
Provably Learning Nash Policies in
Constrained Markov Potential Games

Pragnya Alatur

Department of Computer Science

ETH Zurich and ETH AI Center

pragnya.alatur@ai.ethz.ch

Giorgia Ramponi
∗

Department of Computer Science

University of Zurich

giorgia.ramponi@uzh.ch

Niao He

Department of Computer Science

ETH Zurich

niao.he@inf.ethz.ch

Andreas Krause

Department of Computer Science

ETH Zurich

krausea@ethz.ch

ABSTRACT
Multi-agent reinforcement learning addresses sequential decision-

making problems with multiple agents, where each agent optimizes

its own objective. In many real-world scenarios, agents not only aim

to maximize their goals but also need to ensure safe behavior. For

example, in traffic routing, each vehicle (acting as an agent) seeks to

reach its destination swiftly (an objective) while avoiding collisions

(a safety constraint). Constrained Markov Games (CMGs) offer a

natural framework for addressing safe MARL problems, but they are

typically computationally challenging. In this work, we introduce

and study Constrained Markov Potential Games (CMPGs), a signifi-

cant subclass of CMGs. Initially, we demonstrate that Nash policies

for CMPGs can be computed through constrained optimization.

Then, we showed that Lagrangian-primal dual methods (one tempt-

ing approach to solve this optimization problem) cannot be used in

this setting. In fact, unlike in single-agent scenarios, CMPGs do not

satisfy strong duality, rendering such approaches inapplicable and

potentially unsafe. To tackle the CMPG problem, we propose a novel

algorithm Coordinate-Ascent for CMPGs with Exploration (CA-

CMPG-E), which provably converges to a Nash policy in tabular,

finite-horizon CMPGs. The idea behind the algorithm is to solve for

each agent a Constrained Markov Decision Process and update the

joint policy in the direction of the steepest improvement. Further-

more, we provide the first sample complexity bounds for learning

Nash policies in unknown CMPGs guaranteeing safe exploration.
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1 Introduction
Multi-Agent Reinforcement Learning (MARL) addresses sequential

decision-making problemswithmultiple agents, where the decisions
of individual agents may also affect others. In this work, we focus on

a rich and fundamental class of MARL problems, known as Markov
Potential Games, [MPGs, 20]. These problems find applications in

crucial domains like traffic routing [3] and wireless communication

[33]. The main characteristic of an MPG is the existence of an

underlying potential function, which captures the agents’ incentives

to deviate between different policies. MPGs can model scenarios

ranging from fully cooperative, where agents share a common

objective, to settings where agents pursue individual goals, as long

as a potential function aligns these objectives. For instance, in

the context of traffic routing, each vehicle aims to identify the

swiftest route to its destination. At the same time, there exists an

underlying objective to minimize congestion, which is intrinsically

tied to optimizing the choices made by each vehicle.

However, in many real-world applications, the standard MPG

framework fails to incorporate additional safety requirements. Con-

sider the aforementioned traffic routing scenario: here, we are not

only interested in identifying the most efficient routes for individual

vehicles but also in ensuring the safety of their journeys by prevent-

ing collisions. Combining these multiple objectives within a single

reward function can be a tricky task, and a more intuitive approach

involves the introduction of ad-hoc constraints. This necessitates a

fresh perspective on the problem, leading us to introduce the innova-

tive framework of Constrained Markov Potential Games (CMPGs).

In CMPGs, we address the critical issue of safety by introduc-

ing coupled constraints on the policies of the agents. These con-

straints introduce a layer of complexity since agents must cooperate

to resolve them, while simultaneously striving to optimize their

individual objectives independently. The significance of coupled

constraints lies in their capacity to model essential requirements

such as collision avoidance, which are inherently challenging to

represent using unilateral constraints.

The objective of CMPGs is to identify a Nash Equilibrium policy

[4, 27]. Such a policy represents a set of strategies where no individ-

ual agent has the incentive to deviate unilaterally while adhering

to the constraints imposed. As previously mentioned, existing al-

gorithms designed for tackling (unconstrained) MPGs, where each

agent independently enhances its own objective, prove inadequate

for addressing the constrained setting. This inadequacy stems from
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the necessity for agents to coordinate their actions effectively to sat-

isfy the imposed constraints. We delve deeper into a comprehensive

discussion of prior work in Section 2.

In this paper, we consider tabular CMPGs in the finite-horizon

setting, and our contributions are summarized as follows:

(1) First, we show that a Nash policy can in principle be recov-

ered by solving a constrained optimization problem, which,

however, becomes intractable as the number of agents in-

creases (Section 4).

(2) Given tractable algorithms for unconstrained MPGs [cf. 18,

20], a tempting approachwould be to utilizing Lagrangian du-

ality to reduce the constrained problem to an unconstrained

one, as done in previous works by [11, 28]. Unfortunately,

we show that strong duality does not hold for our problem

(Section 4), rendering such approaches sub-optimal and un-
safe. This is in sharp contrast to the single-agent setting, for

which strong duality does hold [29].

(3) Instead of solving the constrained optimization problem, we

propose to directly search for a Nash policy. We present our

algorithm – Coordinate-Ascent for CMPGs (CA-CMPG) –

which provably converges to an 𝜀-Nash policy, assuming that

the agents have full knowledge of the CMPG (Section 5).

(4) Finally, we provide a sample complexity bound for our algo-

rithm CA-CMPG, when the agents do not know the CMPG

beforehand (Section 6). With access to a generative model

(Section 6.1), the agents converge to an 𝜀-Nash policy with

Õ
(
𝐻 8

𝜀3𝜁 2

)
samples, where 𝜁 is the Slater constant of the CMPG

and 𝐻 is the horizon. On the other hand, if the agents do not

have access to a generative model, but still want to ensure

safe exploration, we obtain a sample complexity bound of

Õ
(
𝐻 10

𝜀5𝑐2

)
(Section 6.2), where 𝑐 ∈ (0, 𝜁 ] is a quantity related

to the constraint set of the CMPG.

2 Related Work
In this section, we will focus on the results for MPGs in the tabu-

lar setting. Unless remarked, most work below focuses on uncon-
strained MPGs. MARL is a large area of research on its own. For

a more comprehensive overview on MARL, we refer the reader to

the surveys by Yang and Wang [34] and Zhang et al. [35].

Markov Potential Games: MPGs have become popular in re-

cent years and have been studied for the tabular setting [9, 18, 20, 24,

25, 36, 37] and for state-action spaces with function approximation

[10, 12]. For the tabular setting with known rewards and transitions,
Leonardos et al. [20] prove that independent policy gradient (IPG)

converges to an 𝜀-Nash policy in𝑂 (1/𝜀2) iterations. If rewards and
transitions are unknown, Mao et al. [25] prove that IPG with access

to a stochastic gradient oracle converges to an 𝜀-Nash policy with

a sample complexity of O
(
1/𝜀4.5

)
.

In these IPG algorithms, the agents improve their own objectives

independently. It is challenging to apply these algorithms with

coupled constraints, as the agents may need to coordinate to satisfy

those constraints, at least during the learning process. Song et al.

[31] present a different approach for tabular MPGs with unknown

rewards and transitions, in which the agents coordinate to compute

an 𝜀-Nash policy with a sample complexity of Õ(1/𝜀3). Maheshwari

et al. [24] present a different approach with asymptotic convergence

to a Nash policy, whereas we target finite-time convergence. Note

that MPGs are only one way to model MARL problems, and for a

more comprehensive overview on MARL, we refer the reader to

the surveys by Yang and Wang [34] and Zhang et al. [35].

ConstrainedMarkov Decision Processes: A common approach

to constrained single-agent RL are Constrained Markov Decision Pro-
cesses [CMDPs, 2]. CMDPs are widely studied, and a comprehensive

survey is given by Gu et al. [19]. In CMDPs, the agent optimizes

a reward function subject to constraints. Lagrangian duality is a

common approach for constrained optimization and Paternain et al.

[29] proved that CMDPs possess the strong duality property, giving
theoretical justification for the use of Lagrangian dual approaches.

Constrained Markov Games: One of the common approaches

to constrainedmulti-agent RL areConstrainedMarkov Games [CMGs,

4]. CMGs restrict the policies of the agents, which can be used to

model safety objectives. Note that CMPGs are one class of CMGs. In

cooperative CMPGs
1
, where the agents have one common reward

function, the CMPG objective very much resembles the CMDP for-

mulation. Furthermore, Diddigi et al. [11] and Parnika et al. [28]

demonstrate good experimental results for cooperative CMPGswith

Lagrangian dual approaches, but provide no theoretical guarantees.

We prove in our work, however, that strong duality does not hold

in general for CMPGs (cf. Section 4), rendering Lagrangian dual ap-

proaches inapplicable in those cases. Furthermore, we demonstrate

that the dual might even return unsafe solutions. Lu et al. [23] use a

different approach and prove convergence to first-order stationary

points in cooperative CMPGs, which are a weaker notion of the

(generalized) Nash equilibria considered in our work.

Cai et al. [8], Elsayed-Aly et al. [16] propose shield-type mech-

anisms, where a shield prevents the agents’ from taking unsafe

actions. They empirically demonstrate that the agents satisfy the

safety constraints and obtain high rewards, however, they do not

provide any theoretical guarantees on whether the agents converge

to an equilibrium. Shalev-Shwartz et al. [30] model the autonomous

driving task as a CMDP and propose a different approach, which

separates learning a good policy from learning to satisfy the con-

straints. They do not provide any guarantees on whether agents

will reach an equilibrium if they employ their learning algorithm.

We instead focus on the general notion of CMPGs and focus on

learning Nash equilibria in those games.

3 Background and Problem Definition
Notation: For any 𝑛 ∈ N, we use the short-hand notation [𝑛]
to refer to the set of integers {1, ..., 𝑛}. For any finite set 𝑋 , we

denote by Δ𝑋 the probability simplex over 𝑋 , i.e., Δ𝑋 = {𝑣 ∈
[0, 1] |𝑋 | |∑𝑥∈𝑋 𝑣 (𝑥) = 1}.

3.1 Markov Potential Games
An𝑛-agentMarkov Potential Game (MPG) is a tupleG = (S, {A𝑖 }𝑛𝑖=1,
𝐻, {Pℎ}𝐻ℎ=1 , {

{
𝑟𝑖,ℎ

}𝐻
ℎ=1
}𝑛
𝑖=1

, 𝜇), where S is the state space, A𝑖 is

agent 𝑖’s action space. We denote by A ≜ ×𝑛
𝑖=1
A𝑖 the joint action

space,𝐻 ∈ N>0 the horizon.Pℎ : S×A → ΔS is the environment’s

1
Note that cooperative games are a strict subclass of CMPGs, as CMPGs are able to

model non-cooperative settings too.
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transition function at timeℎ ∈ [𝐻 ] andPℎ (𝑠′ |𝑠, 𝑎) denotes the prob-
ability of moving to state 𝑠′ from state-action pair (𝑠, 𝑎) ∈ S × A
at step ℎ ∈ [𝐻 ], 𝑟𝑖,ℎ : S × A → [0, 1] is agent 𝑖’s reward function

at step ℎ ∈ [𝐻 ] and 𝜇 ∈ ΔS denotes the initial state distribution.

We assume S and A to be finite.

Policies: For every agent 𝑖 ∈ [𝑛], we define its policy space as

Π𝑖 ≜
{
{𝜋𝑖,ℎ}𝐻ℎ=1 | 𝜋𝑖,ℎ : S → ΔA𝑖

,∀ℎ ∈ [𝐻 ]
}
.

If agent 𝑖 follows a policy 𝜋 ∈ Π𝑖
, it means that at step ℎ ∈ [𝐻 ]

and state 𝑠 ∈ S, the agent samples its next action from 𝜋ℎ (·|𝑠). We

denote by Π ≜
{
𝝅 = (𝜋1, ..., 𝜋𝑛) |𝜋𝑖 ∈ Π𝑖 ,∀𝑖 ∈ [𝑛]

}
the set of joint

policies. For any policy 𝝅 ∈ Π and agent 𝑖 ∈ [𝑛], we denote by 𝝅−𝑖
the policy of the other 𝑛 − 1 agents.
Value Function: For any policy 𝝅 ∈ Π and agent 𝑖 ∈ [𝑛], the
value function 𝑉 𝑟𝑖 (𝝅) measures the expected, cumulative reward

of agent 𝑖 , and is defined as follows:

𝑉 𝑟𝑖 (𝝅) ≜ E
𝑠∼𝜇,

𝑎ℎ∼𝝅ℎ ( · |𝑠ℎ ),
𝑠ℎ+1∼Pℎ ( · |𝑠ℎ,𝑎ℎ )

[ 𝐻∑︁
ℎ=1

𝑟𝑖,ℎ (𝑠ℎ, 𝑎ℎ) |𝑠0 = 𝑠
]
. (1)

Potential Function: An MPG possesses an underlying potential

function Φ : Π → R such that:

𝑉 𝑟𝑖 (𝜋𝑖 , 𝝅−𝑖 ) −𝑉 𝑟𝑖 (𝜋 ′𝑖 , 𝝅−𝑖 ) = Φ(𝜋𝑖 , 𝝅−𝑖 ) − Φ(𝜋 ′𝑖 , 𝝅−𝑖 )
∀𝜋 ′𝑖 ∈ Π

𝑖 ,∀𝝅 ∈ Π,∀𝑖 ∈ [𝑛] .
(2)

This is an adaptation of the potential function defined in [20] to

the finite-horizon setting. Instead of defining a per-state potential

function, we directly consider the potential function with respect

to the initial distribution 𝜇.

Remark: Note that the potential function is a property of the MPG

and is typically not known to the agents. In a cooperative game, the

agents have one shared reward function 𝑟 such that 𝑟𝑖 ≡ 𝑟 , ∀𝑖 ∈ [𝑛].
In this case, the potential function is simply the value function of

the agents, i.e., Φ = 𝑉 𝑟
. Note, however, that cooperative games

are a strict subset of MPGs, and MPGs have the ability to express

non-cooperative scenarios, such as traffic congestion. In Section 7,

we describe different instances in detail.

3.2 Constrained Markov Potential Games
An 𝑛-agent Constrained Markov Potential Game (CMPG) is an MPG

G = (S, {A𝑖 }𝑛𝑖=1 , 𝐻, {Pℎ}𝐻ℎ=1 , {
{
𝑟𝑖,ℎ

}𝐻
ℎ=1
}𝑛
𝑖=1

, 𝜇) with constraints

{(
{
𝑐 𝑗,ℎ

}𝐻
ℎ=1

, 𝛼 𝑗 )}𝑘𝑗=1, where 𝑐 𝑗,ℎ : S ×A → [0, 1] denotes the 𝑗-th

cost function at step ℎ ∈ [𝐻 ] and 𝛼 𝑗 ∈ [0, 𝐻 ] is the constraint

threshold.
2

Feasible Policies: We call a policy 𝝅 ∈ Π feasible, if it satisfies the
following constraints:

𝑉
𝑐 𝑗
𝜇 (𝝅) ≜ E

𝑠∼𝜇,
𝑎ℎ∼𝝅ℎ ( · |𝑠ℎ ),

𝑠ℎ+1∼Pℎ ( · |𝑠ℎ,𝑎ℎ )

[ 𝐻∑︁
ℎ=1

𝑐 𝑗,ℎ (𝑠ℎ, 𝑎ℎ)
���𝑠0 = 𝑠

]
≤ 𝛼 𝑗 , ∀𝑗 ∈ [𝑘] .

In the rest of the paper, we use Π𝐶 to refer to the set of feasible
policies. For every agent 𝑖 and policy 𝝅−𝑖 of the other 𝑛 − 1 agents,
2
Even though we define our problem in the finite-horizon setting, our results can be

easily extended to the discounted, infinite-horizon setting.

we define Π𝑖
𝐶
(𝝅−𝑖 ) ≜

{
𝜋𝑖 ∈ Π𝑖 | (𝜋𝑖 , 𝝅−𝑖 ) ∈ Π𝐶

}
. We refer to this

type of constraints as coupled constraints, as the values of the

constraints depend on the joint actions of the agents. If we wish to

model an intersection in a traffic scenario, an important constraint

to incorporate would be collision avoidance. To decide whether a

certain set of actions causes a collision or not, we need to take the

actions of all agents at the intersection into account.

In a CMPG, each agent 𝑖 aims to maximize its own value function

𝑉 𝑟𝑖
. Since the rewards and transitions depend on the joint policy,

it may not be possible to find a policy that is globally optimal for

all value functions simultaneously. Instead, the agents typically

need to settle for an equilibrium policy, at which no agent has an

incentive to deviate unilaterally. Many different types of equilibria

exist in the literature, such as the Nash equilibrium [27], correlated

equilibrium [5] or Stackelberg equilibrium [6]. In this work, our

goal is to obtain a Nash equilibrium policy [4, 27] in a CMPG. We

define a relaxed notion in the following paragraph.

𝜀-NashEquilibriumPolicy: For any 𝜀 ≥ 0, a policy𝝅∗ = (𝜋∗
1
, ..., 𝜋∗𝑛) ∈

Π𝐶 is a 𝜀-Nash equilibrium policy, if it is the 𝜀-best-response policy
for each agent, i.e.,

3
:

max

𝜋𝑖 ∈Π𝑖
𝐶
(𝝅∗−𝑖 )

𝑉 𝑟𝑖 (𝜋𝑖 , 𝝅∗−𝑖 ) −𝑉
𝑟𝑖 (𝝅∗) ≤ 𝜀, ∀𝑖 ∈ [𝑛] .

(3)

We call 𝝅∗ a Nash equilibrium policy, if Eq. (3) holds with 𝜀 = 0. In

the rest of the paper, we refer to the Nash equilibrium policy as

Nash policy.

3.3 Constrained Markov Decision Processes
A Constrained Markov Decision Process (CMDP) is a tuple M =

(S,A, 𝐻, {Pℎ}𝐻ℎ=1 , {𝑟ℎ}
𝐻
ℎ=1

, 𝜇, {(
{
𝑐 𝑗,ℎ

}𝐻
ℎ=1

, 𝛼 𝑗 )}𝑘𝑗=1). In a CMDP,

there is a single agent. However, the individual elements inM carry

the same meaning as in CMPGs. Furthermore, the policy sets Π,Π𝐶

and the value functions𝑉 𝑟
: Π → R (reward),𝑉 𝑐 𝑗

: Π → R, 𝑗 ∈ [𝑘]
(costs) are defined in the same way as for CMPGs. In a CMDP, the

agent aims to find a policy 𝜋∗, that satisfies:

𝜋∗ ∈ arg max

𝜋∈Π𝐶

𝑉 𝑟 (𝜋). (4)

In the following section, we prove that a Nash policy in a CMPG can

be found by maximizing the potential function with respect to the

given constraints, similar to Eq. (4). We will show that Lagrangian

duality, a common approach for constrained optimization, will not

work in general for CMPGs.

4 Duality for Constrained Markov Potential
Games?

For an MPG with potential function Φ, a globally optimal policy

𝝅∗ ∈ argmax𝝅 ∈Π Φ(𝝅) is also a Nash policy [20]. We show in

Proposition 4.1 that this property generalizes to CMPGs. We defer

the proofs for all theoretical results in this section to Appendix A.

Proposition 4.1. Define the following constrained optimization
problem:

𝝅∗ ∈ arg max

𝝅 ∈Π𝐶

Φ(𝝅) .
(5)

Then, 𝝅∗ is a Nash policy for a CMPG with potential function Φ.

3
This is an extension of the generalized Nash equilibrium [17] to CMPGs.
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Solving Eq. (5) directly is not trivial; even if the agents know the

rewards and transitions, the potential function is usually not known

to the agents. Moreover, the fact that we have coupled constraints
makes solving Eq. (5) directly intractable. This problem does not

arise in the unconstrained setting because each agent can solve

part of the problem independently.

Nevertheless, a common approach for solving constrained opti-

mization problems is Lagrangian duality, which, in our case, turns

the CMPG into an (unconstrained) MPG with modified rewards

(Proposition 4.2). This would enable the use of scalable algorithms

that have been developed for unconstrained MPGs [20]. Further-

more, in previous works [11, 21], Lagrangian duality was used for

cooperative CMPGs and showed promising experimental results.

This makes Lagrangian duality a tempting approach for CMPGs.

For this, we define the Lagrangian L : Π×R𝑘+ → R and the primal
4

and dual problems for Eq. (5) as follows:

L(𝝅 ,𝝀) ≜ Φ(𝝅) +
𝑘∑︁
𝑗=1

𝜆 𝑗
(
𝛼 𝑗 −𝑉 𝑐 𝑗 (𝝅)

)
(Lagrangian)

𝑃∗ = max

𝝅 ∈Π
min

𝝀∈R𝑘+
L(𝝅 ,𝝀) (Primal)

𝐷∗ = min

𝝀∈R𝑘+
max

𝝅 ∈Π
L(𝝅 ,𝝀) . (Dual)

As a first step, in Proposition 4.2, we prove that the dual problem

does indeed correspond to an (unconstrained) MPG.

Proposition 4.2. For any 𝝀 ∈ R𝑘+, L(·,𝝀) is a potential function
for an MPG with reward functions 𝑟𝑖,ℎ ≜ 𝑟𝑖,ℎ −

∑𝑘
𝑗=1 𝜆 𝑗𝑐 𝑗,ℎ,∀𝑖 ∈

[𝑛],∀ℎ ∈ [𝐻 ].

Then, weak duality guarantees that 𝐷∗ ≥ 𝑃∗ holds. Unfortu-
nately, in the following proposition, however, we show that strong
duality, i.e., 𝐷∗ = 𝑃∗, does not hold in general for CMPGs.

Theorem 4.3. There exists a CMPG, for which strong duality does
not hold, i.e., for which 𝑃∗ ≠ 𝐷∗.

Discussion: To give an intuition on Theorem 4.3, consider a

cooperative CMPG with Φ ≡ 𝑉 𝑟
, i.e., the potential function is equal

to the shared value function 𝑉 𝑟
. Note that, in this case, the primal

problem very much resembles the CMDP objective (Eq. (5)) and

it is tempting to solve the CMPG as a CMDP with a large action

space A = ×𝑛
𝑖=1
A𝑖 . Recall also, that strong duality does indeed

hold for CMDPs [29] and CMDPs can be solved via primal-dual

algorithms. By solving this large CMDP, we obtain a solution 𝝅∗

that specifies distributions over the joint action space A. To obtain

a solution for the original CMPG, however, we require a policy

that can be factored into a set of independent policies

{
𝜋∗
𝑖

}
𝑖∈[𝑛]

such that 𝝅∗
ℎ
(𝑎 |𝑠) = ∏𝑛

𝑖=1 𝜋
∗
𝑖,ℎ
(𝑎𝑖 |𝑠),∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ]. We

show in Appendix A that unfortunately, this property is not always

guaranteed, implying that also for a simple class of CMPGs, strong

duality may not always hold.

5 Solving Constrained Markov Potential Games
In this section, we propose an efficient algorithm to compute Nash

policies in CMPGs
5
. Similar to the work on unconstrained MPGs

4
Note that the primal is equivalent to Eq. (5).

5
Note that we may not find a Nash policy that solves Eq. (5) though.

Algorithm 1 CA-CMPG (Known Transitions)

Require: 𝜀 > 0 (approximation error), 𝝅𝑆 ∈ Π𝐶 (feasible policy),

𝑇 (number of iterations)

1: 𝝅0 ← 𝝅𝑆

2: for 𝑡 = 1, ...,𝑇 do
3: for agent 𝑖 = 1, ..., 𝑛 do
4: Agent 𝑖 computes 𝜋𝑖

𝑡
such that Eq. (6) is satisfied.

5: 𝜀𝑡
𝑖
← 𝑉 𝑟𝑖 (𝜋𝑡

𝑖
, 𝝅𝑡−1
−𝑖 ) −𝑉

𝑟𝑖 (𝝅𝑡−1).
6: if max𝑖∈[𝑛] 𝜀

𝑡
𝑖
> 𝜀/2 then

7: Set 𝝅𝑡 = (𝜋𝑡
𝑗
, 𝝅𝑡−1
− 𝑗 ), where 𝑗 = argmax𝑖∈[𝑛] 𝜀

𝑡
𝑖
, break

ties arbitrarily.

8: else
9: break

by Song et al. [31], in our algorithmCoordinate-Ascent forCMPGs (CA-
CMPG), agents take turns to solve a Constrained Markov Decision
Process (CMDP), i.e., a single-agent reinforcement learning problem,

in every iteration. To do this, the agents need to coordinate, such

that when one agent is solving the CMDP, the others provide a

stationary environment to that agent by keeping their policies fixed.

There are some technical challenges compared to the unconstrained

MPG setting. The main difference is that in the CMPG setting, to en-

sure the convergence to a Nash policy, we need also to ensure that

the intermediate policies remain feasible (see remark at the end of

this section). Our algorithm CA-CMPG is described in Algorithm 1.

We assume for now that the agents know their own reward

functions, the cost functions as well as the transition model. As a

starting point for CA-CMPG, the agents require access to a feasible,

initial policy, which we state in the following assumption:

Assumption 1. Given a CMPG, the agents have access to a feasible
policy 𝝅𝑆 ∈ Π𝐶 .

This type of assumption is common in the single-agent CMDP

setting [7, 22]. While finding such a policy in themulti-agent setting
may be computationally expensive, we provide two examples here

and explain, how such a policy can be computed by the agents. In

both cases, we assume that the CMPG is feasible, i.e., Π𝐶 ≠ ∅.

Example 5.1 (Single Constraint). Consider the problem
min𝝅 ∈Π 𝑉 𝑐1 (𝝅). Since the constraint set is feasible, we must have

that min𝝅 ∈Π 𝑉 𝑐1 (𝝅) ≤ 𝛼1. Note that this is an unconstrained

Markov decision process (MDP) with state space S and action

space A. It is well-known that MDPs always possess at least one

deterministic, optimal policy, which can be computed using dynamic

programming techniques. Thus, we compute a deterministic pol-

icy 𝝅𝐶 ∈ argmin𝝅 ∈Π 𝑉 𝑐1 (𝝅), s.t. for every state 𝑠 ∈ S and step

ℎ ∈ [𝐻 ], there is exactly one action 𝑎 = (𝑎1, ..., 𝑎𝑛) ∈ A, for which

𝝅𝐶
ℎ
(𝑎 |𝑠) = 1 and 𝝅𝐶

ℎ
(𝑎′ |𝑠) = 0,∀𝑎′ ≠ 𝑎. Then, for every agent

𝑖 ∈ [𝑛], we set 𝜋𝐶
𝑖,ℎ
(𝑎𝑖 |𝑠) = 1 and 𝜋𝐶

𝑖,ℎ
(𝑎′

𝑖
|𝑠) = 0, for all 𝑎′

𝑖
≠ 𝑎𝑖 . It is

easy to verify that 𝝅𝐶 =
∏𝑛

𝑖=1 𝜋
𝐶
𝑖
.

Example 5.2 (Independent Transitions and Composite Constraints).
Consider a CMPG with per-agent state spaces S1, ...,S𝑛 and tran-

sition models P1, ...,P𝑛 , where P𝑗,ℎ (𝑠′ |𝑠, 𝑎) is the probability that

agent 𝑗 transitions to state 𝑠′ ∈ S𝑗 from state-action pair (𝑠, 𝑎) ∈
S𝑗 × A 𝑗 at step ℎ ∈ [𝐻 ]. We denote by S ≜ ×𝑛

𝑖=1
S the joint
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state space and define Pℎ (𝑠′ |𝑠, 𝑎) ≜
∏𝑛

𝑖=1 P𝑖ℎ (𝑠
′
𝑖
|𝑠𝑖 , 𝑎𝑖 ) as the joint

probability of transitioning to state 𝑠′ ∈ S from state-action pair

(𝑠, 𝑎) ∈ S × A at step ℎ ∈ [𝐻 ]. Furthermore, assume that for each

𝑗 ∈ [𝑘], the constraint function 𝑐 𝑗 can be written as 𝑐 𝑗,ℎ (𝑠, 𝑎) ≜∑𝑛
𝑖=1 𝑐

𝑖
𝑗,ℎ
(𝑠𝑖 , 𝑎𝑖 ). Due to this, the cumulative constraints can be writ-

ten as 𝑉 𝑐 𝑗 (𝝅) = ∑𝑛
𝑖=1𝑉

𝑐𝑖
𝑗 (𝜋𝑖 ), ∀𝑗 ∈ [𝑘]. To find a feasible policy,

each agent 𝑖 ∈ [𝑛] computes 𝜋𝑖 ∈
{
𝜋 ∈ Π𝑖

���𝑉 𝑐𝑖
𝑗 (𝜋) ≤ 𝑐∗

𝑖
,∀𝑗 ∈ [𝑘]

}
,

where 𝑐∗
𝑖
≜ min𝑐∈R

{
∃𝜋 ∈ Π𝑖

���𝑉 𝑐𝑖
𝑗 (𝜋) ≤ 𝑐,∀𝑗 ∈ [𝑘]

}
. Assuming

that the constraint set is feasible, it is easy to see that𝝅𝑆 = (𝜋𝑆
1
, ..., 𝜋𝑆𝑛 )

must be feasible.

5.1 Algorithm
In CA-CMPG, the agents start with the feasible policy 𝝅𝑆

. In every

iteration, the agents take turns to maximize their own value func-

tion. While one agent is maximizing its value function, the other

agents keep their policy fixed (Line 4); therefore, that agent is essen-

tially solving a CMDP. We defer the exact description of the CMDP

that agent 𝑖 faces in iteration 𝑡 to Appendix B. Let us recall the

CMDP objective from Eq. (4). In practice, we can only solve Eq. (4)

approximately. Given 𝜀 > 0, we assume that in every iteration 𝑡 ,

agent 𝑖 ∈ [𝑛] can efficiently compute a policy 𝜋𝑡
𝑖
∈ Π𝑖

𝐶
(𝝅𝑡−1
−𝑖 ) such

that it satisfies the following conditions
6
:

max

𝜋∈Π𝑖
𝐶
(𝝅𝑡−1
−𝑖 )

𝑉 𝑟𝑖 (𝜋, 𝝅𝑡−1
−𝑖 ) −𝑉

𝑟𝑖 (𝜋𝑡𝑖 , 𝝅
𝑡−1
−𝑖 ) ≤ 𝜀/2.

(6)

Due to the potential property (Eq. (2)), if agent 𝑖 ∈ [𝑛] improves

its own value function, it implicitly also improves the potential

function. To prove that the potential function can be increased only

a finite number of times, implying termination of CA-CMPG, we

require the potential function to be bounded.

Lemma 5.3. Fix an arbitrary base policy 𝝅𝐵 ∈ Π. Then, for every
𝝅 ∈ Π, the potential function can be bounded as:Φ(𝝅) ≤ 𝑛𝐻+Φ(𝝅𝐵).

We defer the proofs of all theoretical results in this section to

Appendix B.

Theorem 5.4. Suppose that Assumption 1 holds. Then, given 𝜀 > 0,
if we invoke CA-CMPG with 𝑇 = 2𝑛𝐻

𝜀 , it converges to an 𝜀-Nash
policy.

Remark: What if we relax the feasibility requirement in Eq. (6)

and allow the CMDP solver to return an 𝜀-feasible policy 𝝅 such

that 𝑉 𝑐 𝑗 (𝝅) ≤ 𝛼 𝑗 + 𝜀, ∀𝑗 ∈ [𝑘], for an 𝜀 > 0? In that case, the

intermediate policies might not be feasible and CA-CMPG may get

stuck in an infeasible policy, which is not a Nash policy.

6 Learning in Unknown Constrained Markov
Potential Games

In this section, we assume that the agents do not know the transition

model beforehand. For simplicity, we assume that they do know the

rewards and costs
7
. Our objective is to establish a sample complexity

6
This can be achieved using state-of-the-art primal-dual methods, such as the work by

Ding et al. [15], Paternain et al. [29].

7
In general, learning the transitions is harder than learning rewards and costs. Con-

cretely, this also means that learning rewards and costs will not add any dominating

terms to the overall sample complexity (see Vaswani et al. [32]).

Algorithm 2 CA-CMPG-E (Unknown Transitions)

Require: 𝜀 > 0 (approximation error), 𝛿 ∈ (0, 1) (confidence),
𝝅𝑆 ∈ Π𝐶 (feasible policy), 𝑇 (number of iterations), 𝑀 > 0

(number of samples per policy)

1: 𝝅0 ← 𝝅𝑆

2: for 𝑡 = 1, ...,𝑇 do
3: Execute policy 𝝅𝑡−1

for 𝑀 episodes and estimate

𝑉 𝑟1 (𝝅𝑡−1), ...,𝑉 𝑟𝑛 (𝝅𝑡−1).
4: for agent 𝑖 = 1, ..., 𝑛 do
5: Agent 𝑖 computes 𝜋𝑖

𝑡
such that Eq. (7) is satisfied.

6: Execute policy (𝜋𝑡
𝑖
, 𝝅𝑡−1
−𝑖 ) for𝑀 episodes and estimate

𝑉 𝑟𝑖 (𝜋𝑡
𝑖
, 𝝅𝑡−1
−𝑖 ).

7: 𝜀𝑡
𝑖
← 𝑉 𝑟𝑖 (𝜋𝑡

𝑖
, 𝝅𝑡−1
−𝑖 ) −𝑉

𝑟𝑖 (𝝅𝑡−1).
8: if max𝑖∈[𝑛] 𝜀

𝑡
𝑖
> 𝜀/2 then

9: Set 𝝅𝑡 = (𝜋 𝑗 𝑡 , 𝝅𝑡−1
− 𝑗 ), where 𝑗 = argmax𝑖∈[𝑛] 𝜀

𝑡
𝑖
, break

ties arbitrarily.

10: else
11: break

bound for learning in CMPGs. Concretely, we want to construct

an algorithm, such that, given any 𝜀 > 0, 𝛿 ∈ (0, 1), the algorithm
returns an 𝜀-Nash policy with probability at least 1−𝛿 , using at most

F (𝜀, 𝛿) samples from the transition model P. Before we proceed,
we define an important quantity related to the constraint set, which

also contributes to the final sample complexity.

Definition 6.1 (Slater constant). Given a feasible CMPG G, we
define its Slater constant 𝜁 as follows:

𝜁 ≜ min

𝑗∈[𝑘 ]
min

𝑖∈[𝑛]
min

𝝅−𝑖 ∈Π\Π𝑖
max

𝜋∈Π𝑖
{𝛼 𝑗 −𝑉 𝑐 𝑗 (𝜋, 𝝅−𝑖 )}.

We call G strictly feasible if and only if 𝜁 > 0.

In the rest of this section, we assume that the agents face an un-

known, strictly feasible CMPG with Slater constant 𝜁 > 0. Next, we

discuss which parts of CA-CMPG need to be adapted for this setting.

(1) In every iteration 𝑡 , each agent 𝑖 ∈ [𝑛] needs to solve the

CMDP described in Section 5 (Line 4). To solve this CMDP,

we assume access to a sample-efficient CMDP solver, which

has the following guarantees: Given 𝜀 > 0, 𝛿 ∈ (0, 1), the
solver uses at most F𝐶

(
|S|, |A𝑖 |, 𝐻, 𝜁 , 𝛿, 𝜀

4

)
samples and re-

turns a policy 𝜋𝑡
𝑖
∈ Π𝑖

𝐶
(𝝅𝑡−1
−𝑖 ) such that it satisfies the fol-

lowing, with probability at least 1 − 𝛿 :
max

𝜋∈Π𝑖
𝐶
(𝝅𝑡−1
−𝑖 )

𝑉 𝑟𝑖 (𝜋, 𝝅𝑡−1
−𝑖 ) −𝑉

𝑟𝑖 (𝜋𝑖 𝑡 , 𝝅𝑡−1
−𝑖 ) ≤ 𝜀/4, (7)

Compared to the setting with known transitions, we have a

stricter bound on the approximation error of 𝜀/4 here. We

discuss in Appendix C, why we require this.

(2) To compute 𝜀𝑡
𝑖
in step 𝑡 , agent 𝑖 needs to estimate the value

functions 𝑉 𝑟𝑖 (𝜋𝑡
𝑖
, 𝝅𝑡−1
−𝑖 ) and 𝑉

𝑟𝑖 (𝝅𝑡−1). For the former, the

agents execute the policy (𝜋𝑡
𝑖
, 𝝅𝑡−1
−𝑖 ) for 𝑀 > 0 episodes

8

and agent 𝑖 estimates 𝑉 𝑟𝑖 (𝜋𝑡
𝑖
, 𝝅𝑡−1
−𝑖 ) with the average of the

observed, cumulative rewards. For the latter, similarly, the

agents execute 𝝅𝑡−1
for𝑀 episodes, but these observations

8
Each episode is a sequence of 𝐻 steps. At the beginning of each episode, the initial

state is freshly sampled from 𝜇.
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can be used to estimate 𝑉 𝑟1 (𝝅𝑡−1), ...,𝑉 𝑟𝑛 (𝝅𝑡−1) simultane-

ously
9
.

The resulting algorithm Coordinate-Ascent for CMPGs with
Exploration (CA-CMPG-E) is described in Algorithm 2.

Theorem 6.2. Given a strictly feasible CMPG G with Slater con-
stant 𝜁 > 0, suppose that the agents have access to an initial feasible
policy (cf. Assumption 1). Furthermore, assume that the agents have
access to a sample-efficient CMDP solver (Eq. (7)). Then, for any 𝜀 > 0,

𝛿 ∈ (0, 1), CA-CMPG-E invoked with 𝑀 = 32𝐻 2

𝜀2
log

(
32𝑛2𝐻
𝜀𝛿

)
and

𝑇 = 4𝑛𝐻
𝜀 returns an 𝜀-Nash policy with probability at least 1 − 𝛿 ,

using the following number of samples:

F (𝜀, 𝛿) ≜
𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

F𝐶
(
|𝑆 |, |A𝑖 |, 𝐻, 𝜁 ,

𝜀𝛿

8𝑛2𝐻
,
𝜀

4

)
+ 256𝑛2𝐻4

𝜀3
log

(
32𝑛2𝐻

𝜀𝛿

)
.

Discussion The previous result is similar to the result obtained

by previous works on unconstrained MPGs. In fact, for uncon-

strained MPGs, without knowing the transition dynamics, the best-

known sample complexity for learning an approximate Nash equi-

librium is of orderO
(
1

𝜀3

)
[10] (or worse,O

(
1

𝜀5

)
, when independent

learning is considered [14]). On the other hand, the sample com-

plexity can increase due to the CMDP solver.

In the next two sub-sections, we will instantiate CA-CMPG-

E with two different state-of-the-art CMDP solvers and state the

resulting sample complexity bounds. Both algorithms are designed

for CMDPs with a single constraint. Due to this, we set 𝑘 = 1 and

denote our cost function by {𝑐ℎ}𝐻ℎ=1 and refer to the constraint

parameter as 𝛼 . Note that this is due to a limitation of the existing

CMDP algorithms and not of CA-CMPG-E.

6.1 Generative model
In this section, we assume that the agents have access to a generative
model, i.e., they can directly query an oracle to obtain samples from

the transition model Pℎ (·|𝑠, 𝑎), for any state-action pair (𝑠, 𝑎) ∈
S×A and anyℎ ∈ [𝐻 ] Similar to previous results in CMDPs [32] we

propose a novel algorithm for finite-horizon CMDPs and describe

it in Algorithm 4 (cf. Appendix D). Lemma D.1 (cf. Appendix D)

establishes the sample complexity for the generative model setting

(Algorithm 4
10
, Appendix D).

Corollary 6.3. Given a strictly feasible CMPG G, assume that its
Slater constant 𝜁 > 0 is known. Furthermore, assume that the agents

invoke Algorithm 4 with 𝜀′ = 𝜀
4
, 𝛿 ′ = O

(
𝜀𝛿
𝑛2𝐻

)
and parameters set

as in Lemma D.1 to solve Eq. (7). Then, for any 𝜀 > 0, 𝛿 ∈ (0, 1), CA-
CMPG-E invoked with𝑀 = O

(
𝐻 2

𝜀2
log

(
𝑛𝐻
𝜀𝛿

))
and 𝑇 = 4𝑛𝐻

𝜀 , returns
an 𝜀-Nash policy with probability at least 1−𝛿 with an overall sample

9
This holds because we assumed that the reward functions are known.

10
Algorithm 4 is the same as Algorithm 2 with a sample-efficient algorithm with access

to a generative model.

complexity of:

F (𝜀, 𝛿) ≤ Õ
©«
𝑛 |S|𝐻8

log

(
1

𝜀𝛿

) ∑𝑛
𝑖=1 |A𝑖 |

𝜀3𝜁 2
+
𝑛2𝐻4

log

(
1

𝜀𝛿

)
𝜀3

ª®®¬ .
Discussion: Compared to the result for unconstrainedMPGs [31,

Theorem 7], our Corollary 6.3 has an additional dependence on
1

𝜁 2

and a worse dependence on the horizon𝐻 . These are due to the fact

that our CMDP solver must always return a feasible policy. Finally,
the sample complexity result in Song et al. [31] explicitly depends

on Φ𝑚𝑎𝑥 ≜ max𝝅 ∈Π Φ(𝝅), whereas we substituted Φmax ≤ 𝑛𝐻

(Lemma 5.3).

6.2 Safe exploration without a generative model
We now consider the more challenging setting where the agents do

not have access to a generative model, but can only explore by exe-

cuting policies and observing the transitions. Moreover, during the

learning process, we want to ensure that the agents explore safely,
i.e. we are not violating the constraints during the all learning pro-

cess. We need then to use a CMDP algorithm with zero-constraint

violations. Existing algorithms with safe exploration for CMDPs

[7, 22] have guarantees on the regret, but no sample complexity

guarantees. To address this, we derive a sample complexity bound

for the algorithm by Bura et al. [7] (Algorithm 5
11

in Appendix E)

in Lemma E.2.

However, to apply this CMDP solver in CA-CMPG-E, we need

to ensure that in every iteration, the agents have access to a strictly
feasible policy

12
. The additional assumption is described below.

Assumption 2. There exists 𝑐 ∈ (0, 𝜁 ] s.t. for any agent 𝑖 ∈ [𝑛]
and policy 𝝅−𝑖 ∈ Π𝐶 \ Π𝑖 of the other agents, the agent can obtain a
strictly feasible policy 𝜋 ∈ Π𝑖 s.t. 𝑉 𝑐 (𝜋, 𝝅−𝑖 ) ≤ 𝛼 − 𝑐 .

This is a stronger assumption than in Section 6.1, as we addition-

ally require access to a strictly feasible policy for every CMDP that

is solved in CA-CMPG-E.

Corollary 6.4. Suppose that Assumption 2 holds. Given 𝜀 >

0, 𝛿 ∈ (0, 1), assume that we invoke CA-CMPG-E with 𝑀 = O
(
𝐻 2

𝜀2

log

(
𝑛𝐻
𝜀𝛿

) )
and𝑇 = 4𝑛𝐻

𝜀 . Furthermore, assume that we use Algorithm

5 as CMDP solver with 𝜀′ = 𝜀
4
, 𝛿 ′ = O

(
𝜀𝛿
𝑛2𝐻

)
and parameters set

as in Lemma E.2. Then, CA-CMPG-E returns an 𝜀-Nash policy with
probability at least 1 − 𝛿 with an overall sample complexity of:

F (𝜀, 𝛿) ≤ Õ
©«
𝑛 |S|2𝐻10

log

(
1

𝜀𝛿

) ∑𝑛
𝑖=1 |A𝑖 |

𝜀5𝑐2
+
𝑛2𝐻4

log

(
1

𝜀𝛿

)
𝜀3

ª®®¬ .
Discussion: Note that to satisfy Assumption 2, any 𝑐 ∈ (0, 𝜁 ]

is a valid choice. A large 𝑐 yields a better sample complexity for

Corollary 6.4, but restricts the set of strictly feasible policies for

the CMDP solver. A smaller 𝑐 increases the sample complexity, but

gives more flexibility, as it allows for a larger set of strictly feasible

11
Algorithm 5 is the same as Algorithm 2 with a sample-efficient algorithm without

access to a generative model.

12
This assumption is related to the CMDP solver used, and could be not necessary for

different CMDP solvers.
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Figure 1: Grid world experiment: Fig. 1a illustrates the state space that the agents navigate in. Both agents start from the bottom
left state and their goal is to maximize the sum of their individual rewards. The numbers on the states indicate the rewards
associated with those states. Fig. 1b displays the policies with their corresponding probabilities returned by CA-CMPG. If the
agents were to solve the dual problem directly (Section 4), theymight obtain the policy illustrated in Fig. 1c, which is not feasible.

policies. Comparing the two corollaries, we observe that safe ex-

ploration without a generative model leads to a worse dependence

of |𝑆 |, 𝐻 , and 𝜀.

The obtained sample complexity is worse compared to the re-

sults in the unconstrained setting [31]. On the other hand, it is

comparable with new results on MPGs with independent learning

[13]. We need also to notice that exploring safely is a harder task

with respect to the usual MPG setting and that a worse sample

complexity can be expected.

7 Experiments
Grid world: We consider a cooperative CMPG with two agents,

in which the agents navigate in a 4x4 grid world (more details can

be found in Appendix F). Each cell in the grid represents a state

and in every state, each agent can choose to move up, right, down,
or left. State transitions are deterministic and if an agent selects an

action that would make it leave the grid, it remains in the current

state. Fig. 1a illustrates the rewards that an agent can obtain in

the individual states. Both agents start from the bottom left state

and their goal is to reach the target state, which is the state with

a reward of 10. To model this as a cooperative game, we set the

agents’ joint objective to be the sum of their individual rewards.

Whenever the agents are in the same state, excluding the start and

target states, they collide and incur a cost of 1. The agents must

keep the expected cost below a pre-defined threshold 𝛼 ∈ [0, 1].
The resulting policies with the corresponding probabilities are

shown in Fig. 1b. With this, the agents collide once with probability

0.1, thus, satisfying the constraint of the experiment. On the other

hand, if we solve the Lagrangian dual problem directly (Section 4),

one of the returned policies is illustrated in Fig. 1c. In this case, they

always have one collision, which does not satisfy the constraint of

the experiment, leading then to an infeasible policy.

We evaluate our algorithm CA-CMPG with known transitions

and use a primal-dual algorithm as CMDP solver. We set the horizon

to𝐻 = 6 and use a threshold of𝛼 = 0.1. Fig. 2a (top row) displays the

reward differences between the current policy and the new policy

for both agents and after every cycle of the algorithm, averaged over

20 runs. One cycle corresponds to one full iteration of Algorithm 2,

i.e. all agents solving their CMDPs. When the reward differences

reach zero for both agents, this implies that the agents have con-

verged to a Nash policy. The bottom row tracks the cost over the

cycles of Algorithm 2. The agents start from a strictly feasible policy

with a cost of 0, and converge to a policy with a cost close to 𝛼 .

Congestion game: We consider a finite-horizon version of the

setup described in Leonardos et al. [20] in which every state is a

congestion game
13
. The game (cf. Appendix F) consists of two states

S = {safe, unsafe}, 𝑁 agents and action space A = {𝐴, 𝐵,𝐶, 𝐷}
for every agent. Each action 𝑎 ∈ A in state 𝑠 ∈ S has a weight

𝑤𝑠
𝑎 > 0 associated with it. In the safe state, an agent that selects

action 𝑎 ∈ A, receives a reward of 𝑘𝑎 · 𝑤safe
𝑎 , where 𝑘𝑎 denotes

the number of agents that selected action 𝑎. In the unsafe state,

the reward structure is similar, however, we subtract an offset

𝑐 ≥ 0, resulting in a reward of 𝑘𝑎 · 𝑤unsafe
𝑎 − 𝑐 . In both states

𝑠 ∈ S, the weights follow the order 𝑤𝑠
𝐴

< 𝑤𝑠
𝐵

< 𝑤𝑠
𝐶

< 𝑤𝑠
𝐷
.

Thus, in both states, the agents prefer to take the action that is

chosen by most agents. Furthermore, for every action 𝑎 ∈ A,

𝑘𝑎 ·𝑤safe
𝑎 ≫ 𝑘𝑎 ·𝑤unsafe

𝑎 −𝑐 s.t. the agents prefer to stay in the safe

state. In the safe state, if more than 𝑁 /2 agents choose the same

action, the system transitions to the unsafe state. To get back to the

safe state from the unsafe state, the agents must equally distribute

themselves among the four actions (see more details in Appendix F).

We evaluate our algorithm CA-CMPG with 𝑁 = 8 agents and

a horizon of 𝐻 = 2. Furthermore, we assume that the transitions

are known and use a linear program to solve the CMDPs [2]. For

the initial state, we set 𝜇 (safe) = 𝜇 (unsafe) = 0.5. At step ℎ = 1,

in the unsafe state, if more than 𝑁 /2 agents select the same action,

the agents incur a cost of 1. Their goal is to keep the cost below a

threshold 𝛼 = 0.5. Fig. 2b (top row) displays, as before, the reward

differences between the current policy and the new policy, for each

agents and averaged over 50 runs. When this difference reaches

zero, this implies that the agents have converged to a Nash policy.

The bottom plots track the cost over the cycles of Algorithm 2. The

agents start from a strictly feasible policy with a cost of 0, and

converge to a value close to 𝛼 .

13
Note that every congestion game is also a potential game and vice versa [26]; however,

the setup considered here may not necessarily be MPGs as pointed out in Leonardos

et al. [20].
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(a) Grid world
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(b) Congestion game

Figure 2: These plots illustrate the results of the grid world (Fig. 2a) and congestion game (Fig. 2b) experiments. One cycle on the
x-axis corresponds to one full iteration of Algorithm 2, i.e. all𝑁 agents solving their CMDPs. The top row displays, for each agent,
an average of their reward difference between the current and new policy. When the difference reaches zero, they converge to
a Nash policy. The bottom row tracks the averaged cost over the cycles of Algorithm 2 (green, solid line). The agents start from
a strictly feasible policy and converge to a cost close to 𝛼 (red, dashed line). In all plots, we additionally plot the standard error.

8 Conclusion
In this paper, we made a significant contribution by demonstrating

that strong duality does not always hold in the context of Con-

strained Markov Potential Games (CMPGs). This shows how the

problem of safety in multi-agent systems is intrinsically harder

with respect to the single-agent one. Moreover, this finding opens

up an intriguing avenue for future research, which revolves around

the exploration of the specific conditions under which primal-dual

methods might offer effective solutions for CMPGs. Unraveling

these conditions could shed light on how to adapt and refine opti-

mization techniques for this class of complex problems.

In our quest to address the challenges posed by CMPGs, we have

introduced our novel algorithm, Coordinate-Ascent for CMPGs
with Exploration (CA-CMPG-E). This algorithm is not just a the-

oretical construct but a practical tool that has been proven to

converge to an 𝜀-Nash policy in the finite-horizon setting. It’s

worth noting that the applicability of our algorithm extends beyond

this setting. In particular, it can be readily adapted to handle the

discounted, infinite-horizon setting by leveraging a suitable Con-

strained Markov Decision Process (CMDP) solver as a sub-routine.

This adaptability underscores the versatility and robustness of our

proposed solution, making it applicable in various scenarios.

Furthermore, we have gone a step further in advancing the re-

search in Constrained Markov Games by establishing the first sam-
ple complexity bound for learning within CMPGs. Our work has

shown that in the context of CA-CMPG-E, exploration primarily

occurs within the CMDP sub-routines. This observation sparks an

interesting avenue for future exploration: studying whether it is

possible to optimize the sample complexity bound further in the

case of the generative model setting (as elaborated in Sec.6.1) by

shifting the exploration process outside the CMDP sub-routines.

This intriguing question paves the way for potentially enhanc-

ing the efficiency and effectiveness of our algorithm, pushing the

boundaries of what is achievable in the realm of CMPGs.

Another interesting future research direction would be to study

a lower bound for the sample complexity of the setting without

access to the generative model. In fact, our result shows a sample

complexity of the order O
(
1

𝜀5

)
and would be interested to under-

stand if this result can be improved or it is due to the complexity of

the considered setting.

To conclude, our work establishes the first theoretical guarantees

for learning Nash equilibria in CMPGs, which form an important

class of safe MARL problems. However, more research needs to be

done in order to provide safe and efficient algorithms that can be

applied to real-world applications.

Supplementarymaterial: The supplementary material can

be found in Alatur et al. [1].
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