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ABSTRACT
Off-policy reinforcement learning algorithms maintain a replay

buffer to utilize samples obtained from earlier policies. The sampling

strategy that prioritizes certain data in a buffer to train the value

function or the policy, has been shown to significantly influence

the sample efficiency and the final performance of the algorithm.

However, which distribution for the experience prioritization is the

best choice has not been explored thoroughly. In this paper, we

proved that the post-update policy distribution (i.e. the visitation

distribution of the policy after the current iteration of update) is

the best Q training distribution to benefit the policy improvement.

Nevertheless, accessing this "future" distribution is not straight-

forward. In this work, we find that the current experiences can be

modulated by the critic information to simulate the post-update

policy distribution. Technically, we derive the gradient of the visi-

tation distribution with respect to the policy parameter and obtain

an explicit expression to approximate the post-update policy dis-

tribution. The derived method is named as Foresight Distribution
Adjustment (FoDA), and seamlessly integrates with conventional

off-policy actor-critic algorithms. Our experiments validate FoDA’s

ability to closely approximate the post-update policy distribution,

and demonstrate its utility in enhancing performance across con-

tinuous control task benchmarks.

KEYWORDS
Reinforcement Learning; Off-policy Reinforcement Learning; Expe-

rience Replay

∗
Equal Contribution

†
Corresponding Author.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

ACM Reference Format:
Ruifeng Chen

∗
, Xu-Hui Liu

∗
, Tian-Shuo Liu

∗
, Shengyi Jiang, Feng Xu,

and Yang Yu
†
. 2024. Foresight Distribution Adjustment for Off-policy Re-

inforcement Learning. In Proc. of the 23rd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2024), Auckland, New
Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Reinforcement learning [13, 14, 25, 27, 33, 36] has achieved impres-

sive success in a wide range of sequential decision problems, e.g.,

sequential recommendation systems [43, 46], auto and robotic lo-

comotion skill learning [9, 29]. Off-policy reinforcement learning

algorithms [7, 9, 19] utilize a diverse set of experience data in the

replay buffer collected by previous policies along the policy im-

provement path, which enables higher data efficiency compared

with on-policy methods. Many previous works [16, 24, 31, 35] found

that emphasizing important samples in the replay buffer can bring

additional benefits. Therefore, one question arises:Which samples
are of greater importance to train the 𝑄 function?

To tackle this problem, we revisit the distribution shift issue in
off-policy reinforcement learning. The 𝑄 function is trained under

the data distribution in the replay buffer, while the induced pol-

icy runs on its own visitation distribution, named as post-update
policy distribution. We provide a new theoretical interpretation to

understand how the distribution shift affects the learning efficiency,

which shows that distribution shift is one of the sources of the

objective mismatch between policy improvement and 𝑄 function

training, and a smaller difference between𝑄 function training distri-

bution and post-update policy distribution leads to a less objective

mismatch issue. This motivates us to use post-update policy distri-

bution as Q training distribution to further reduce the mismatch.

However, it is difficult to obtain the post-update policy distri-

bution directly, because the post-update policy has not interacted

with the environment and thus its visitation distribution is not ac-

cessible. In fact, previous works also faced this problem [24, 32, 33].
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To deal with this problem, they either limit the update of the pol-

icy [32, 33], or directly use the distribution of the current policy as

a surrogate [24]. The two methods all hinder the efficiency of policy

optimization. In contrast, we notice a basic fact that the upcoming

policy update is guided by the current critic and the environment

transition information contained in the current experiences can be

reused to estimate visitation distribution of new policies. Based on

this insight, we study the gradient of the visitation distribution with

respect to the policy parameter and obtain an explicit expression

to predict the post-update policy distribution. Then we propose a

practical method to minimize the Bellman error under the predicted

post-update policy distribution. We name this method Foresight
Distribution Adjustment (FoDA), meaning to foresee the upcoming

distribution change and adjust the training distribution accordingly.

We demonstrate the effectiveness of FoDA in post-update dis-

tribution prediction, verify that FoDA is able to approximate the

real visitation distribution of the post-update policy, and show-

case the performance and efficiency improvement on a suite of

DeepMind Control [37], Gym MuJoCo [4, 38] and MetaWorld [44]

tasks when combined with Soft Actor-Critic (SAC) [9], one of the

most prevalent off-policy actor-critic methods. We also conduct a

hyperparameter sensitivity test to show the robustness of FoDA.

The main contributions of this paper include:

(1) identifying the post-update policy distribution as a desirable

priority distribution for the Q training to benefit the policy

improvement (Section 4);

(2) deriving an expression of the post-update policy distribution

estimate based on the investigation of distribution shift (Sec-

tion 5.1);

(3) proposing a practical method FoDA for off-policy actor-critic

algorithms (Section 5.2), and demonstrating its efficacy by

experiments when combined with Soft Actor-Critic algo-

rithm.

2 RELATEDWORKS
Experience replay [20] has been extensively studied and shown

to be a powerful technique to improve sample efficiency and en-

hance performance in off-policy RL algorithms. Recent researches

mainly focus on non-uniform sampling strategies. In model-based

planning, prioritized sweeping [2, 28, 39] was adopted to update

the states with the largest Bellman error, which makes the plan-

ning process more efficient. Similarly, Schaul et al. [31] proposed

Prioritized Experience Replay (PER) to assign priorities to tran-

sition samples based on the TD error in model-free value-based

deep RL, which demonstrated significant learning efficiency im-

provements compared to the uniform sampling strategy. Prioritized

sequence experience replay [3] extended PER to propagate the

priority to previous transitions in the replay buffer. However, the

simple TD-error-based sampling strategy does not help much in

continuous-action control tasks and can even be harmful, unless

more heuristic modifications and tricks are used [6, 17].

Another line of work noticed that the near on-policy data are

more valuable than those collected by stale policies even in off-

policy RL algorithms. Emphasizing Recent Experience (ERE) [42]

used a hierarchical sampling strategy to sample data from recent

policies more frequently. Likelihood-free Importance Weighting

(LFIW) [35] maintained a small fast buffer and a large slow buffer,

where the data in the fast buffer were regarded as near on-policy

data, and estimated the importance weight between the fast buffer

and the slow buffer distribution so as to adjust the data distribution

toward on-policy. Liu et al. [24] provided an overall insight into the

experience data distribution from the perspective of regret mini-

mization, where one of the emphasized factors is exactly the data

on-policiness. Besides, some researchers noticed the influence on

𝑄-target accuracy and have proposed several heuristic solutions

such as re-weighting transitions according to the cumulative bell-

man error [16, 24] and prioritizing the transitions near the end of

trajectories [10, 18, 24]. Some other works [11, 12, 23, 26] focused

on changing the buffer distribution on imitation learning setting,

implying the effectiveness of distribution adjustment.

3 BACKGROUND
A Markov decision process (MDP) is defined by (S,A, 𝑝, 𝑟, 𝛾, 𝜌0),
where S is the state space, A is the action space, 𝑝 (·|𝑠, 𝑎) is the
transition probability, 𝑟 (𝑠, 𝑎) ∈ [0, 𝑅max] is the reward function,

𝛾 ∈ (0, 1) is the discount factor, and 𝜌0 (𝑠) is the initial state dis-
tribution. Reinforcement learning aims to learn a policy 𝜋 (𝑎 |𝑠)
to maximize the expected return 𝜂 (𝜋) = E𝜏∼𝑃𝜋

∑∞
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ),
where the expectation is taken under sequential data distribution

generated by interaction between policy and environment.

Given a fixed policy 𝜋 , we define the state visitation distribution

at timestep 𝑡 as𝑑𝜋𝑡 (𝑠) = 𝑃𝜋 (𝑠𝑡 = 𝑠). Then the discounted state visita-
tion distribution and the discounted state-action visitation distribu-

tion can be defined as 𝜌𝜋 (𝑠) = (1 − 𝛾)∑∞
𝑡=0

𝛾𝑡𝑑𝜋𝑡 (𝑠) and 𝑑𝜋 (𝑠, 𝑎) =
𝜌𝜋 (𝑠)𝜋 (𝑎 |𝑠) = (1 − 𝛾)∑∞

𝑡=0
𝛾𝑡𝑃𝜋 (𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) respectively. The

discounted state-action visitation distribution is also known as oc-

cupancy measure. We use the standard definition of the state-action

value function 𝑄𝜋 (𝑠, 𝑎) = E𝜋
[ ∑∞

𝑡=0
𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠, 𝑎0 = 𝑎

]
and

the state value function is defined as 𝑉 𝜋 (𝑠) = 𝑄𝜋 (𝑠, 𝜋). The opti-
mal 𝑄 function 𝑄∗

is the 𝑄 function of some policy 𝜋∗ satisfying
𝑄∗ (𝑠, 𝑎) ≥ 𝑄𝜋 (𝑠, 𝑎) for all 𝑠, 𝑎, and the policy 𝜋∗ is called an optimal

policy.

Define the Bellman expectation operator B𝜋
: RS×A → RS×A

as:

(B𝜋 𝑓 ) (𝑠, 𝑎) := 𝑟 (𝑠, 𝑎) + 𝛾E𝑠′∼𝑝 ( · |𝑠,𝑎),𝑎′∼𝜋 ( · |𝑠′ ) 𝑓 (𝑠′, 𝑎′),

where 𝑓 ∈ RS×A
. Given the current 𝑄 estimate 𝑄𝑘 and policy 𝜋𝑘 ,

off-policy RL algorithm usually updates the 𝑄 function by sample-

based Bellman error minimization under some data distribution

𝑑 :

𝑄𝑘+1
(𝑠, 𝑎) = arg min

𝑄
E(𝑠,𝑎)∼𝑑

[
(𝑄 (𝑠, 𝑎) − B𝜋𝑘𝑄𝑘 (𝑠, 𝑎))2

]
, (1)

where 𝑑 is often chosen to be the buffer data distribution under the

uniform sampling strategy or some specified priority distribution.

Then the Q function guides the policy update:

𝜋𝑘+1
(·|𝑠) = arg max

𝜋
E𝑎∼𝜋 ( · |𝑠 )𝑄𝑘+1

(𝑠, 𝑎) . (2)

4 DISTRIBUTION SHIFT IN REINFORCEMENT
LEARNING

A fundamental issue that arises in sequential decision-making is

distribution shift. In the 𝑘-th iteration, RL algorithm trains the Q
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Figure 1: Visualization of the Maze MDP. Figure 2: The learning curves for three Q learning distribu-
tions. Each curve is averaged for six seeds.

function𝑄𝑘+1
from the collected experience subject to a data distri-

bution 𝑑 , and then updates the policy 𝜋𝑘+1
under the guidance of

𝑄𝑘+1
. However, this new policy 𝜋𝑘+1

, named as post-update policy,
is evaluated on its state-action visitation distribution 𝑑𝜋𝑘+1

, which

is different from Q training data distribution 𝑑 . This process can be

described by the following chain:

𝑑
𝑡𝑟𝑎𝑖𝑛−−−−→ 𝑄𝑘+1

𝑔𝑢𝑖𝑑𝑒
−−−−−→ 𝜋𝑘+1

𝑟𝑜𝑙𝑙𝑜𝑢𝑡−−−−−−→ 𝑑𝜋𝑘+1
& 𝜂 (𝜋𝑘+1

). (3)

The performance of the post-update policy 𝜋𝑘+1
is closely re-

lated to its optimality on 𝑑𝜋𝑘+1
, which is further related to the𝑄𝑘+1

estimate on this distribution. However, the Q function may not

be well-trained in some important areas with high density 𝑑𝜋𝑘+1
,

because of the shifted probability mass from the training distribu-

tion 𝑑 . Consequently, the Q estimate provides an unreliable signal

for the policy update in these areas, which may impair the effi-

ciency of policy improvement. Intuitively, this issue resembles the

training-testing distribution gap in traditional supervised learning,

although the mechanism here is more subtle and few researchers

pay attention.

By default, common off-policy algorithms uniformly sample the

data from a replay buffer 𝐷 for Q training, which corresponds to

the buffer distribution 𝑑𝐷 . The data in the replay buffer are collected

by many past policies 𝜋1, 𝜋2, . . . , 𝜋𝑘 , where the probability mass is

distributed uniformly over a large number of mixed experiences and

less focus on the important experiences among them. Recent works

[24, 35] propose to fit the Q estimate under on-policy distribution
𝑑𝜋𝑘 by reweighting the buffer data because on-policy distribution is

visited by the current policy 𝜋𝑘 . However, in the current iteration,

we are optimizing the policy 𝜋𝑘+1
, not 𝜋𝑘 , which has been fixed after

the previous iteration. Therefore, training the Q function under on-

policy distribution cannot solve the issue. Ideally, if the Q function

is trained under the visitation distribution of the post-update policy

𝜋𝑘+1
, or post-update policy distribution 𝑑𝜋𝑘+1

, the mismatch between

the training and evaluation distribution seems to be diminished,

and therefore the policy improvement get more reliable signals

from the Q function learning.

4.1 Verification in Maze MDP
To verify this idea, we conduct an experiment in a Maze environ-

ment, which is visualized in Figure 1. With going up, down, left,

and right as selectable actions, the agent starts at the upper left

corner and the exit is at the lower right corner. The black blocks

are occupied and inaccessible. The agent’s goal is to reach the exit

as quickly as possible, with every step the agent incurs a penalty

or, when finally reaching the exit, a reward. Note that on-policy

distribution and post-update policy distribution cannot be obtained

directly in the training process. In this tabular environment, we

can simulate the two distributions by rolling out 𝜋𝑘 and 𝜋𝑘+1
in

this environment. The results of training on buffer distribution, on-

policy distribution, and post-update policy distribution are shown

in Figure 2.

Training Q function under the post-update policy distribution

achieves the best efficiency compared to training under the on-

policy distribution and the buffer distribution, which aligns with

our intuition.

4.2 Theoretical Analysis
We try to formally explain the benefit of the post-update policy

distribution. If the post-update policy 𝜋𝑘+1
is obtained via the chain

process (3), we have the following bound on the policy suboptimal-

ity basically from the policy difference lemma [15]:

Proposition 4.1. Let 𝜋∗ be the optimal policy, then the following
bound holds:

𝜂 (𝜋∗) − 𝜂 (𝜋𝑘+1
) ≤ 2

1 − 𝛾
E
𝑑𝜋𝑘+1

,𝜋∗ |𝑄∗ −𝑄𝑘+1
| (𝑠, 𝑎) (4)

≤ 2

1 − 𝛾
E𝑑 |𝑄𝑘+1

− B𝜋𝑘𝑄𝑘 | (𝑠, 𝑎) +
4𝐿

1 − 𝛾
𝑊1 (𝑑, 𝑑𝜋𝑘+1,𝜋

∗
)

+ 2

1 − 𝛾
E
𝑑𝜋𝑘+1

,𝜋∗ |𝑄∗ − B𝜋𝑘𝑄𝑘 | (𝑠, 𝑎), (5)

where 𝑑𝜋𝑘+1,𝜋
∗
is a hybrid state-action distribution

𝑑𝜋𝑘+1,𝜋
∗
(𝑠, 𝑎) = 𝜌𝜋𝑘+1 (𝑠) 𝜋𝑘+1

(𝑎 |𝑠) + 𝜋∗ (𝑎 |𝑠)
2

,

𝐿 is an upper bound of the Lipschitz constant of 𝑄∗ and 𝑄𝑘+1
and

𝑊1 (·, ·) is Wasserstein-1 metric.

RL algorithm attempts to improve policy performance 𝜂 (𝜋𝑘+1
)

at each iteration, equivalent to reducing the policy suboptimality

𝜂 (𝜋∗)−𝜂 (𝜋𝑘+1
) compared to the optimal policy 𝜋∗, which therefore

can be seen as the loss function of policy improvement. Equation (5)

provides an upper bound of the policy suboptimality, wherein the

first term is exactly the loss function of Q learning, that is, the

expected Bellman error under the training distribution 𝑑 . In gen-

eral, minimizing an upper bound solves a surrogate of the original
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𝑠0 𝑠1 𝑠2 𝑠𝑡−1 𝑠𝑡 𝑠𝑡+1 · · ·
𝑎0 𝑎1

...

... 𝑎𝑡−1 𝑎𝑡 𝑎𝑡+1

𝐴(𝑠0, 𝑎0 ) 𝐴(𝑠1, 𝑎1 ) 𝐴(𝑠𝑡−1, 𝑎𝑡−1 ) 𝐴(𝑠𝑡 , 𝑎𝑡 )
Δ𝑑 (𝑠𝑡 , 𝑎𝑡 )

Figure 3: Illustration of the distribution shift estimation of (𝑠𝑡 , 𝑎𝑡 ). The estimation Δ(𝑠𝑡 , 𝑎𝑡 ) is proportional to the cumulative
advantages of the state-action pairs leading to it.

minimization problem. Nevertheless, there remain extra terms be-

sides Q learning loss in the upper bound (5), which result in an

objective mismatch between the Q function training and the policy

improvement.

We desire a better alignment of the two objectives so that the

Q training could boost the policy improvement even more, which

leads us to examine the source of the mismatch terms, that is, the

last two terms in (5). The last term is an expectation of the differ-

ence between the optimal Q function 𝑄∗
and the Bellman target

B𝜋𝑘𝑄𝑘 at current iteration, which is induced by the bootstrapped

regression nature of the TD learning inherently. The second term

4𝐿
1−𝛾𝑊1 (𝑑, 𝑑𝜋𝑘+1,𝜋

∗ ) contains the distribution distance between the

training distribution 𝑑 and 𝑑𝜋𝑘+1,𝜋
∗
, which can be reduced by prop-

erly choosing the training distribution 𝑑 . The state marginal distri-

bution of 𝑑𝜋𝑘+1,𝜋
∗
is exactly the state visitation distribution of the

post-update policy 𝜋𝑘+1
, which coincides with our intuition. There-

fore, post-update policy distribution 𝑑𝜋𝑘+1
is the best distribution

we can choose because the 𝜋∗ component in the action distribution

is unknowable during the learning process and omitting it gives

𝑑𝜋𝑘+1 (𝑠, 𝑎). This argument explains the efficiency rank shown in

the Figure 2 because the buffer distribution 𝑑𝐷 tends to be stale

to result in a large mismatch and the on-policy distribution 𝑑𝜋𝑘

gets closer, although still suboptimal compared to the post-update

policy distribution. Therefore, we propose to train the Q function

under the post-update policy distribution 𝑑𝜋𝑘+1
.

5 FORESIGHT DISTRIBUTION ADJUSTMENT
In this section, we first frame the Q training under the post-update

policy distribution as a constraint optimization problem. To solve

this bi-level optimization, we need to estimate the Bellman residual

expectation under the visitation distribution of the policy 𝜋𝑘+1
,

which has a closed form under the regularization assumption. How-

ever, it is impractical to directly obtain the exact post-update policy

distribution, which requires additional environment interactions.

To circumvent this issue, we develop an analysis of the visitation dis-

tribution shift, and propose to approximate the post-update policy

distribution by reweighting the current experience distribution.

Choosing 𝑑𝜋𝑘+1
as the training distribution, the optimization

objective of Q training in the current iteration becomes

min

𝑄
E𝑠,𝑎∼𝑑𝜋 ′ (𝑄 )

��𝑄 − B𝜋𝑘𝑄𝑘

��2 (𝑠, 𝑎)
s.t. 𝜋 ′ (𝑄) = arg max

𝜋
E𝑎∼𝜋𝑄 (𝑠, 𝑎) − 𝜅𝑅(𝜋),

(6)

where we add a regularization term 𝑅(𝜋) in the policy objective in

order to introduce smoothness [1, 8, 40, 41]. To solve this bi-level

problem, similar to the common approach in previous literature

[22, 30, 34, 47], we perform an update for the inner loop to calculate

the outer loop gradient:

𝜋𝑘+1
= arg max

𝜋
E𝑎∼𝜋 ( · |𝑠 )𝑄𝑘 (𝑠, 𝑎) − 𝜅𝑅(𝜋),

𝑄𝑘+1
= 𝑄𝑘 − 𝛼∇𝑄E𝑠,𝑎∼𝑑𝜋𝑘+1

��𝑄 (𝑠, 𝑎) − B𝜋𝑘𝑄𝑘 (𝑠, 𝑎)
��2 . (7)

The remaining obstacle is that the post-update policy distribution

𝑑𝜋𝑘+1
cannot be obtained immediately even if we get the policy form.

In the following, we try to solve this problem via the investigation

of the distribution shift caused by the policy change.

5.1 Visitation Distribution Prediction of the
Post-update Policy

The visitation distribution of the post-update policy 𝜋𝑘+1
cannot

be directly expressed as a function of the available quantities in the

current iteration, because it involves the environment transition

information for the actions selected by 𝜋𝑘+1
, which is a black box

to the agent and requires to be estimated by 𝜋𝑘+1
’s interacting with

the environment. However, the current experiences indeed contain

much environment transition information, though not aligned with

the post-update policy. Since the policy update is guided by the

critic, a consequent idea is whether it is possible to use the Q infor-

mation to modulate current experiences to simulate the post-update

policy distribution. Our theoretical analysis in this subsection af-

firms this feasibility and provides a practical method in the next

subsection.

The main idea is approximation by Taylor’s expansion, i.e., using

the first-order term of the visitation distribution to approximate

the distribution shift caused by small policy changes. There exists

a nontrivial derivation of the gradient of the visitation distribution

with respect to the policy parameters, which has not been explored

in previous works. We first calculate the gradient of 𝑡-th timestep

state visitation:

Proposition 5.1. For a policy 𝜋𝜃 parameterized by 𝜃 and its 𝑡-th
timestep state visitation distribution 𝑑𝜋𝜃𝑡 (𝑠),

∇𝜃𝑑
𝜋𝜃
𝑡 (𝑠) = 𝑑

𝜋𝜃
𝑡 (𝑠)

𝑡−1∑︁
𝑖=0

∑̄︁
𝑠,𝑎

∇𝜃 log𝜋𝜃 (𝑎 |𝑠)P𝜋𝜃 (𝑠𝑖 = 𝑠, 𝑎𝑖 = 𝑎 |𝑠𝑡 = 𝑠)

where P𝜋𝜃 (𝑠𝑖 = 𝑠, 𝑎𝑖 = 𝑎 |𝑠𝑡 = 𝑠) is the 𝑖-th timestep state-action
visitation distribution following policy 𝜋𝜃 conditioned on the given
𝑡-th timestep state 𝑠 .

The core of derivation in Proposition 5.1 is a gradient recursion

of timestep 𝑡 , in reverse order to that in policy gradient theorem,

detailed in Appendix A.2. Proposition 5.1 reveals that for a cer-

tain state 𝑠 , if the policy change increases the probability on the

state-action pairs (𝑠, 𝑎) that are likely to transition to 𝑠 in future

steps, then the new policy tends to visit 𝑠 more often than the old
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Algorithm 1 Off-policy Actor Critic with Foresight Distribution Adjustment (FoDA)

Initialize Q networks 𝑄𝜙 (𝑠, 𝑎), a value network 𝑉𝜉 (𝑠), a policy network 𝜋 , a probability network 𝜔𝜓 , a slow replay buffer D𝑠 and a fast

buffer D𝑓 . The red color highlights the new component introduced by FoDA.

for episode 𝑙 = 1, 2, . . . do
for 𝑡 = 1 to 𝑇 do

Collect experiences, store

(
𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1,

∑𝑡
𝑗=0

𝑟 (𝑠 𝑗 , 𝑎 𝑗 ), 𝑠0

)
to buffers D𝑠 and D𝑓 .

Update the probability network 𝜔𝜓 with samples from D𝑠 ,D𝑓 and LFIW discrimination loss function (detailed in Appendix B)

Obtain samples {(𝑠𝑖 , 𝑎𝑖 )}𝑁𝑖=1
from (slow) replay buffer D𝑠 .

Compute the on-policy weight 𝜔 on samples (𝑠𝑖 , 𝑎𝑖 ) and the distribution adjustment term Δ by

Δ̂(𝑠𝑡 , 𝑎𝑡 , 𝑡) =
𝑡∑︁
𝑗=0

𝑟 (𝑠 𝑗 , 𝑎 𝑗 ) +𝑉 (𝑠𝑡+1) −𝑉 (𝑠0).

Update the Q functions 𝑄𝜙 under the adjusted distribution with loss

𝐿𝑄 (𝜙) =
𝑁∑︁
𝑖=1

𝜔 (𝑠𝑖 , 𝑎𝑖 ) (1 + 𝜂Δ̂(𝑠𝑖 , 𝑎𝑖 , 𝑡𝑖 ))
(
𝑄𝜙 (𝑠𝑖 , 𝑎𝑖 ) − 𝑟 (𝑠𝑖 , 𝑎𝑖 ) − 𝛾𝑄 ¯𝜙 (𝑠𝑖+1, 𝜋 (𝑠𝑖+1))

)
2

.

Update value network 𝑉𝜉 with loss 𝐿𝑉 (𝜉) = ∑𝑁
𝑖=1

(
𝑟 (𝑠𝑖 , 𝑎𝑖 ) + 𝛾𝑉𝜉 (𝑠𝑖+1) −𝑉𝜉 (𝑠𝑖 )

)
2

.

Update the policy network 𝜋 as in base algorithm.

end for
end for

policy. This conclusion paves the way to simulate the new visitation

distribution based on the current experiences.

We then consider the distribution shift caused by the policy up-

date. If the regularization term 𝑅(𝜋) in policy update (7) is chosen to
be 𝐷KL (𝜋, 𝜋𝑘 ), then the policy update has a closed-form expression

𝜋𝑘+1
(𝑎 |𝑠) ∝ 𝜋𝑘 (𝑎 |𝑠) exp

(
1

𝜅
𝑄𝑘 (𝑠, 𝑎)

)
, (8)

which is a classical form in regularized value iteration literature [40,

41], and introduces the smoothness between the policy updates.

Combining Proposition 5.1 with this update form, we obtain the

first-order approximation of the state-action visitation distribution

for the post-update policy:

Theorem 5.2. For the policy update (8), the state-action visitation
distribution of the post-update policy 𝜋𝜃𝑘+1

can be expressed as

𝑑
𝜋𝜃𝑘+1 (𝑠, 𝑎) = 𝑑

𝜋𝜃𝑘 (𝑠, 𝑎)+

𝜂

∞∑︁
𝑡=0

𝛾𝑡𝑑
𝜋𝜃𝑘
𝑡 (𝑠, 𝑎)E𝜏

[ 𝑡∑︁
𝑖=0

𝐴𝑘 (𝑠𝑖 , 𝑎𝑖 )
���𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]
+ 𝑜 (∥Δ𝜃 ∥)

=

∞∑︁
𝑡=0

𝛾𝑡𝑑
𝜋𝜃𝑘
𝑡 (𝑠, 𝑎)

(
1 + 𝜂E𝜏

[ 𝑡∑︁
𝑖=0

𝐴𝑘 (𝑠𝑖 , 𝑎𝑖 )
���𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

] )
+ 𝑜 (∥Δ𝜃 ∥)

(9)

where the advantage function 𝐴𝑘 (𝑠, 𝑎) = 𝑄𝑘 (𝑠, 𝑎) − E𝑎∼𝜋𝜃𝑘𝑄𝑘 (𝑠, 𝑎),
𝜏 denotes trajectories (𝑠0, 𝑎0, 𝑠1, . . . ), and 𝜂 =

1−𝛾
𝜅 .

Theorem 5.2 shows that the state-action distribution of the post-

update policy will shift towards areas containing trajectories with

high accumulated advantages, as illustrated in Figure 3. The advan-

tages provide optimization signals for the policy update. If every

action in a sampled trajectory is promoted based on this signal, the

visitation probability of the succeeding state will naturally increase

propositional to the expected cumulative advantages.

5.2 Foresight Distribution Adjustment (FoDA)
Theorem 5.2 allows predicting the post-update policy distribution

based on the available quantities before the real update, and we

can adjust the training distribution to approximate the predicted

distribution, that is, Foresight Distribution Adjustment (FoDA).

Based on the experiences from replay buffer, we can calculate the

expected Bellman loss under the predicted distribution:

𝐿𝑄 (𝜙) = E𝑠,𝑎,𝑡∼D
[
𝜔 (𝑠, 𝑎)

(
1 + 𝜂Δ(𝑠, 𝑎, 𝑡)

)���𝑄𝜙 (𝑠, 𝑎) − B𝜋𝑘𝑄𝑘 (𝑠, 𝑎)
���2],

(10)

where D is the replay buffer distribution. There are three unfamil-

iar values in Equation (10), whose meanings and computation are

elaborated below.

• Δ(𝑠, 𝑎, 𝑡) = E𝜏

[ ∑𝑡
𝑖=0

𝐴𝑘 (𝑠𝑖 , 𝑎𝑖 )
���𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]
is the expected

cumulative advantages, which can be estimated by sampled

trajectories. In principle, we could sample a (𝑠, 𝑎) pair from the

replay buffer, along with the corresponding collected trajec-

tory 𝜏 containing the (𝑠, 𝑎) pair and its timestep 𝑡 . By summing

up the advantages of state-actions on this trajectory before

timestep 𝑡 , we obtain a Δ estimate. In practice, however, this

requires sampling the whole trajectory each time, which is time-

consuming. To address this problem, we propose a practical ap-

proach wherein a value function𝑉 is learned separately. We uti-

lize the advantage estimate𝐴(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) +𝑉 (𝑠′) −𝑉 (𝑠), and
therefore the estimate Δ̃(𝑠𝑡 , 𝑎𝑡 , 𝑡) =

∑𝑡
𝑗=0

𝑟 (𝑠 𝑗 , 𝑎 𝑗 ) +𝑉 (𝑠𝑡+1) −
𝑉 (𝑠0) only relies on cumulative rewards and the initial state 𝑠0.
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(a) State visitation (b) Buffer distribution difference (c) On-policy Distribution difference (d) FoDA Distribution difference

Figure 4: Illustration of the distribution differences between the actual post-update policy distribution and the three training
distributions in a Maze environment. The overall block colors indicate that FoDA provides the best approximation to the
post-update policy distribution, resulting in the smallest mismatch.

These values can be stored alongside (𝑠, 𝑎) sample during the

data collection process, eliminating the need to sample entire

trajectories during training.

• The coefficient 𝜂 denotes
1−𝛾
𝜅 as in Theorem 5.2, where 𝜅 is

the unspecified regularization coefficient in the policy pseudo-

update (7). Therefore, we treat the ratio 𝜂 =
1−𝛾
𝜅 as a tune-

able parameter. Similar to [5], we set 𝜂 =
𝜂0∑𝑁

𝑖=1
Δ(𝑠𝑖 , 𝑎𝑖 , 𝑡𝑖 )

to

maintain a stable relative magnitude of the second term in

Equation (10) by in-batch normalization, where 𝜂0 is a hyper-

parameter and 𝑁 is the batch size. This in-batch normalization

keeps a stable gradient magnitude to avoid potential numerical

explosion caused by the estimated error and sample variance.

• On-policy ratio 𝜔 (𝑠, 𝑎). This quantity is the importance ratio

between buffer distribution and on-policy distribution𝑑
𝜋𝜃𝑘 , and

thus with this ratio we can simulate 𝑑
𝜋𝜃𝑘 by simply sampling

from the replay buffer. LFIW [35] provides a method to estimate

this value. It introduces an additional small fast buffer D𝑓 that

contains the experience collected by recent policies, uses the

conventional large replay buffer as a slow buffer D𝑠 , trains a

neural network to discriminate the two buffer distributions,

and 𝜔 (𝑠, 𝑎) is the value output by the discriminator (see details

in Appendix B).

It is noteworthy that although we use the LFIW to reweight

the buffer data in our implementation, it can be replaced by other

methods such as DICE [21, 45]. Therefore, our method is not bound

to one particular on-policy reweighting technique in principle.

The overall algorithm procedure is shown in Algorithm 1, where

the red color highlights the new component introduced by FoDA.

6 EXPERIMENTS
In this section, we present experimental evaluation to answer the

following questions:

• How well does our method approximate the post-update policy

distribution?

• Can the foresight distribution adjustment improve the perfor-

mance compared to other experience replay techniques?

• How does the hyperparameter value affect the performance?

We start with experiments on a Maze MDP to visualize the dis-

tribution difference of buffer distribution, on-policy distribution,

and the adjusted distribution via FoDA compared with the post-

update policy distribution respectively. Then we use Soft Actor-

Critic (SAC) algorithm as the base algorithm to evaluate FoDA on

several tasks from DeepMind Control suite [37] and Gym MuJoCo

[4, 38] environments, and robotic manipulation tasks from Meta-

World benchmark [44]. These benchmarks are representative of

complex large-scale continuous control tasks, which can verify the

effectiveness of FoDA in challenging realistic problems. Finally, we

analyze the sensitivity of the introduced new hyperparameters to

test the robustness of FoDA.

6.1 Effectiveness of Foresight Distribution
Adjustment on a Maze MDP

In order to examine the effectiveness of the distribution prediction

for the post-update policy inspired by Theorem 5.2, we visualize the

empirical state visitation distribution and the differences between

the post-update policy distribution and the three training distribu-

tion choices, that is, buffer distribution, on-policy distribution, and

the predicted distribution by FoDA. The experiment is conducted

on the Maze environment as shown in Figure 1.

We plot two intermediate iterations during the training process

in Figure 4, where the visitation frequency is calculated by count-

ing. The total number of training iterations is 100. The first row of

Figure 4 is from an early training stage, after 20 iterations, when the

agent begins to explore the environment but has not reached the

exit, and the policy change is relatively significant at each step. The
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Figure 5: Learning curves of FoDA and three baselines on six DeepMind Control tasks. Solid curves depict the mean of five
trials and shaded regions correspond to the standard deviation among trials.

second row comes from a later training stage, after 80 iterations

of training, where the visitation probability is concentrated on a

path and the policy change is moderate. We chose these two iter-

ations because they are representative of different phases during

the learning process. As shown in Figure 4(a), the state visitation

frequency of the first stage is dispersed, where exploration is dom-

inated, while for the second stage, the frequency is concentrated,

where exploitation is dominant.

In Figure 4(b), 4(c) and 4(d), we plot the difference between the

buffer distribution, on-policy distribution, and the adjusted distri-

bution via FoDA and the empirical state visitation distributions of

the policy at the next step (i.e., the ground-truth post-update policy

distributions) respectively. Dark-colored blocks indicate significant

differences. In Figure 4(b), we can find some extremely dark colors,

which means the distribution shift is significant under the buffer

distribution. In Figure 4(c), the dark colors are faded though there

still exist some non-negligible differences. This demonstrates that

on-policy distribution can indeed mitigate the distribution shift

issue to some extent but cannot solve it. Figure 4(d) shows most of

the blocks become light-colored, which verifies that FoDA solves

the distribution shift issue except for negligible error. If measured in

total variation, the distances in Figure 4(d) are reduced by 75%, 48.6%

compared to those in Figure 4(c), and 96%, 87.3% compared to those

in Figure 4(b) respectively.

6.2 Performance on Continuous Control
Environments

We evaluate FoDA based on the SAC algorithm on different tasks

from DeepMind Control (DMC) suite, Gym MuJoCo environments,

and also robotic manipulation tasks from MetaWorld benchmark.

Our method is compared to the uniform experience replay and

the past state-of-the-art prioritization methods, LFIW [35] and Re-

MERN/T [24], where Q learning is based on on-policy distribution.

ReMERT is used in DMC and MuJoCo tasks, while ReMERN is

used in MetaWorld tasks according to the algorithm selection cri-

terion [24]. We run a total of 2M timesteps for DMC and MuJoCo

tasks and 1.5M timesteps for MetaWorld tasks. The learning curves

of DMC and MuJoCo tasks are shown in Figure 5 and Figure 6,

while the results for the MetaWorld tasks are shown in Figure A1

in Appendix C.1. The cumulative return for DMC and MuJoCo and

the success rate for MetaWorld are the performance metrics.

The results shown in Figure 5 exhibit significant performance

and efficiency improvement of FoDA compared with vanilla SAC

and two prioritized methods in six DMC tasks. For MuJoCo tasks

shown in Figure 6, prior methods are already able to achieve a

good performance, while FoDA still gains significant improvement

in some tasks. The stochastic MetaWorld environments raise a

challenge for the baseline algorithmswhile FoDA reliably completes

the tasks with a higher efficiency as shown in Figure A1. Notably,

FoDA incorporates the on-policy importance weight from LFIW,
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Figure 6: Learning curves of FoDA and three baselines on GymMuJoCo tasks. Solid curves depict the mean of five trials and
shaded regions correspond to the standard deviation among trials.

making the comparison between LFIW and FoDA an ablation study.

The superior performance of FoDA demonstrates the effectiveness

of our novel distribution adjustment term.

6.3 Hyperparameter Sensitivity
In our method, there are three new hyperparameters compared to

the base algorithm SAC. Two of them, i.e., the fast buffer size and

the on-policy weight temperature, are introduced by LFIW, and

the algorithm is robust to the selection of the two parameters [35].

FoDA introduces a new hyperparameter, the adjustment coefficient

𝜂0. We test the robustness of our method to the value of 𝜂0 in two

DMC environments and show the results in Figure 7.We use𝜂0 = 10

for the DMC tasks in the previous performance comparison, and we

find that modifying the value of 𝜂0 in a reasonable range, from 5 to

15 in Figure 7, will not cause significant performance degradation,

which demonstrates that our method FoDA is relatively robust to

the introduced hyperparameter.

7 CONCLUSION
We find that the distribution shift between the 𝑄 training distribu-

tion and the visitation distribution of the post-update policy hinders

more efficient policy optimization. To explain this phenomenon,

we theoretically show that such a distribution shift exacerbates

the objective mismatch between the Q function training and the

policy improvement, and propose to train the Q function under the

post-update policy distribution. To approximate the post-update

policy distribution, we propose a novel method Foresight Distri-

bution Adjustment (FoDA), and verify its effectiveness in simple

environments. When combined with SAC, we evaluate the new
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Figure 7: Sensitivity analysis for the value of adjustment coef-
ficient 𝜂0. Changing the value of 𝜂0 within a reasonable range
(5 to 15 in the picture) only slightly hurts the performance.

algorithm in challenging continuous control tasks. Compared to

other prioritization methods, FoDA exhibits superior performance

in many tasks, demonstrating FoDA helps improve the sample effi-

ciency of off-policy actor-critic algorithms. It should be noted that

we only study the relatively small distribution shift in the online

RL setting. In the offline RL setting, the distribution mismatch is

much more challenging, making experience prioritization or data

selection even more important. Although some work has been done

in this area, offline data selection remains a promising direction for

future research.
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