail-parent’s

hold action) influences the state of another agent (e.g., the inherited

delay of the tail-child). To model this, we implement Update-State

in line 19 that propagates the effect of all currently chosen actions

across the entire network using the coordination graph to give

a new estimated state. Similarly, the local cost functions 𝜙 ′ are
updated for specific states in lines 20 to 24 using the Get-Cost

procedure. To avoid numerical instabilities, we normalize the payoff

functions 𝜇 by the mean across all the actions as in Maxplus.

5 EXPERIMENT SETUP
Dataset: We obtained the tail-plans and schedules of a leading

North American carrier for over a period of 1 week. The tail-plans

provide the mapping between physical aircraft and logical flights

in the airline network. The schedule provides the details of the

scheduled times of arrival and departure of the flights. We assume

that an aircraft on the ground that has a significant gap between

the incoming and outgoing flights is tugged out to the hangar or

tarmac as is the conventional practice. Such an aircraft will be

considered for inline recovery only if it is extremely delayed. For

PAX data, we could obtain only representative data from the airline

due to privacy concerns. Therefore, we generate synthetic PAX data

from the BTS website using the itineraries available. Specifically,

we assume that connections are possible between an incoming

and outgoing flight at an airport if the separation between them

is higher than a minimum connection time of 45 minutes. Next,

we assign a PAX on the incoming flight to a connecting itinerary

with a probability determined by the weight of the OD pairs in the

BTS database. This is done while ensuring that all incoming and

outgoing PAX are accounted for including local ground arrivals

and departures. Table 1 summarizes the costs and benefits (delay

changes) of the actions for hub and spoke airports [23].

Simulation environment:We implement a simulation environ-

ment for airline operations in simpy [3], a discrete event simulation

library based in Python. Using our dataset curated from real-world

sources, we simulate the arrival, turn-around, and departure pro-

cesses of an airline network at scale, with random ground and air

delays drawn from uniform distributions with parameters [0, 10]

minutes and [-4, 8] minutes, respectively. We assume a lead time

𝐿 of 30 minutes, and a control timestep 𝛿 of 45 minutes. At each

airport, we model resource contention to ensure that an arbitrary

number of flights cannot access recovery resources for an inline

action at the same time. We validate the simulation environment by

comparing the average delay, on-time performance, and the number

of PAX missing connections with the real-world environment.

Baselines: We use the following as four baselines for SMS:

• NOOP: We proceed with regular operations without any

operational intervention. This serves as a bound for the

performance on business metrics.

• GREEDY: Each flight makes a locally optimal decision to

optimize the objective in Equation 1 just for that flight alone.

This serves to quantify the difference between considering a

purely local vs a global objective.

• CP (IP) The objective in Equation 1 is solved for a window

of optimization using the constraint (integer) programming

solver cp-sat (SCIP) from the Google or-tools optimiza-

tion suite [22].

Operational Regimes: We consider the following two regimes:

• BAU: This represents business-as-usual evolution of the

network delays without any irregular operations.

• IROP: This represents interrupted operations where all de-

parting flights at airports in the same geographical area incur

higher delays due to temporary irregular operations.

Scenarios: For algorithms that use scenario-based optimization,

we consider |𝜂𝑘 |=10 stochastic forecasted optimization scenarios.

Each regime is evaluated as an average of 20 stochastic evaluation

scenarios that are independent of the optimization scenarios.

Performance metrics: All algorithms are run with a maximum

timeout of 20 minutes reflective of the typical control time available

for airline operations. The business metrics considered are: 1) the

average cost of departure delay of flights (assuming representative

𝑤𝐷 of 180 and 60 units/minute at hub and spoke airports, respec-

tively); 2) the average cost of missed PAX connections (assuming

𝑤𝑃 = 200); 3) the average cost of the actions chosen for inline in-

terventions; and 4) a total cost that is a combination of all these. A

lower cost is better. If the algorithm completes within the timeout,

we consider the optimal solution, else we consider the best interme-

diate solution. In addition, we consider the run-time of algorithms

to either completion or timeout on a server-class machine.

6 RESULTS
Optimization horizon 𝐻 : Figure 3a shows the rationale for the
choice of 𝐻 . A larger 𝐻 would capture more global effects but take

more time. The total cost initially decreases with increasing 𝐻 . It

saturates at 𝐻 = 6 hours for SMS and increases for others due to the

inability to find good solutions. However, the total compute time

across all decision windows, as expected, keeps increasing with 𝐻 .

Therefore, we report our results for 𝐻 = 6 hours for all algorithms.

6.1 Aggregate Performance
Figures 3b and 3c show the business metrics, averaged (by mean)

over the evaluation scenarios, for BAU and IROP regimes, respec-

tively. The X-axis shows individual components of the business
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Figure 3: Aggregate performance (best viewed in color; error bars represent ± 1 standard deviation)

metrics and their combination. The Y-axis shows cost for each com-

ponent. We observe the following. First, NOOP in IROP is worse by

14% than NOOP in BAU in terms of the total cost, confirming that

inline recovery is more important during interrupted operations.

Second, the locally optimal GREEDY strategy is sub-optimal at a
global level. In terms of the total cost, SMS outperforms GREEDY

by 26.3% (24.7%) for BAU (IROP), confirming a need to consider

higher order global effects. Third, with a timeout for decisions,

for both regimes (BAU, IROP), SMS improves total cost over IP (by

17.9%, 14.1%) and CP (by 11.0%, 10.6%). Figures 3d and 3e show

the total compute time across all optimization windows, averaged

(by median) over the evaluation scenarios, for the BAU and IROP

regimes, respectively. IROP roughly takes the same time as BAU

(e.g., 2% difference for IP). The simulation time (to implement the

optimizer decisions) is roughly constant around 90 seconds for each

algorithm. However, the decision time ranges from 60 milliseconds

for GREEDY to around 9 hours for CP. For most decision windows,

CP and IP hit the compute timeout without reaching optimality.

Optimality gap: When IP and CP are run without a timeout, they

do not give an optimal solution for any 𝐻 > 3 hours even after

several days of computation for the complete case of 10 optimization

and 20 evaluation scenarios. Hence, we investigate the optimality

gap on simpler instances. For𝐻 = 3 hours, we find that SMS is within

5% of the optimal solution obtained by CP for the complete case.

For 𝐻 = 6 hours with 1 optimization and 20 evaluation scenarios,

we find that SMS is within 4% of the optimal solution from IP.

Reproducibility:We re-evaluate the algorithms for their aggregate

performance in the BAU regime on another airline with a different

topology. For the new airline, SMS outperforms GREEDY (CP) by

15% (9.1%) in terms of the total cost. SMS is also better by 13x in

computation time over CP with timeout. As these improvements are

similar to those observed for the original airline, the performance

of the SMS algorithm is reproducible on different airlines. We omit

detailed results and plots for the new airline for the sake of brevity.

6.2 Dynamic Performance
Figure 4a shows the time evolution of the algorithms for the IROP

regime. Due to the cyclical nature of airline operations, we see

a cyclical behavior in the cost. The X-axis shows the hour 𝑡 of

operation. The Y-axis shows the total cost for all flights departing

between 𝑡 and 𝑡+1 hours. Each curve shows the ensemble mean over

20 evaluation scenarios and the associated error regions. SMS and

other control interventions are implemented from 𝑡 = 23 to 𝑡 = 48

hours; and the effects are seen from 𝑡 = 24 to 𝑡 = 56 hours. The IROP

regime commences at 𝑡 = 35 and ends at 𝑡 = 38 hours. The curve

‘NOOP-IROP’ shows the cost with these IROP and no intervention.

As a counterfactual, the curve ‘NOOP-BAU’ shows the cost without
IROP (i.e., BAU) and no intervention. NOOP-IROP and NOOP-BAU

diverge around 𝑡 = 33 hours showing the additional cost due to IROP.

Till 𝑡 = 24 hours, there is no effect of the intervention due to lead-

time. At 𝑡 = 24 hours, the effect of the inline recovery algorithms

kicks in; and we observe differing performance. GREEDY shows
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Figure 4: Dynamic performance of the algorithms (best viewed in color)

the least improvement; while SMS has the maximum improvement.

Because global effects compound over time, the inability of CP/IP to

compute good solutions within a timeout initially could potentially

limit them to trajectories with higher cost.

6.3 Viability of Inline Recovery
Figure 4a shows that the benefits of inline recovery occur during

the region marked ‘Effect’. The effect is the most pronounced after
the point marked A in Figure 4b. We consider the BAU scenario with

NOOP and with SMS in Figure 4b for an extended intervention

and simulation period. We see control helps only after the same

phase of cyclical operations marked A in Figure 4b. To explain this

phenomenon, we consider a metric called hops to rest. Delays build
up as an aircraft takes multiple hops during the day as flights across

multiple airports before it goes to rest at a designated airport. A

rest stop is a buffer in the schedule that is large enough to absorb

any delay. Hops to rest is therefore the number of future flights an

aircraft makes before resting. Figure 4c shows the average departure

delay and average hops to rest as a function of the departure hour.

The top-panel shows NOOP while the bottom panel shows SMS. As

an aircraft accumulates delays across flight hops, it moves closer

to its rest stop, so hops to rest decreases while delay increases.

Intuitively, when hops to rest is low, even a highly delayed flight

will have less global impact (trend T1). Conversely, when hops

to rest is high, delays are likely so less that they will not have

much global impact due to schedule buffers (trend T2). Therefore,
intervention becomes viable when the opposing network effects T1
and T2 form a sweet-spot. This is exactly the points marked B for

NOOP and C for SMS, which also correspond to A in Figure 4b.

6.4 Scalability of SMS

Figure 5a shows the decision time for each window. GREEDY and

NOOP are insensitive to the number of flights because they take

purely local decisions. The decision times for CP and IP increase

more rapidly than SMS when the number of flights is large. This can

be explained by considering the internals of the algorithms. Figure

5b shows two curves: 1) the number of variables and constraints for

CP; and 2) the number of messages exchanged by SMS. While these

two are not directly comparable, we empirically observe that SMS
scales approximately linearly with increasing problem sizes (number
of flights), unlike CP which scales non-linearly. This is because each

flight node in the coordination graph likely has a bounded degree

due to interacting edges with other flights, and thus a roughly

linear upper bound on the number of edges. Hence, SMS outspeeds

classical optimization even while producing reasonable .
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Figure 5: Scalability of SMS (best viewed in color)

6.5 Limitations
First, our approachmodels delays as uniformly distributed; in reality

they could be long-tailed. Second, our quantitative approach may

not directly handle qualitative, subjective priorities of an airline (e.g.,

a flagship flight that cannot be delayed). These need to be translated

to an objective cost which may not be possible. Third, while agent-

based coordination is light-weight, it is not guaranteed to converge

always and we may need a fallback heuristic mechanism. Fourth,

our optimization approach does not consider variance and we could

improve it by minimizing the objective while bounding variance.

7 CONCLUSIONS
We addressed the problem of inline recovery with a scalable agent-

based algorithm SMS that can consider higher order global effects.

Our evaluation shows that SMS scales better than conventional

optimization approaches even when achieving similar or better

solution quality in less compute time. Given appropriate data, we

expect our algorithm to be reproducible and show similar improve-

ments for different airlines. We are currently discussing with our

airline business customer for a trial deployment on their develop-

ment environment. Directions for future work include considering

explicit crew constraints, larger action space, various aircraft types,

and variance of business objectives in the optimization.
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