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ABSTRACT
Primal-dual methods have a natural application in Safe Reinforce-

ment Learning (SRL), posed as a constrained policy optimization

problem. In practice however, applying primal-dual methods to

SRL is challenging, due to the inter-dependency of the learning

rate (LR) and Lagrangian multipliers (dual variables) each time an

embedded unconstrained RL problem is solved. In this paper, we

propose, analyze and evaluate adaptive primal-dual (APD) methods

for SRL, where two adaptive LRs are adjusted to the Lagrangian

multipliers so as to optimize the policy in each iteration. We theo-

retically establish the convergence, optimality and feasibility of the

APD algorithm. Finally, we conduct numerical evaluation of the

practical APD algorithm with four well-known environments in

Bullet-Safey-Gym employing two state-of-the-art SRL algorithms:

PPO-Lagrangian and DDPG-Lagrangian. All experiments show that

the practical APD algorithm outperforms (or achieves comparable

performance) and attains more stable training than the constant

LR cases. Additionally, we substantiate the robustness of selecting

the two adaptive LRs by empirical evidence.

KEYWORDS
Safe Reinforcement Learning; Adaptive Primal-Dual; Adaptive Learn-

ing Rates

ACM Reference Format:
Weiqin Chen, James Onyejizu, Long Vu, Lan Hoang, Dharmashankar Sub-

ramanian, Koushik Kar, Sandipan Mishra, and Santiago Paternain. 2024.

Adaptive Primal-Dual Method for Safe Reinforcement Learning. In Proc.
of the 23rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS,

9 pages.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Reinforcement learning (RL) has a rich history of solving a wide

range of decision-making problems. Recently, RL has succeeded in

training large language models such as ChatGPT [1], playing video

games at superhuman level [2–4], mastering Go [5, 6], and manip-

ulating robotics [7, 8]. RL problems, in general, are formulated as

Markov Decision Processes (MDPs). In this work, we are interested

in conditions where the underlying dynamics are unknown, the

optimal policy thus needs to be learned from data (samples). The

goal for an agent is to explore the environment so that it is able to

maximize the expected cumulative reward.

Nevertheless, classical RL techniques might lead to risky/unsafe

actions [9–11], if they are only concerned with the reward. There-

fore, safety constitutes a foundational aspect in realistic domains

or physical entities. Specifically, in the realm of robot navigation,

ensuring collision avoidance [12, 13] is essential for their proper

functioning, and to ensure the preservation of human safety in the

vicinity. Taking into account the safety requirements motivates the

development of policy optimization under safety guarantees [14–

16].

A common approach is to employ the framework of Constrained

MDPs (CMDPs) [17] where auxiliary costs (analogous to reward)

are considered in the constraints. This framework has gained wide-

spread adoption for inducing safe behaviors [16, 18–22]. We briefly

introduce these work below.

1.1 Related Work
The state-of-the-art algorithms for solving CMDPs commonly in-

clude two types of methods: primal methods and primal-dual meth-

ods.

1.1.1 Primal Methods. [18] develops a constrained policy opti-

mization (CPO) algorithm for SRL that searches the feasible policy

within the confines of the trust region while guaranteeing a mono-

tonic performance improvement as well as constraint satisfaction.

Projection-based constrained policy optimization (PCPO) [19] em-

ploys TRPO [23], the cutting-edge unconstrained RL algorithm first,

and then projects the policy back into the feasible set. Nevertheless,
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both CPO and PCPO suffer from the approximation error and ex-

pensive computation of the inversion of high-dimensional Hessian

matrices. To address these issues, [20] proposes first-order con-

strained optimization in policy space (FOCOPS), which optimizes

the constrained policy in the non-parametric space, and subse-

quently derives the first-order gradients of the ℓ2 loss function

in the parameterization space. Another alternative is the penal-

ized proximal policy optimization (P3O) [24], which solves the

constrained policy iteration based on the minimization of an equiv-

alent unconstrained problem. However, both FOCOPS and P3O

introduce more auxiliary parameters that need to be learned.

1.1.2 Primal-Dual Methods. Lagrangian-based primal-dual algo-

rithms like primal-dual optimization (PDO) [16] and reward con-

strained policy optimization (RCPO) [21] have succeeded in solv-

ing CMDP optimization problems. Nevertheless, the convergence

guarantees of these algorithms are limited to either local (locally

optimal policies or stationary-point) [16, 21, 25] or asymptotic sce-

narios [26]. [22] establishes the analysis on the duality gap for

CMDPs within the policy space and provides a provably dual de-

scent algorithm under the assumption of access to a non-convex

optimization oracle. However, obtaining the solution to a primal

non-convex problem remains an issue, thus lacking global con-

vergence guarantees. To tackle these challenges, [27] proposes a

natural policy gradient primal-dual (NPG-PD) method that achieves

non-asymptotic global convergence with sublinear rates regarding

both the optimality gap and the constraint violation. [28] provides

the first provably efficient online policy optimization algorithm–

optimistic primal-dual proximal policy optimization (OPDOP) and

establishes the bounds on the regret and constraint violation. [29]

proposes a safe primal-dual (SPG) algorithm that is used to solve a

CMDP problem with probabilistic safety constraints. Nonetheless,

achieving satisfactory performance with the existing primal-dual

methods remains challenging, mainly due to their sensitivity to

hyper-parameters such as learning rates.

1.2 Main Contribution
This paper addresses a core challenge in applying primal-dual meth-

ods to SRL problems, the inter-dependence of the primal Learning
Rate (LR) and Lagrangian Multiplier (LM) (dual variable) param-

eters in the primal-dual method. We provide analytical expres-

sions (bounds) of the amount of progress made in each step of

the primal-dual algorithm, based on which we develop two adap-

tive LR choices that optimize these bounds. The two LR choices

have an inverse-linear and inverse-quadratic dependence on the

LM, and are incorporated into the proposed adaptive primal-dual

(APD) algorithm. We provide theoretical analyses of the conver-

gence, return optimality, and constraint feasibility of the APD algo-

rithm. Finally, we numerically evaluate the practical version of APD

(PAPD) algorithm using four environments in the Bullet-Safety-

Gym[30], and compare the performance of PAPD with constant-

LR solutions using two state-of-the-art constrained RL methods:

PPO-Lagrangian (PPOL) and DDPG-Lagrangian (DDPGL). We also

numerically demonstrate the robustness of PAPD algorithm with

respect to certain key parameter choices.

2 SAFE REINFORCEMENT LEARNING
MDPs are defined by a tuple (𝑆,𝐴, 𝑅, P,U, 𝛾 ) [31], where 𝑆 is the

state space, 𝐴 is the action space, 𝑅 : 𝑆 ×𝐴 × 𝑆 → R is the reward

function describing the quality of the decision. For any 𝑆 ⊂ 𝑆, 𝑠𝑡 ∈
𝑆, 𝑎𝑡 ∈ 𝐴, 𝑡 ∈ {0, 1, · · · }, P(𝑠𝑡+1 ∈ 𝑆 |𝑠𝑡 , 𝑎𝑡 ) (i.e., the probability

of 𝑠𝑡+1 being in 𝑆 given 𝑠𝑡 and 𝑎𝑡 ) is the transition probability

describing the dynamics of the system, U(𝑆) := P(𝑠 ∈ ˆ𝑆) is the
starting state distribution, and 𝛾 is the discount factor. Note that a

table of notations is provided in the supplementary material of [32],

which serves to facilitate tracking and enhance comprehension for

the readers.

Consider a parameterization space Θ and a probability density

function 𝑃 (·). Given 𝜃 ∈ Θ, a parameterized stationary policy
𝜋𝜃 : 𝑆 → 𝑃 (𝐴) maps states to probability distributions over the set

of actions, and 𝜋𝜃 (𝑎 |𝑠) indicates the probability density of drawing

action 𝑎 ∈ 𝐴 in the corresponding state 𝑠 ∈ 𝑆 . Common parameter-

izations include neural networks (NN) and Radial Basis Functions

(RBFs). In this work, we are particularly interested in situations

where the state transition distributions are unknown, and thus the

policies need to be computed through interacting with the environ-

ment.

In the context of MDPs, the objective is to find an optimal pa-

rameter that maximizes the expected discounted return

𝐽𝑅 (𝜋𝜃 ) = E𝜏∼𝜋𝜃

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
]
, (1)

where 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, · · · ) denotes a sample trajectory. Given

fixed initial state distribution 𝑠0 ∼ U and transition distribution

𝑠𝑡+1 ∼ P(·|𝑠𝑡 , 𝑎𝑡 ), let us define a shorthand 𝜏 ∼ 𝜋𝜃 indicating that

the distribution over trajectories depends on the policy through

𝑎𝑡 ∼ 𝜋𝜃 (·|𝑠𝑡 ).
CMDPs [17] impose additional constraints on the allowable poli-

cies. More concretely, auxiliary cost functions 𝐶𝑖 : 𝑆 × 𝐴 × 𝑆 →
R, 𝑖 = 1, 2, · · · ,𝑚 are introduced. We make the following assump-

tion about the costs.

Assumption 1. Consider 𝐵 > 0 and 𝐶 = [𝐶1, · · · ,𝐶𝑚]𝑇 , assume
we have bounded costs such that | |𝐶 | | ≤ 𝐵.

Analogous to the expected discounted return, define the expected

discounted cost as

𝐽𝐶𝑖 (𝜋𝜃 ) = E𝜏∼𝜋𝜃

[ ∞∑︁
𝑡=0

𝛾𝑡𝐶𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
]
. (2)

Denote by 𝑑𝑖 , 𝑖 = 1, 2, · · · ,𝑚 the desired threshold for the ex-

pected discounted cost. Accordingly, SRL problems can be formu-

lated as

𝜃∗ ∈ argmax

𝜃 ∈Θ
𝐽𝑅 (𝜋𝜃 )

s.t. 𝐽𝐶𝑖 (𝜋𝜃 ) ≤ 𝑑𝑖 , 𝑖 = 1, 2, · · · ,𝑚. (3)

The SRL problem posed in (3) can be solved by applying gradient-

based methods on a regularized objective function [33] or using

primal-dual methods [16, 29] to achieve local optimal solutions. The

performance of the first type of method can heavily depend on the

choice of the regularization parameter, and this choice is problem

dependent for which there is no easy method. In general, for a given

choice of regularization parameter, the first type of method may
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(a) Return (b) Cost

Figure 1: Learning curves of PPOL over five independent
runs with fixed LM values of 1 and 5. The horizontal axis
represents time steps. Cost limit d = 10 (black dashed line) in
all experiments. LR = 0.0006 outperforms LR = 0.0003 at LM
=1 (red curve is infeasible), while the opposite holds when
LM = 5.

not produce optimal results. In this work, therefore, we focus on

the primal-dual method, where the regularization parameter is the

LM (dual variable) that is progressively updated. We introduce this

method in the next section and motivate the need for an adaptive

LR in the primal update step.

3 ADAPTIVE PRIMAL-DUAL ALGORITHM
3.1 Motivation
Primal-dual methods rely on iterative training of the policy param-

eters 𝜃 to minimize the Lagrangian of (3):

L(𝜃, 𝜆) ¤= − 𝐽𝑅 (𝜋𝜃 ) + 𝜆𝑇 (𝐽𝐶 (𝜋𝜃 ) − d), (4)

where 𝐽𝐶 (·) = [𝐽𝐶1
(·), 𝐽𝐶2

(·), · · · , 𝐽𝐶𝑚 (·)]𝑇 , d = [𝑑1, 𝑑2, · · · , 𝑑𝑚]𝑇 ,
and 𝜆 ∈ R𝑚 is the LM.

As stated in Section 1, despite the impressive capabilities demon-

strated by state-of-the-art algorithms like PDO [16] and RCPO [21]

in addressing a wide range of SRL problems, these primal-dual like

algorithms still encounter challenges of selecting an appropriate LR

for the embedded RL problem during the training process. Indeed,

it is natural to posit that employing a constant LR throughout the

training process might not be optimal, given that the LM under-

goes continuous changes. We illustrate this through a numerical

example in Figure 1. Figure 1 presents learning curves (both Return

and Cost) for the PPOL method over five independent runs using

fixed LM values of 1 and 5. We use the SafetyCarRun-v0 environ-
ment from the Bullet-Safety-Gym [30] for this test. Notably, as LM

transitions from 1 to 5, the LR needs adjustment from 0.0006 to

0.0003 for optimal results (in terms of return and cost). This means,

maintaining a consistent LR across varying LMs might lead to sub-

optimal results. Specifically, deploying an optimized LR tailored for

an LM value of 5 (green curve) in a scenario meant for LM value

of 1 (red curve) and vice versa leads to compromised performance.

Therefore, accounting for the dependence between LM and LR is

crucial for achieving good performance in SRL.

3.2 Adaptive Learning Rate
A naive approach to addressing the above challenge is to solve the

primal problem in (4) for different values of 𝜆 (LM), each with its

optimized LR. However, this approach does not scale when the LM

is multi-dimensional (i.e., there are multiple safety constraints) or

has a large range. Primal-dual algorithms offer a practical way to

find the LM (dual variable) 𝜆∗ that maximizes the dual function

𝑑 (𝜆) = min

𝜃 ∈R𝑑
−𝐽𝑅 (𝜋𝜃 ) + 𝜆𝑇 (𝐽𝐶 (𝜋𝜃 ) − d). (5)

Consequently the optimal policy (primal variable) 𝜃∗ is computed

through iterative coordinated updates of the primal and dual vari-

ables {
𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝜃L(𝜃𝑘 , 𝜆𝑘 ), (6)

𝜆𝑘+1 = [𝜆𝑘 + 𝜁 𝑔(𝜃𝑘+1)]+ , (7)

where 𝑔(·) is the constraint function, i.e.,
𝑔(𝜃𝑘+1) ¤=𝐽𝐶 (𝜋𝜃𝑘+1 ) − d, (8)

and 𝜂𝑘 , 𝜁 denote the primal and dual LRs, respectively. Note the

dependence of the primal LR 𝜂𝑘 on iteration 𝑘 in (6); this is because

in our adaptive primal-dual algorithm, described next, 𝜂𝑘 depends

on the LM 𝜆𝑘 .

We have reached the phase where we articulate the convergence

of (7). This is formally established in the following theorem.

Theorem 1. Consider the dual function𝑑 (·) defined in (5), the con-
straint function𝑔(·) and cost limit d in (8). Let 𝜆∗ ∈ argmax𝜆∈R𝑚+ 𝑑 (𝜆)
and define 𝐷∗ = 𝑑 (𝜆∗). Let 𝜃𝑘 and 𝜆𝑘 be the sequences generated
by (6) and (7). Denote by 𝜖𝑘 the primal error of updating the La-
grangian given 𝜆𝑘 , i.e., 𝜖𝑘 = L(𝜃𝑘+1, 𝜆𝑘 ) − min𝜃 L(𝜃, 𝜆𝑘 ). Define
𝜆best = argmax𝜆∈{𝜆𝑘 }𝐾𝑘=0

𝑑 (𝜆), it holds that

0 ≤ 𝐷∗ − 𝑑 (𝜆best) ≤
∥𝜆0 − 𝜆∗∥2

2𝜁𝐾
+ 𝜁 (𝐵 + (1 − 𝛾) ∥d∥)2

2 (1 − 𝛾)2

+ 1

𝐾

𝐾−1∑︁
𝑘=0

𝜖𝑘 . (9)

Proof. The proof follows the standard stochastic gradient descent

analysis. See the supplementary material of [32] for details. □
Note that the first two terms on the right-hand side of (9) depend

exclusively on the problem and on the dual LR. The last term,

however, depends on the primal error 𝜖𝑘 . Our goal is to minimize

this error through an adaptive selection of the primal LR 𝜂𝑘 . We

resort to two different analyses to bound these errors (see Lemma 1).

From these, we derive two adaptive LRs. Before stating Lemma 1,

we require the following assumptions.

Assumption 2. Assume the gradients of the objective and cost
functions in (3) are Lipschitz continuous with constants𝐿𝑅, 𝐿𝐶1

, · · · , 𝐿𝐶𝑚 .
Let 𝐿𝐶 =

[
𝐿𝐶1

, · · · , 𝐿𝐶𝑚
]𝑇 . This implies that the gradient of La-

grangian (4) is Lipschitz on 𝜃

∥∇𝜃L (𝜃1, 𝜆) − ∇𝜃L (𝜃2, 𝜆)∥ ≤ 𝐿 (𝜆) ∥𝜃1 − 𝜃2∥ . (10)

where 𝐿 (𝜆) = 𝐿𝑅 + 𝜆𝑇 𝐿𝐶 .

Assumption 3. Assume the Lagrangian function L (𝜃, 𝜆) is 𝜇-
strongly convex on𝜃 . This is,L (𝜃1, 𝜆𝑘 ) ≥ L (𝜃2, 𝜆𝑘 )+∇𝜃L (𝜃2, 𝜆𝑘 )𝑇
(𝜃1 − 𝜃2) + 𝜇/2 ∥𝜃1 − 𝜃2∥2.
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Lemma 1. Assume the Lagrangian functionL (𝜃𝑘 , 𝜆𝑘 ) is𝐿′-Lipschitz
continuous. Define 𝛿𝑘 =




𝜃𝑘 − 𝜃∗
𝑘+1




2. Then, the following bounds
hold for 𝜖𝑘 given the assumptions that the term inside the square root
is non-negative.

𝜖𝑘 ≤ 𝐿′
√︄

2

𝜇

(
𝐿 (𝜆) 𝛿𝑘 +

(
𝐿 (𝜆)

(
𝜂1
𝑘

)
2

− 𝜂1
𝑘

)
∥∇𝜃L (𝜃𝑘 , 𝜆𝑘 )∥2

)
,

(11)

𝜖𝑘 ≤ 𝐿′
√︄(

1 +
(
𝜂2
𝑘

)
2

𝐿 (𝜆)2 − 𝜂2
𝑘
𝜇

)
𝛿𝑘 . (12)

Proof. We start the proof by employing the 𝐿′-Lipschitz continuity
of the Lagrangian to bound 𝜖𝑘

𝜖𝑘 = L (𝜃𝑘+1, 𝜆𝑘 ) − L
(
𝜃∗
𝑘+1, 𝜆𝑘

)
≤ 𝐿′



𝜃𝑘+1 − 𝜃∗𝑘+1

 . (13)

Hence, to bound 𝜖𝑘 , one can instead investigate




𝜃𝑘+1 − 𝜃∗𝑘+1


.
We first focus on (11). It follows from the strong convexity of

the Lagrangian with respect to 𝜃 that

L (𝜃𝑘+1, 𝜆𝑘 ) ≥ L
(
𝜃∗
𝑘+1, 𝜆𝑘

)
+ ∇𝜃L

(
𝜃∗
𝑘+1, 𝜆𝑘

)𝑇 (
𝜃𝑘+1 − 𝜃∗𝑘+1

)
+ 𝜇

2



𝜃𝑘+1 − 𝜃∗𝑘+1

2 . (14)

Since ∇𝜃L
(
𝜃∗
𝑘+1, 𝜆𝑘

)
= 0 the previous inequality reduces to

𝜃𝑘+1 − 𝜃∗𝑘+1

2 ≤ 2

𝜇

(
L (𝜃𝑘+1, 𝜆𝑘 ) − L

(
𝜃∗
𝑘+1, 𝜆𝑘

))
. (15)

We apply the Taylor expansion on both terms on the right-hand

side of the previous expression around 𝜃𝑘

L(𝜃𝑘+1, 𝜆𝑘 ) = L(𝜃𝑘 , 𝜆𝑘 ) + ∇𝜃L(𝜃𝑐 , 𝜆𝑘 )𝑇 (𝜃𝑘+1 − 𝜃𝑘 ) , (16)

where 𝜃𝑐 = 𝜉𝜃𝑘 + (1 − 𝜉)𝜃𝑘+1, 𝜉 ∈ [0, 1], and

L(𝜃∗
𝑘+1, 𝜆𝑘 ) = L(𝜃𝑘 , 𝜆𝑘 ) + ∇𝜃L(𝜃 ′𝑐 , 𝜆𝑘 )𝑇

(
𝜃∗
𝑘+1 − 𝜃𝑘

)
, (17)

where 𝜃 ′𝑐 = 𝜉 ′𝜃𝑘 + (1 − 𝜉 ′)𝜃∗
𝑘+1, 𝜉

′ ∈ [0, 1]. Substituting (16) and

(17) into (15) reduces to

𝜃𝑘+1 − 𝜃∗𝑘+1

2 ≤ 2

𝜇

(
∇𝜃L(𝜃 ′𝑐 , 𝜆𝑘 )𝑇 (𝜃𝑘 − 𝜃∗𝑘+1) (18)

+ ∇𝜃L(𝜃𝑐 , 𝜆𝑘 )𝑇 (𝜃𝑘+1 − 𝜃𝑘 )
)
.

By virtue of ∇𝜃L
(
𝜃∗
𝑘+1, 𝜆𝑘

)
= 0 (18) reduces to

𝜃𝑘+1 − 𝜃∗𝑘+1

2 ≤ 2

𝜇

((
∇𝜃L

(
𝜃 ′𝑐 , 𝜆𝑘

)
− ∇𝜃L

(
𝜃∗
𝑘+1, 𝜆𝑘

))𝑇
(
𝜃𝑘 − 𝜃∗

𝑘+1

)
+ ∇𝜃L (𝜃𝑐 , 𝜆𝑘 )𝑇 (𝜃𝑘+1 − 𝜃𝑘 )

)
.

(19)

where the last inequality follows from the Lipschitz continuity of

the gradient of Lagrangian (see Assumption 2).

By adding and subtracting ∇𝜃L (𝜃𝑘 , 𝜆𝑘 )𝑇 (𝜃𝑘+1 − 𝜃𝑘 ) we obtain

𝜃𝑘+1 − 𝜃∗𝑘+1

2 ≤ 2

𝜇

(
𝐿(𝜆)



𝜃𝑘 − 𝜃∗𝑘+1

2 +
(∇𝜃L (𝜃𝑐 , 𝜆𝑘 ) − ∇𝜃L (𝜃𝑘 , 𝜆𝑘 ))𝑇 (𝜃𝑘+1 − 𝜃𝑘 )

+∇𝜃L (𝜃𝑘 , 𝜆𝑘 )𝑇 (𝜃𝑘+1 − 𝜃𝑘 )
)
. (20)

Employing Lipschitz continuity of the gradient of Lagrangian yields

𝜃𝑘+1 − 𝜃∗𝑘+1

2 ≤ 2

𝜇

(
𝐿(𝜆)



𝜃𝑘 − 𝜃∗𝑘+1

2 + 𝐿(𝜆) ∥𝜃𝑘+1 − 𝜃𝑘 ∥2
+∇𝜃L (𝜃𝑘 , 𝜆𝑘 )𝑇 (𝜃𝑘+1 − 𝜃𝑘 )

)
. (21)

By definition of 𝛿𝑘 the previous inequality can be rewritten as

𝜃𝑘+1 − 𝜃∗𝑘+1

2 ≤ 2

𝜇

(
𝐿(𝜆)𝛿𝑘 + 𝐿(𝜆)

(
𝜂1
𝑘

)
2

∥∇𝜃L (𝜃𝑘 , 𝜆𝑘 )∥2

− 𝜂1
𝑘
∥∇𝜃L (𝜃𝑘 , 𝜆𝑘 )∥2

)
. (22)

Taking the square root on the previous inequality and combining

with (13) completes the proof of (11).

We then turn our attention to proving (12). Note that

𝜃𝑘+1 − 𝜃∗𝑘+1

2 = 

𝜃𝑘 − 𝜂2𝑘∇𝜃L (𝜃𝑘 , 𝜆𝑘 ) − 𝜃∗𝑘+1


2

=


𝜃𝑘 − 𝜃∗𝑘+1

2 + (

𝜂2
𝑘

)
2

∥∇𝜃L (𝜃𝑘 , 𝜆𝑘 )∥2

− 2𝜂2
𝑘
∇𝜃L (𝜃𝑘 , 𝜆𝑘 )𝑇

(
𝜃𝑘 − 𝜃∗𝑘+1

)
. (23)

By ∇𝜃L
(
𝜃∗
𝑘+1, 𝜆𝑘

)
= 0 the previous equation is equivalent to

𝜃𝑘+1 − 𝜃∗𝑘+1

2 = 

𝜃𝑘 − 𝜃∗𝑘+1

2
+

(
𝜂2
𝑘

)
2



∇𝜃L (𝜃𝑘 , 𝜆𝑘 ) − ∇𝜃L

(
𝜃∗
𝑘+1, 𝜆𝑘

)


2
− 2𝜂2

𝑘
∇𝜃L (𝜃𝑘 , 𝜆𝑘 )𝑇

(
𝜃𝑘 − 𝜃∗𝑘+1

)
. (24)

Assumption 2 indicates that the gradient of Lagrangian function is

𝐿(𝜆)-Lipschitz continuous, and we thus obtain

𝜃𝑘+1 − 𝜃∗𝑘+1

2 ≤


𝜃𝑘 − 𝜃∗𝑘+1

2
+

(
𝜂2
𝑘

)
2

𝐿(𝜆)2


𝜃𝑘 − 𝜃∗𝑘+1

2

− 2𝜂2
𝑘
∇𝜃L (𝜃𝑘 , 𝜆𝑘 )𝑇

(
𝜃𝑘 − 𝜃∗𝑘+1

)
. (25)

In addition, the strong convexity of the Lagrangian with respect

to 𝜃 shows that

∇𝜃L (𝜃𝑘 , 𝜆𝑘 )𝑇
(
𝜃∗
𝑘+1 − 𝜃𝑘

)
≤ L

(
𝜃∗
𝑘+1, 𝜆𝑘

)
− L (𝜃𝑘 , 𝜆𝑘 )

− 𝜇

2



𝜃∗
𝑘+1 − 𝜃𝑘



2
≤ − 𝜇

2



𝜃∗
𝑘+1 − 𝜃𝑘



2 , (26)

where the last inequality follows from the fact that 𝜃∗
𝑘+1 is the

minimizer of the Lagrangian. Subsequently, combining (25) and

(26) yields

𝜃𝑘+1 − 𝜃∗𝑘+1

2 ≤


𝜃𝑘 − 𝜃∗𝑘+1

2 − 𝜂2𝑘𝜇 

𝜃𝑘 − 𝜃∗

𝑘+1


2

+
(
𝜂2
𝑘

)
2

𝐿(𝜆)2


𝜃𝑘 − 𝜃∗𝑘+1

2

=

(
1 +

(
𝜂2
𝑘

)
2

𝐿(𝜆)2 − 𝜂2
𝑘
𝜇

) 

𝜃𝑘 − 𝜃∗𝑘+1

2 . (27)

Taking the square root and combining with (13) completes the proof

of the result. □
By virtue of Assumptions 2, 3 and Lemma 1, we are able to derive

two optimal LRs that minimize the two bounds in (11) and (12). We

formalize this claim in the following theorem.
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Theorem 2. Let Assumption 2 and Assumption 3 hold. Then, the
learning rates 𝜂1

𝑘
= 1

2𝐿 (𝜆) and 𝜂
2

𝑘
=

𝜇

2𝐿 (𝜆)2 minimize the bounds in

(11) and (12), respectively. Denote by 𝜖1
𝑘
and 𝜖2

𝑘
the bounds on the

primal error using 𝜂1
𝑘
and 𝜂2

𝑘
. Consider the 𝐿′-Lipschitz continuity of

the Lagrangian L (𝜃𝑘 , 𝜆𝑘 ) and 𝛿𝑘 in Lemma 1. Then, it holds that

𝜖1
𝑘
≤ 𝐿′

√︄
2𝛿𝑘

𝜇

(
𝐿 (𝜆) − 𝜇2

16𝐿 (𝜆)

)
, (28)

𝜖2
𝑘
≤ 𝐿′

√︄
𝛿𝑘

(
1 − 𝜇2

4𝐿 (𝜆)2

)
. (29)

Proof. We start by establishing two LRs 𝜂1
𝑘
and 𝜂2

𝑘
. As observed

in (11), the right-hand side is convex with respect to 𝜂1
𝑘
since

𝐿′, 𝐿(𝜆), 𝛿𝑘 are independent of 𝜂1
𝑘
. To minimize it one can com-

pute the derivative and make it zero. Then the minimizer of the

right-hand side of (11) is given by

𝜂1
𝑘
=

1

2𝐿(𝜆) . (30)

Likewise, the right-hand side of (12) is convex with respect to

𝜂2
𝑘
, and the optimal LR (minimizer) takes the form of

𝜂2
𝑘
=

𝜇

2𝐿(𝜆)2
. (31)

Having established 𝜂1
𝑘
and 𝜂2

𝑘
, we are now in the stage of proving

𝜖1
𝑘
and 𝜖2

𝑘
. For 𝜖1

𝑘
, substituting 𝜂1

𝑘
into (11) yields the tightest upper

bound, i.e.,

𝜖1
𝑘
≤ 𝐿′

√︄
2

𝜇

(
𝐿(𝜆)𝛿𝑘 −

∥∇𝜃L(𝜃𝑘 , 𝜆𝑘 )∥2
4𝐿(𝜆)

)
. (32)

Strong convexity indicates that

−∇𝜃L (𝜃𝑘 , 𝜆𝑘 )𝑇
(
𝜃∗
𝑘+1 − 𝜃𝑘

)
≥ 𝜇

2



𝜃∗
𝑘+1 − 𝜃𝑘



2 . (33)

Squaring both sides of the previous inequality, using the Cauchy-

Schwartz inequality and the definition of 𝛿𝑘 it follows that

∥∇𝜃L (𝜃𝑘 , 𝜆𝑘 )∥2 ≥ 𝜇2

4



𝜃∗
𝑘+1 − 𝜃𝑘



2 = 𝜇2

4

𝛿𝑘 . (34)

Combining the previous inequality with (32) yields

𝜖1
𝑘
≤𝐿′

√︄
2𝛿𝑘

𝜇

(
𝐿(𝜆) − 𝜇2

16𝐿(𝜆)

)
. (35)

Our focus now shifts towards the derivation of 𝜖2
𝑘
. Substituting

𝜂2
𝑘
into (12) yields the tightest upper bound on 𝜖2

𝑘

𝜖2
𝑘
≤ 𝐿′

√︄
𝛿𝑘

(
1 − 𝜇2

4𝐿(𝜆)2

)
. (36)

These complete the proof of Theorem 2. □
Notice that both LRs proposed by Theorem 2 demonstrate an in-

verse relationship with respect to the LM, which is also empirically

validated by our preliminary observations in Figure 1. Moreover, 𝜂1
𝑘

has an inverse-linear dependence on LM while 𝜂2
𝑘
has an inverse-

quadratic dependence on LM. We therefore term them InvLin and

InvQua, respectively. It is important to point out that we assume

that the Lagrangian is strongly convex. This is generally not the

case for RL problems. However, one can assume local convexity

Algorithm 1 Adaptive Primal-Dual (APD)

1: Input: 𝜃0, 𝜆0, 𝜁 , 𝐿𝑅, 𝐿𝐶 , 𝜇 (optional)
2: for 𝑘 = 0, 1, · · · , do
3: Choose primal LR from (30) or (31)

4: Update primal variable (policy parameter) as in (6)

5: Update dual variable (LM) as in (7)

6: end for

Algorithm 2 Practical Adaptive Primal-Dual (PAPD)

1: Input: 𝜃0, 𝐻1 (𝐻 ′
1
), 𝐻2 (𝐻 ′

2
), 𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷

2: for 𝑘 = 0, 1, · · · , do
3: Choose primal LR from (39)

4: Update primal variable (policy parameter) as in (6)

5: Update dual variable (LM) as in (40)

6: end for

around a local minimum. We chose this stronger assumption for

simplicity in the exposition.

Having established InvLin and InvQua as well as corresponding
bounds 𝜖1

𝑘
and 𝜖2

𝑘
, we are able to propose an adaptive primal-dual

(APD) algorithm, which is summarized under Algorithm 1. Notice

that Theorem 1 indicating the (approximate) convergence of the

LM also holds for the APD algorithm. Furthermore, with 𝜖1
𝑘
and 𝜖2

𝑘
,

we can further establish the guarantee of proximity to the primal

optimum 𝐽𝑅 (𝜋𝜃 ∗ ). The following theorem addresses this aspect

explicitly.

Theorem 3. Consider 𝜃∗ and 𝐽𝑅 (𝜋𝜃 ) in (3). Let the hypotheses of
Theorem 1 hold, and consider the sequence of the LM generated by
Algorithm 1. Then, it holds that

lim inf

𝐾→∞
1

𝐾

𝐾−1∑︁
𝑘=0

𝐽𝑅 (𝜋𝜃𝑘+1 ) ≥ 𝐽𝑅 (𝜋𝜃 ∗ ) −
1

𝐾

(
𝐾−1∑︁
𝑘=0

𝜖𝑘

)
− 𝜁 (𝐵 + (1 − 𝛾) ∥d∥)2

2(1 − 𝛾)2
. (37)

Proof. See the supplementary material of [32]. □
Notice that 𝜖𝑘 in (37) can be bounded by (28) or (29), depending

on InvLin or InvQua is selected. Theorem 3 demonstrates that the

limit inferior of the average of the sequence derived by Algorithm 1

approximates well the value of 𝐽𝑅 (𝜋𝜃 ∗ ). In principle, the limit supe-

rior has the potential to be significantly larger than 𝐽𝑅 (𝜋𝜃 ∗ ), which
would lead to constraint violations. In the following result, we prove

that this is not the case, i.e., the sequence generated by Algorithm 1

is feasible on average.

Theorem 4. Let hypotheses of Theorem 1 hold. It holds that

lim sup

𝐾→∞

1

𝐾

𝐾−1∑︁
𝑘=0

𝐽𝐶𝑖 (𝜋𝜃𝑘 ) ≤ 𝑑𝑖 , 𝑖 = 1, 2, · · · ,𝑚. (38)

Proof. See the supplementary material of [32]. □
Despite the theoretical guarantees on APD (Algorithm 1) re-

garding the convergence, optimality, and feasibility, estimating the

Lipschitz constant 𝐿(𝜆) and the strongly convex constant 𝜇 in the

LRs (30) and (31) is, in general, computationally expensive. We
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thus consider a practical version of adaptive LRs. Under the single

constraint, the adaptive LRs in (30) and (31) can be written as

𝜂1
𝑘
= 𝐻1/(𝜆𝑘 + 𝐻2), 𝜂2

𝑘
= 𝐻 ′

1
/(𝜆𝑘 + 𝐻 ′

2
)2, (39)

where 𝐻1, 𝐻2, 𝐻
′
1
, 𝐻 ′

2
are hyper-parameters.

Note that the update on the policy parameter is updated by run-

ning a step of any RL algorithm with the adaptive LRs in (39). In

particular, we consider state-of-the-art algorithms such as PPOL

and DDPGL. However, the dual variables frequently exhibit tenden-

cies to overshoot and oscillate, thereby hindering performance. To

address these challenges, we adopt the Proportional Integral Deriv-

ative (PID) Lagrangian strategies as introduced by [34]. Drawing

inspiration from the feedback control, the LM is updated as

𝜆𝑘 =

(
𝐾𝑃 (𝐽𝑘𝐶 − 𝑑) + 𝐾𝐼 𝐼𝑘 + 𝐾𝐷 (𝐽𝑘𝐶 − 𝐽𝑘−1𝐶 )

)
+
, (40)

where 𝐼𝑘 is recursively defined as 𝐼𝑘 = (𝐼𝑘−1 + 𝐽𝑘
𝐶
− 𝑑)+ and sub-

script + indicates projection onto the non-negative orthant. The

three hyper-parameters 𝐾𝑃 , 𝐾𝐼 , and 𝐾𝐷 represent the proportional,

integral, and derivative gains. In particular, selecting 𝐾𝑃 = 𝐾𝐷 = 0

the update reduces to gradient descent on the dual domain.

With the practical adaptive LRs (InvLin and InvQua) defined as in
(39), as well as the dual update rule (40) using PID-Lagrangian, the

practical version of APD (PAPD) algorithm, which we implement

and evaluate in the subsequent section, is described in Algorithm 2.

4 EXPERIMENTS
The experimental details are deferred to the supplementarymaterial

of [32].

4.1 Environment
To validate our findings, we consider the Bullet-Safety-Gym envi-

ronments [30] and the Fast Safe Reinforcement Learning (FSRL)

framework [35] in this work. The Bullet-Safety-Gym is a platform

designed to train and evaluate safety features in constrained RL

scenarios. Meanwhile, the FSRL library offers structured modules

for implementing SRL algorithms including PPOL and DDPGL.

Table 1: Running time (seconds) using PPOL for all experiments.
Each case contains five independent runs.

Environment BallRun CarRun BallCircle CarCircle

InvLin 128.1 ± 5.2 159.0 ± 5.6 223.8 ± 5.6 861.0 ± 28.2
InvQua 128.1 ± 2.7 161.9 ± 14.5 228.2 ± 11.1 993.2 ± 33.8

LR=0.0001 127.1 ± 1.5 162.0 ± 13.8 234.4 ± 2.6 984.5 ± 56.1

LR=0.00025 125.8 ± 4.3 164.0 ± 18.4 230.3 ± 9.1 961.9 ± 61.1

LR=0.0005 124.4 ± 3.9 170.9 ± 17.7 222.8 ± 13.6 908.8 ± 35.1

LR=0.001 120.5 ± 6.3 163.6 ± 22.7 214.7 ± 14.5 868.9 ± 27.9

4.2 Results
We compare Algorithm 2 with the constant LR primal-dual algo-

rithm in four environments of Bullet-Safety-Gym: SafetyBallRun-v0,
SafetyCarRun-v0, SafetyBallCircle-v0, SafetyCarCircle-v0 (described
in the supplementary material of [32]). For a fair comparison, we

maintain uniformity in all parameters and hyper-parameters (ex-

cept for the LR) across each case (see the supplementary material

of [32] for details of the hyper-parameters). While Algorithm 2

relies on five hyper-parameters (other than 𝜃0), its performance is

fairly robust to the choice of these parameter values. We employ

the default values of 𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷 in FSRL across all experiments. In

addition, we numerically substantiate the robustness of the algo-

rithm performance against variations in 𝐻1 (𝐻 ′
1
), 𝐻2 (𝐻 ′

2
) values in

Section 4.3.

Figure 2 depicts the training curves of return, cost, and LR using

PPOL over five random seeds. The solid line illustrates themean and

the shaded area depicts the minimum and maximum values across

seeds. More specifically, the smallest constant LR (LR = 0.0001) has

the worst performance in all four environments. Despite the stable

training process, this LR makes significant sacrifices in both aspects

of convergence rate and optimal value (return). To some extent,

the above issue can be alleviated by using a larger LR. The purple

curves in Figure 2 show a better performance achieved by LR =

0.00025. Nevertheless, the performance is not maintained as one

keeps increasing LR. Indeed, the experiments in SafetyBallCircle-v0
present that the training processes become more unstable (larger

variance) and/or converge to a worse solution when LR = 0.0005

is selected. Ultimately, if LR is continuously raised until it reaches

0.001, all experiments exhibit either a significant fluctuation in re-

turn and cost, or in some cases, an even worse average performance

compared to using a LR of 0.0005.

On the contrary, PAPD with InvLin and InvQua outperform all

constant-LR cases in SafetyBallCircle-v0 and SafetyCarCircle-v0, and
achieve comparable performance in terms of return and cost with

the best constant-LR trials in SafetyBallRun-v0 and SafetyCarRun-v0.
This stems from the common criterion in the optimization literature,

where the solutionswith higher returns but violating constraints (in-

feasible) are regarded as having “inferior performance”. Moreover,

we present the running time employing PPOL for all experiments,

as detailed in Table 1, where BallRun, CarRun, BallCircle, CarCir-
cle serve as succinct abbreviations for the corresponding environ-
ments, namely SafetyBallRun-v0, SafetyCarRun-v0, SafetyBallCircle-
v0, SafetyCarCircle-v0. Table 1 unveils the absence of substantial
difference in running time between our PAPD algorithm and the

constant-LR baselines. In addition, it is noteworthy that we use

the same hyper-parameters 𝐻1 = 0.001, 𝐻2 = 3 in InvLin and same

𝐻 ′
1
= 0.015, 𝐻 ′

2
= 6 in InvQua across all experiments.

We also apply DDPGL to update policy parameters in the PAPD

algorithm. Similar to what we observe in Figure 2, InvLin and In-
vQua employingDDPGL surpasses ormatches the best performance

of all constant-LR cases. Given the limited space, the results of

DDPGL experiments are meticulously detailed and analyzed in the

supplementary material of [32]. Likewise, we maintain uniformity

in hyper-parameter values throughout all conducted experiments.

This consistency, despite the varied experimental scenarios, speaks

to the robustness of our PAPD approach. Further evidence sup-

porting this robustness statement will be discussed in the next

subsection.
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Return-SafetyBallRun-v0 Return-SafetyCarRun-v0 Return-SafetyBallCircle-v0 Return-SafetyCarCircle-v0

Cost-SafetyBallRun-v0 Cost-SafetyCarRun-v0 Cost-SafetyBallCircle-v0 Cost-SafetyCarCircle-v0

LR-SafetyBallRun-v0 LR-SafetyCarRun-v0 LR-SafetyBallCircle-v0 LR-SafetyCarCircle-v0

Figure 2: Learning curves for PPOL over four environments with five independent runs. In all figures, the horizontal axis is the
number of time step. The solid line illustrates the mean and the shaded area depicts the maximum and the minimum. In all
experiments, 𝐻1 = 0.001, 𝐻2 = 3 for InvLin, 𝐻 ′

1
= 0.015, 𝐻 ′

2
= 6 for InvQua, and cost limit d = 10 (black dashed line).

4.3 Robustness Verification
Having observed the sensitivity of experimental results with respect

to the constant-LR, one might naturally find themselves intrigued

by the sensitivity exhibited by 𝐻1 (𝐻 ′
1
), 𝐻2 (𝐻 ′

2
). As shown in (39),

𝐻1 (𝐻 ′
1
) plays a similar role to constant-LR in a natural way. There-

fore, a compelling point of interest would involve their comparison

with the constant-LR. On the other hand,𝐻2 (𝐻 ′
2
) is added to the LM

𝜆𝑘 . Indeed, for large values of 𝜆𝑘 , 𝐻2 (𝐻 ′
2
) becomes more negligible,

whereas for small values of 𝜆𝑘 , the LR will focus on 𝐻2 (𝐻 ′
2
) itself.

The LM describes the level of complexity involved in solving the

problem, which indicates that 𝐻2 (𝐻 ′
2
) generally depends on the

problems/tasks. In this subsection, we substantiate the robustness

of 𝐻1 (𝐻 ′
1
) and 𝐻2 (𝐻 ′

2
), respectively. The results are summarized in

Tables 2, 3 and 4.

Table 2 summarizes the experimental results of PPOL algorithm

in SafetyCarRun-v0, where each case contains five independent runs.

More concretely, the parameters in the first block are the same as

in Figure 2, where constant LR (0.00025) has the most comparable

performance with InvLin (𝐻1 = 0.001) and InvQua (𝐻 ′
1
= 0.015), and

we thus select it for robustness verification. In the next three blocks,

the constant LR, 𝐻1, and 𝐻
′
1
are reduced by the same proportion,

and we also increase the three parameters by the same scale in the

last four blocks. These 8 blocks contain a wide range of constant

LR, 𝐻1, 𝐻
′
1
, and thus enable us to fairly compare their sensitivity.

The goal of problem (3) is to maximize the expected return while

satisfying the constraint, i.e., cost < 10 in our experiments. With

this in mind, Table 2 shows that InvLin achieves the best perfor-

mance in the first, second, and fifth blocks, while InvQua stands

out as the epitome of exceptional performance in the rest of blocks.

The fifth block is the specialty, where all three cases are infeasible.

In this case, InvLin is selected to be the best due to the smallest

constraint violations and almost the largest return. To summarize,
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Table 2: Robustness verification for 𝐻1/𝐻 ′
1
using SafetyCarRun-v0 and PPOL. Each

case contains five independent runs. In all experiments, 𝐻2 = 3/𝐻 ′
2
= 6 are fixed as in

Figure 2. The first block showcases three baselines: constant LR = 0.00025 (Baseline1),
InvLin 𝐻1 = 0.001 (Baseline2), InvQua 𝐻 ′

1
= 0.015 (Baseline3), as selected in Figure 2. In

the rest of blocks, constant LR, 𝐻1, 𝐻 ′
1
are decreased/increased by the same proportion.

Parameter Return Cost Parameter Return Cost

Baseline1 538.10 ± 8.71 12.48 ± 10.96 Baseline1 × 0.2 421.26 ± 40.82 9.64 ± 4.90

Baseline2 537.59 ± 11.40 9.98 ± 5.98 Baseline2 × 0.2 502.48 ± 27.43 8.80 ± 5.15
Baseline3 545.22 ± 4.93 13.40 ± 4.78 Baseline3 × 0.2 513.93 ± 7.35 11.50 ± 4.55

Baseline1 × 0.32 492.65 ± 15.78 7.66 ± 5.34 Baseline1 × 0.4 510.41 ± 13.62 9.22 ± 6.14

Baseline2 × 0.32 511.41 ± 22.70 11.46 ± 7.22 Baseline2 × 0.4 526.35 ± 4.30 18.42 ± 8.38

Baseline3 × 0.32 509.91 ± 29.01 8.94 ± 5.74 Baseline3 × 0.4 519.52 ± 11.61 8.04 ± 5.66

Baseline1 × 1.6 545.26 ± 4.50 15.22 ± 7.48 Baseline1 × 2.4 539.62 ± 19.01 10.02 ± 10.87

Baseline2 × 1.6 548.04 ± 8.59 14.32 ± 7.21 Baseline2 × 2.4 528.23 ± 28.56 4.74 ± 5.68

Baseline3 × 1.6 548.45 ± 7.52 15.96 ± 11.93 Baseline3 × 2.4 542.24 ± 8.92 8.28 ± 8.27

Baseline1 × 3.2 536.08 ± 12.57 6.42 ± 8.25 Baseline1 × 4.0 529.97 ± 15.72 1.26 ± 1.08

Baseline2 × 3.2 544.97 ± 8.28 10.70 ± 5.69 Baseline2 × 4.0 533.70 ± 19.98 9.56 ± 10.51

Baseline3 × 3.2 538.08 ± 11.93 5.66 ± 6.96 Baseline3 × 4.0 534.07 ± 20.06 7.70 ± 11.52

Table 3: Summary of Table 2

Paramter Best Performance Overall Return Overall Cost

Constant LR 536.08/6.42 514.17 ± 41.45 8.99 ± 4.15

InvLin-𝐻1 537.59/9.98 529.10 ± 15.74 10.99 ± 4.03

InvQua-𝐻 ′
1

542.24/8.28 531.43 ± 14.92 9.94 ± 3.41

Table 4: Robustness verification for𝐻2/𝐻 ′
2
using SafetyCarRun-

v0 and PPOL. Each case contains five independent runs. In all
experiments,𝐻1 = 0.001/𝐻 ′

1
= 0.015 are fixed as in Figure 2. The

two baselines, denoted as BS1 and BS2, correspond to InvLin
𝐻2 = 3 and InvQua 𝐻 ′

2
= 6 as selected in Figure 2. Starting from

the first block, 𝐻2/𝐻 ′
2
are increased by 10%.

𝐻2/𝐻 ′
2

Return Cost 𝐻2/𝐻 ′
2

Return Cost

BS1 × 0.8 543.05 ± 10.21 12.40 ± 8.66 BS1 × 0.9 531.73 ± 12.61 5.80 ± 6.15

BS2 × 0.8 545.09 ± 3.82 6.56 ± 5.05 BS2 × 0.9 543.58 ± 6.84 8.04 ± 5.26

BS1 × 1.1 538.27 ± 5.70 8.86 ± 6.90 BS1 × 1.2 531.27 ± 8.97 7.90 ± 6.14

BS2 × 1.1 547.12 ± 2.44 13.28 ± 2.49 BS2 × 1.2 537.37 ± 7.68 9.50 ± 4.40

our proposed InvLin and InvQua outperform the constant LR in a

wide range of values.

We further analyze Table 2 from the perspective of all blocks.

Indeed, Table 3 extracts the best performance of three parameters

across all blocks. All of them attain feasible solutions, with InvQua
emerging as the optimal choice by achieving return = 542.24, cost =

8.28. On the other hand, we collect the mean values of the return

and the cost in each block of Table 2, and compute their mean

and standard deviation across all eight blocks. These are shown in

the last two columns: “Overall Return” and “Overall Cost”. Note

that the best “Overall Return-Cost” pair goes to InvQua again. In
addition, InvLin and InvQua yield smaller standard deviation than

the constant LR case in terms of both return and cost.

Furthermore, Table 4 tests the robustness of𝐻2 (𝐻 ′
2
). We also use

the same 𝐻1 (𝐻 ′
1
), 𝐻2 (𝐻 ′

2
) as in Figure 2 as our baselines. Then, we

increase𝐻2 (𝐻 ′
2
) by 10% starting from the first block in Table 4, while

keeping 𝐻1 (𝐻 ′
1
) constant. Note that we maintain the satisfactory

performance in three of the blocks and encounter small loss in

the worst case while changing 𝐻2 (𝐻 ′
2
). Moreover, InvQua shows

larger sensitivity to 𝐻 ′
2
, which could be naturally explained by its

quadratic format.

In summary, we are able to employ the same 𝐻1 (𝐻 ′
1
), 𝐻2 (𝐻 ′

2
) in

four different Bullet-Safety-Gym environments for both PPOL and

DDPGL algorithms. In addition, Tables 2 and 3 indicate that InvLin
and InvQua outperform the constant LR baselines in a wide range

of 𝐻1 (𝐻 ′
1
) that are selected, and Table 4 validates the robustness of

𝐻2 (𝐻 ′
2
) as well. Therefore, these numerical results substantiate the

robustness of our proposed PAPD algorithm.

5 CONCLUDING REMARKS
In this work, we propose the Adaptive Primal-Dual (APD) algorithm

and its practical version (PAPD) that leverage adaptive learning

rates for safe reinforcement learning (SRL). Theoretically, we pro-

vide the analyses of the APD algorithm in terms of the convergence,

optimality and feasibility. We also numerically evaluate the PAPD

algorithm across four well-known SRL environments in the Bullet-

Safety-Gym. Our experiments show that the PAPD algorithm out-

performs the primal-dual algorithm with constant learning rates.

In addition, we validate the robustness of our proposed algorithm

by testing across various environments, different RL methods, and

a wide range of hyper-parameters associated with the two adaptive

learning rates.
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