
Fast and Slow Goal Recognition
Mattia Chiari

University of Brescia
Brescia, Italy

mattia.chiari@unibs.it

Alfonso Emilio Gerevini
University of Brescia

Brescia, Italy
alfonso.gerevini@unibs.it

Andrea Loreggia
University of Brescia

Brescia, Italy
andrea.loreggia@unibs.it

Luca Putelli
University of Brescia

Brescia, Italy
luca.putelli@unibs.it

Ivan Serina
University of Brescia

Brescia, Italy
ivan.serina@unibs.it

ABSTRACT

Goal recognition is a crucial aspect of understanding the intentions
and objectives of agents by observing some of their actions. The
most prominent approaches to goal recognition can be divided
into two main categories: (1) trustworthy systems, which exploit
automated reasoning for computing plans compatible with the ob-
served actions, and (2) swifter systems, which try to quickly infer
goals, often overlooking complex cognitive processes, and have no
formal guarantees of their results. This paper introduces a novel ap-
proach inspired by the dual process theory, which integrates these
two techniques. A dual-process model is proposed, leveraging fast,
experience-based recognition for immediate goal identification, and
slow, deliberate analysis for deeper understanding. Machine learn-
ing techniques and classical planning techniques are employed to
obtain this dual-process system. Experimental evaluations demon-
strate the effectiveness of the approach, reducing the amount of
resources required to compute a solution (e.g., time to find a goal),
while at the same time enhancing accuracy and robustness, espe-
cially in more complex scenarios.

KEYWORDS

Goal Recognition, Fast and Slow, Planning, Deep Learning
ACM Reference Format:

Mattia Chiari, Alfonso Emilio Gerevini, Andrea Loreggia, Luca Putelli,
and Ivan Serina. 2024. Fast and Slow Goal Recognition. In Proc. of the 23rd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION

Goal recognition plays a vital role in understanding the intentions
and objectives of agents by observing the behavior of the agent,
and has several applications in various domains, ranging from ro-
botics to intelligent systems [16, 37]. Traditional goal recognition
approaches can be divided into two categories: The first category is
made by planning-based approaches which exploit automated rea-
soning in a known domain and often provide formal guarantees of
the correctness of their results or, at least, their compatibility with

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

the observed behavior [29, 30, 35]. The second is made by simpler
approaches which try to swiftly infer the agents’ goals, exploit-
ing more intuitive techniques such as landmarks [27, 28] or deep
learning [9, 10]. Reasoning methods that prioritize the assurance of
correctness give the advantage of producing reliable and verifiable
results. However, these methods often suffer from slow execution
for large-scale or time-sensitive tasks. On the other hand, machine
learning approaches excel in providing fast solutions once trained,
making them suitable for quick decision-making. This speed comes
at the expense of introducing a level of uncertainty or probability
associated with the proposed solutions. Inspired by the “Thinking,
Fast and Slow” book [22], which highlights the distinct cognitive
processes involved in decision-making, this paper presents a novel
approach to goal recognition that takes both of these approaches
into account, integrating “intuitive” (experience-guided) decisions
and deliberative reasoning. As already suggested in the literature
for different scenarios [4, 8, 19], by integrating concepts from cogni-
tive psychology and planning, we propose a dual-process model for
goal recognition that accounts for both quick, intuitive recognition
and slower, deliberate analysis [13, 14, 32]. The proposed approach
leverages the strengths of both processes: fast, intuitive recognition
for immediate goal identification and slow, deliberate analysis for
deeper understanding and inference. In our approach, we leverage
a combination of machine learning techniques and planning-based
reasoning to model the dual-process system. To effectively orches-
trate this dual process framework, we developed a metacognitive
agent, as suggested in the existing literature [15].

The implemented system is called FSGR (Fast and Slow Goal
Recognition). FSGR is evaluated by an experimental analysis based
on known planning domain benchmarks that compares its perfor-
mance with other existing goal recognition methods. The results
demonstrate that FSGR improves the accuracy and robustness of the
goal recognition methods, particularly in scenarios with complex
and ambiguous goal structures.

2 BACKGROUND

In this section, we provide a contextual foundation and an overview
of the key concepts that underpin the present study.

2.1 Thinking, Fast and Slow

Advancements in algorithms, techniques, computational power, and
specialized hardware have made automated reasoning tools more
efficient and reliable. However, they often still lack some desired

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

354

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


properties that are common in human intelligence, such as general-
izability, robustness, and abstraction. To address these limitations, a
growing number of AI experts are striving to develop systems that
possess more human-like properties. One of the main strategies
is to create cognitive architectures that utilize a combination of
neural networks and symbolic/logic-based AI. This paper explores
multi-agent planning within the context of one such architecture
[8], inspired by Kahneman’s “Thinking, Fast and Slow” book [22].
Kahneman adopted the terms System 1 (fast thinking) and System
2 (slow thinking) to describe two processes that handle decision-
making in different ways. The terminology was first coined by
Stanovich and West [36]. System 1 makes intuitive and imprecise
decisions, while System 2 deals with complex, logical, and rational
decision-making. The division of responsibilities between the two
systems is based on the difficulty of the problem and the experience
gained in solving it. Over time, System 2 accumulates examples that
System 1 can later use with ease. However, System 1 and System 2
are not multi-agent systems, but rather they encapsulate two broad
categories of information processing.

2.2 Goal Recognition

Goal recognition (GR) is defined as the task of identifying the inten-
tion (goal) of an agent from observations about the agent’s behavior
in an environment. These observations can be represented as an or-
dered sequence of discrete actions (each one possibly identified by
activity recognition), while the agent’s goal can be expressed either
as a set of propositions or a probability distribution over alternative
sets of propositions (each even forming a distinct candidate goal).

In the approach to GR known as “goal recognition over a domain
theory” [30, 37], the available knowledge consists of an underlying
model of the behavior of the agent and of the environment. Such
a model represents the agent/environment states and the set of
actions 𝐴 that the agent can take; typically this is specified by a
planning language such as pddl [24]. Given the set of all possible
propositions 𝐹 , also called fluents or facts, the states of the agent
and of the environment are formalized as subsets of 𝐹 . Each domain
action in 𝐴 is modeled by a set of preconditions and a set of effects,
both over 𝐹 .

An instance of a GR problem 𝑇 = ⟨Π, 𝐼 ,𝑂,G⟩ is specified by:
(i) a given domain Π = ⟨𝐹,𝐴⟩, which specifies the set 𝐹 of possible
fluents and the set of available actions 𝐴; (ii) an initial state of the
agent and the environment 𝐼 ⊆ 𝐹 (iii) a sequence of observations
𝑂 = ⟨obs1, .., obs𝑛⟩, with 𝑛 ≥ 1, where each 𝑜𝑏𝑠𝑖 ∈ 𝐴 is an action
taken by the agent; (iv) a set of possible goals G = {𝐺1, ..,𝐺𝑚},
with 𝑚 ≥ 1, where each 𝐺𝑖 ⊆ 𝐹 . An observation is a trace of
the full sequence of actions 𝜋 performed by the agent to achieve
the goal. This means that an observation is a subsequence of 𝜋 ,
whose actions might be non-consecutive but have the same order
as in 𝜋 . Solving a GR instance consists in identifying 𝐺∗ ∈ G that
corresponds to the (unknown) goal of the agent. There are two
typical approaches for GR: themodel-based goal recognition (MBGR),
in which GR is defined as a reasoning task addressable by automated
planning techniques [18, 25], and the model-free goal recognition
(MFGR) [2, 9, 10, 16], in which GR is formulated as a classification
task addressed through machine learning. MFGR requires minimal
information about the domain actions (each action is specified by

just a label) and it can operate without the specification of an initial
state, which can be completely unknown. Moreover, since running
a learned classification model is usually fast, an MFGR system
is expected to run much faster than an MBGR system based on
planning algorithms. On the other hand, MFGR needs a data set of
solved GR instances from which to learn a classification model for
the new GR instances of the domain.

3 RELATEDWORK

Goal recognition has been extensively studied through model-
based approaches exploiting planning techniques [25, 28–30, 33, 35],
matching techniques relying on plan libraries (e.g., [26]) and more
recently with reinforcement learning [2]. The work in [29] com-
putes goal and plan recognition by computing, for all the goals in
the hypotheses, an optimal plan from the initial state to the goal
and an optimal plan that complies with the observations 𝑂 from
the same initial state to the same goal. The candidate goals are all
the goals for which the cost of these two optimal plans is the same.
Although this approach is formally exact, its major drawback is
that it requires checking all the possible goals in the hypothesis set,
with several calls to the planner, which could take a long time. In
this work, we adopt this system as the slow thinking component
(System 2), comparing our integrated framework to it. The method
of Ramirez and Geffner is expanded using standard planners and
providing a probability distribution over the candidate goals [30].
Although these works focus on rational agents, the work in [23]
focuses on goal recognition with different degrees of rationality of
the agents. Besides fully rational agents, another assumption made
by most goal recognition approaches is that actions can only be
partially observed (meaning that not all actions can be observed),
but at least they are observed in the same order they were executed.
A study on exploiting off-the-shelf planners without knowing this
order is available in [12].

In [27, 28] a faster approach based on landmarks is introduced,
called LGR. Unlike [29], for GR instances that have partial observa-
tions of the complete plan trace, LGR does not provide any formal
guarantee of the correctness of the predicted goal. In this sense, note
that systems like LGR could be used in our framework as the fast
thinking component (System 1) with a proper configuration of our
Metacognitive System. In this case, given that LGR provides a score
for each possible goal, our confidence metric, which is explained
in Section 4.3, could be exploited in a very similar way. Regarding
the experience metric, this would require a more tailored design.
However, as shown in [10], when enough training data is provided,
our choice for System 1 can achieve more accurate performance
than LGR. Moreover, given that our System 1 is a MFGR based on a
neural network, it can learn from the problems solved by System 2
and improve over time, providing a better integration with the the
slow thinking component which progressively “teaches” System
1. The same improvement cannot be ensured with LGR which is
based on planning techniques. Similarly, also the work in [3], which
proposes a neuro-symbolic approach that combines learning tech-
niques such as LSTMs (Long Short-Term Memory) and planning
techniques to solve goal and plan recognition problems from state
traces, could be used as System 1. However, we opted not to use it in
this work, as it was tested on a much simpler problems compared to

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

355



Figure 1: Architecture of FSGR. A GR instance is processed by

System 1 (S1) and its solution is evaluated by a metacognitive

agent which decides whether to trust it or not. In the latter

case, System 2 (S2) is engaged. The plans computed by System

2 are stored in the knowledge base and used for training

System 1.

the ones in our dataset (for instance, they consider only 48 fluents
for logistics compared to 154 in our experiments).

4 FAST AND SLOW ARCHITECTURE FOR

GOAL RECOGNITION

In this section, we describe the architecture of FSGR. In particular,
we show how System 1 (also S1) and System 2 (also S2) are realized
and how the metacognitive agent (also MC) orchestrates between
the two systems to provide the final prediction. The architecture
is depicted in Figure 1. Given a GR instance, System 1 computes
a solution based on past experience in the domain. The solution
proposed by S1 is then evaluated by the metacognitive agent that
decides whether to accept it or engage System 2 for a better solution.
In this case, the solution of the instances computed by System 2 are
also added to the knowledge base for possible retraining of System 1.
We assume that the agent is fully rational and follows optimal plans
to achieve its goals, as described in Section 5. Moreover, we assume
partial observability (i.e. only a percentage of the actions can be
seen) of the agent’s actions but no noise in such observations.

4.1 System 1: GRNet

System 1 is developed with an MFGR system based on an LSTM
neural network, as proposed in the GRNet approach [10]. The input
of the network is a GR instance. The output of GRNet is a score in
[0, 1] for each proposition in 𝐹 . This model can be used for every
GR instance over 𝐹 (the training process is performed once for each
domain). The structure of GRNet is shown in Figure 2.

In this system, an embedding layer [6] transforms each action
𝑎𝑖 in the input into a vector 𝑒𝑖 of real numbers. The index of each
action is simply the result of an arbitrary order of actions that is

Figure 2: Architecture of System 1. Each action is embedded

into a vector and then fed to a LSTM layer and an Attention

mechanism.

computed in the pre-processing phase, only once for the domain
under consideration. Note that two consecutive observed actions 𝑎𝑖
and 𝑎 𝑗 may not be consecutive in the full plan of the agent, which
may contain any number of actions between 𝑎𝑖 and 𝑎 𝑗 .

GRNet is based on a Long Short-Term Memory network (LSTM)
[21], which is a kind of neural network specifically suitable for
processing sequential data like signals or text documents (in our
case the sequence of observed actions) and is composed of several
cells, one for each element of the input sequence. The output of each
cell is processed by an Attention Mechanism [5], in particular, the
variant proposed by Yang et al. [38], which computes the weights
representing the contribution of each element of the sequence, and
generates a unique representation (also called the context vector)
of the entire plan trace. The context vector is then passed to a
feed-forward layer, which has 𝑁 output neurons with a sigmoid
activation function, where 𝑁 is to the number of domain fluents
(propositions) that can appear in any goal of G for any GR instance
in the domain. In our experiments, 𝑁 was set to the size of the
domain fluent set 𝐹 (i.e., 𝑁 = |𝐹 |). The output of the 𝑖-th neuron 𝑜𝑖
corresponds to the 𝑖-th fluent 𝑓𝑖 (fluents are lexically ordered), and
the activation value of 𝑜𝑖 gives a rank for 𝑓𝑖 being true in the agent’s
goal (with a rank greater than 0.5meaning that 𝑓𝑖 is true in the goal).
For each fact 𝑓𝑖 , we evaluate network performance using common
machine learning metrics, such as precision, recall, or F-Score on a
separate validation set, made of instances that the network did not
see at training time. In particular, we calculate the precision score
as the fraction of goals correctly identified among those predicted
by the network as true. We use this score to measure how the
neural network performs when it makes a specific prediction. As
a loss function, we used the standard binary cross-entropy. The
dimension of the embedding vectors, the dimension of the LSTM
layer, and other hyper-parameters of the networks are selected
using the Bayesian-optimisation approach provided by the Optuna
framework [1], with a validation set formed by 20% of the training
set, while the remaining 80% is used for training the network.

4.2 System 2: Plan Recognition as Planning

System 2 is based on Plan Recognition as Planning (PRP) [29]. Given
an instance of a goal recognition problem 𝑇 = ⟨Π, 𝐼 ,𝑂,G⟩, we want
to compute G∗

𝑇
, the exact solution to the problem. G∗

𝑇
is a goal

set that contains all goals 𝐺 ∈ G such that some optimal plan for

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

356



Algorithm 1 MC Algorithm
Input:

• 𝑇 = ⟨Π, I,O,G⟩: the goal recognition instance
• 𝑦𝑖 : output of S1 for the current instance
• 𝑝 : vector of S1 precision scores for each fact on a validation
set
• 𝜏1, 𝜏2: Meta Classifier thresholds

Output: A set of predicted goals
1: 𝐺 ← argmax𝐺∈G𝑚𝑒𝑎𝑛𝑓 ∈𝐺 (𝑦𝑖 [𝑓 ])
2: 𝐺2 ← argmax

𝐺∈G−{�̂� }𝑚𝑒𝑎𝑛𝑓 ∈𝐺 (𝑦𝑖 [𝑓 ])
3: 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ←𝑚𝑒𝑎𝑛

𝑓 ∈�̂� (𝑦𝑖 [𝑓 ]) −𝑚𝑒𝑎𝑛
𝑓 ∈�̂�2
(𝑦𝑖 [𝑓 ])

4: 𝑐𝑜𝑢𝑛𝑡 ← 0
5: 𝑠𝑢𝑚 ← 0
6: for 𝑓 ∈ 𝐺 do

7: if 𝑦𝑖 [𝑓 ] > 0.5 then
8: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑝 [𝑓 ]
9: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
10: end if

11: end for

12: 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 ← 𝑠𝑢𝑚/(𝑐𝑜𝑢𝑛𝑡 + 𝜖)
13: if 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 > 𝜏1/|𝐺 | & 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 > 𝜏2 then
14: return { 𝐺 }
15: else if 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 > 𝜏2 then
16: 𝑔𝑜𝑎𝑙𝑠𝑒𝑡 ← {𝐺 ∈ G|0 ≤ 𝑚𝑒𝑎𝑛

𝑓 ∈�̂�𝑦𝑖 [𝑓 ] −𝑚𝑒𝑎𝑛𝑓 ∈𝐺𝑦𝑖 [𝑓 ] ≤
𝜏1/|𝐺 |}

17: else
18: 𝑔𝑜𝑎𝑙𝑠𝑒𝑡 ← G

19: end if

20: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑆2(⟨Π, I,O, 𝑔𝑜𝑎𝑙𝑠𝑒𝑡⟩)
21: if 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 == {} then
22: return {𝐺 }
23: else
24: return 𝑟𝑒𝑠𝑢𝑙𝑡

25: end if

𝑃 = ⟨Π, 𝐼 ,𝐺⟩ satisfies the observation sequence 𝑂 . To obtain this
goal set, we run an optimal planner twice for each goal in G. First,
we compute an optimal solution, if it exists, to the planning problem
𝑃𝐺 = ⟨Π, 𝐼 ,𝐺⟩ for all 𝐺 ∈ G; then again, for all 𝐺 ∈ G, we compute
an optimal solution to a transformed planning problem 𝑃 ′

𝐺
whose

solution is a solution for 𝑃𝐺 that satisfies the observations in 𝑂 . To
do that, we followed the work in Ramírez and Geffner [30], where
𝑃 ′
𝐺
is defined as a tuple ⟨Π′, 𝐼 ,𝐺 ′⟩, with Π′ = ⟨𝐹 ∪ {𝑝𝑎 |𝑎 ∈ 𝑂}, 𝐴′⟩,

𝐺 ′ = {𝐺 ∪ {𝑝𝑎 |𝑎 ∈ 𝑂}}, and 𝐴′ is a new set of actions derived
from 𝐴 as explained below. To each 𝑎 ∈ 𝐴 corresponds an action
𝑎′ ∈ 𝐴′ with the same structure as 𝑎; for each action 𝑎′ that also
appears in the observation sequence 𝑂 , we add an additional effect.
This extra effect is set to be 𝑝𝑎 when 𝑎 is the first observation in
𝑂 , otherwise, it is set to 𝑝𝑏 =⇒ 𝑝𝑎 when 𝑏 is the action that
immediately precedes 𝑎 in 𝑂 . The candidate goals in G∗

𝑇
are all the

goals in 𝐺 so that the cost of an optimal solution for 𝑃𝐺 has the
same cost as an optimal solution for 𝑃 ′

𝐺
. In our implementation, we

compile the problems using pac-c [7], this is possible by converting
𝑃 ′
𝐺

into a pac problem ⟨Π, 𝐼 ,𝐺,𝐶⟩, where the set 𝐶 contains the
constraints to encode the observed actions 𝑎1 . . . 𝑎𝑘 . In pac, these

constraints are expressed through the so-called 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑎1 . . . 𝑎𝑘
constraint which can be handled by pac-c with the addition of the
extra effects of the actions in 𝐴′ related to the observed actions
off-the-shelf.

4.3 Metacognitive Agent

Inspired by Ganapini et al. [15], in our system, the metacognitive
agent (MC) is in charge of deciding whether to accept the solution
proposed by S1 or, instead, engage S2 to evaluate a better solution.
Intuitively, the metacognitive assessment is twofold: On the one
hand, it considers S1 confidence in its answer, but due to the fact that
S1 is a machine learning approach that may have great confidence in
the solution even if it is utterly wrong, the metacognitive agent also
evaluates the level of correctness of System 1 in similar tasks. The
pseudocode of the metacognitive process is reported in Algorithm
1. It takes in input a goal recognition instance 𝑇 , the solution 𝑦𝑖
proposed by S1, the vector 𝑝 of S1 precision scores (i.e., the precision
metric calculated for each fact in 𝐹 on a validation set), and two
thresholds 𝜏1, 𝜏2. The solution proposed by S1 is a vector of real
numbers that represents a score in [0, 1] for each proposition in
𝐹 . First, MC calculates a score for each goal 𝐺𝑖 ∈ G. This score is
obtained as the average of the GRNet output for all fluents belonging
to 𝐺𝑖 . The candidate goal 𝐺 is the one with the highest score (line
1). MC also calculates the second-best candidate, 𝐺2 (line 2), that is
used to define the confidence of S1 for the proposed solution. This
is computed as the difference between the score of the candidate
goal and the second-best candidate (line 3). We call this metric
𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 . The intuition behind this metric is that if there is a
large difference between these two goals, the neural network has
identified more fluents belonging to 𝐺 than belonging to 𝐺2, and
therefore 𝐺 is the most probable goal according to GRNet.

In order to evaluate the quality of the prediction provided by
the network, we compute a metric, called 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 . This metric
indicates the network performance on problems that cover similar
goals, in particular, it evaluates how often it predicted a corrected
output in the past (line 12, where 𝜖 is a small value used to avoid
division by zero). In particular for each fluent 𝑓 in the candidate
goal 𝐺 (line 6), we calculate the average precision over only the
ones with a score greater than a threshold (in our case 0.5), meaning
that 𝑓 is true (lines 4-12). Intuitively, this indicates how the network
performs when it chooses to predict those fluents, and therefore if
its prediction is reliable or not.

The confidence and experience metrics are compared with two
thresholds (𝜏1 divided by the number of fluents in the candidate
goal and 𝜏2) and, if both exceed those thresholds, MC trusts the
prediction made by S1, returning 𝐺 as the candidate goal predicted
by the whole system (lines 13-14). In our experiments, after a grid
search optimization phase, we set 𝜏1 = 0.08 and 𝜏2 = 0.8. Other-
wise, if the network has enough experience with those fluents but
predicted two or more goals with similar scores, MC selects all the
goals for which the scores provided by the network are in the range
[𝑚𝑒𝑎𝑛

𝑓 ∈�̂�𝑦𝑖 [𝑓 ] − 𝜏1/|𝐺 |,𝑚𝑒𝑎𝑛
𝑓 ∈�̂�𝑦𝑖 [𝑓 ]] (lines 15-16), these goals

are then examined by S2 (line 20). Finally, if the network does not
perform sufficiently on the fluents in 𝐺 , MC chooses to discard its
predictions and all the goals in G are processed by S2 (lines 17-20).
If S2 does not return any solution, the solution of S1 is returned
instead (lines 21-25).

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

357



Domain |𝐴| |𝐹 | |𝐺𝑖 | |G|
blocksworld 968 506 [4,10] [19,21]
depots 13050 150 [2,8] [8,10]
logistics 15154 154 [2,4] [10,12]
zenotravel 23724 66 [5,9] [6,10]

Table 1: Size of 𝐴, 𝐹 , 𝐺𝑖 ∈ G and G in the considered GR in-

stances for each considered domain. The interval [𝑥,𝑦] indi-
cates a range of integer values from 𝑥 to 𝑦.

4.4 Updating System 1 using System 2

An important desideratum consists in improving the performance
of S1 as the experience on the domain increases. To do that, every
time the MC agent adopts S2 to solve a goal recognition instance,
FSGR stores the generated optimal plans and the corresponding
goals into a buffer. Plans and goals in the buffer are used to train
S1. In this way, the iterative training can be seen as a fine-tuning
process that enhances S1 as the system gains experience. We now
describe the buffer and the training phase. The buffer is divided
into two memories: 𝑀1 and 𝑀2. 𝑀1 contains the 𝐿 most recent
samples.𝑀2, with a size of 2𝐿, maintains a selection of all the plans
generated by S2 throughout the operation of FSGR. Maintaining
an approximate memory of all the samples generated by S2 pre-
vents catastrophic forgetting during the fine-tuning of S1. All the
samples in𝑀1 are moved to𝑀2 after each training phase, replacing
randomly selected plans/goals in 𝑀2 whenever free space is un-
available. A new training phase starts each time𝑀1 fills up. During
the training phase, 𝐿 samples are drawn at random from the whole
buffer. From each sample, a random subset of actions is selected
(preserving their sequential order) to create a new observation se-
quence. The set of 𝐿 observation sequences and the corresponding
goals are used to train S1. The process is designed so that at the
first training phase only the recent examples in L1 are used. As the
training process repeats, the number of examples in𝑀2 increases.
Ultimately, this will lead the system to select one-third of examples
from𝑀1 and two-thirds from𝑀2. If the observations derived from
the plans in𝑀1 contain new actions or achieve unseen fluents, the
overall content of the buffer is used to train a new S1 from scratch.
In our experiments, we set 𝐿 = 960 plans (i.e., 15 training batches,
each of 64 elements).

5 EXPERIMENTAL ANALYSIS

We experimentally evaluate our system and compare it with the
state-of-the-art model for goal recognition PRP [29] by observing
optimal plans problems. We consider four well-known benchmark
domains: i) blocksworld. The domain consists of a robotic arm
that has to stack or unstack blocks, picking them one at a time, in
order to obtain a desired configuration of an available set of blocks.
ii) depots. The domain consists of actions to load and unload pack-
ages into trucks through hoists and move them between depots.
The goals concern having the packages at certain depots. iii) lo-
gistics. In this domain, aircrafts fly between cities, trucks can
move between locations within a city, and packages can be loaded
into/unloaded from trucks and aircrafts. The goal is to deliver a
set of packages to their delivery locations. iv) zenotravel. This
is another variant of a transportation domain where passengers

have to be embarked and disembarked into aircrafts that can fly be-
tween cities at two possible speeds. The goals concern transporting
(moving) all passengers (aircrafts) to their required destinations.

Of course, our system can be trained and tested using other do-
mains. In the domains considered, we used automated planning
techniques to create the (solved) GR instances for the training and
test sets. Concerning the training set, for each domain, we randomly
generated a large collection of (solvable) plan generation problems
of different sizes. We adopted the same configuration used in the
experiments of Pereira et al. [28]. In Table 1 we report the number of
actions (𝐴), fluents (𝐹 ), fluents for each goal (𝐺𝑖 ) and number of can-
didate goals (G). For each problem, we computed an optimal plan for
solving it, in this case, we adopted the Big Joint Optimal Landmarks
Planner [11] to compute the solution. From the generated solutions,
we derived the observation sequences for the training samples by
randomly selecting actions from the plans preserving their relative
order. The selected actions are between 30% and 70% of the plan
actions. For the evaluation phase, we generated a test set made of
600 GR instances (not seen at training time) of different sizes. The
procedure for obtaining problems and plans is akin to the one we
described for the training set. Optimal solutions for the planning
problems compiled with pac-c are computed with the A* search
guided by the ℎ𝐿𝑀−𝐶𝑢𝑡 heuristic that supports conditional effects
[31], implemented in FastDownward [20]. For each optimal plan 𝜋𝑖 ,
we derived three different observations by subsampling 30%, 50%,
and 70% of each 𝜋𝑖 actions. For each domain, this results in three
groups of test instances, allowing us to evaluate the performance
of FSGR in terms of different amounts of available observations.

The experiments were conducted on an Intel Xeon Gold 6140M
2.3 GHz processor. For calculating optimal solutions, runtime and
memory were constrained to 1800 seconds and 8GB, respectively.
When training the models, memory utilization was limited to 40GB.
The system is evaluated in terms of two different aspects: we eval-
uate the GR accuracy, and we also keep track of the time taken
by the systems to find a solution. For a set of test instances, the
accuracy is defined as the percentage of instances whose goals are
correctly identified (predicted) over the total number of instances in
the test set. If, for a problem instance, the evaluated system provides
𝑘 different goals with the same highest score, then, in the overall
count of the solved instances, this instance has value 1/𝑘 if the true
goal is one of these 𝑘 goals, 0 otherwise.

5.1 Results

We analyzed the performance of FSGR on the test set as well as
on the three subgroups of instances based on the percentage of
plan observations. The performances on the three different subsets
of instances of the test set in terms of GR accuracy and time are
reported in Table 2. For all the considered domains, we can see that
the accuracy of System 1 increases with both the number of plans
used for training GRNet and the percentage of observed actions of
the plan. This is consistent with the fact that the more information
is used to train System 1, the better it performs. However, it is
interesting to notice that the system is able to exploit the available
information providing a gain either in accuracy or in time. For
instance, considering 50% of the plan, the accuracy of GRNet in the
depots domain changes from 24.8%, when 6𝑘 plans are used, to

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

358



Domain Train plans 30% of the plan 50% of the plan 70% of the plan

AS1 AS2 AFSGR TS2 TFSGR AS1 AS2 AFSGR TS2 TFSGR AS1 AS2 AFSGR TS2 TFSGR

blocksworld

- - 62.5 - 9108 - - 79.6 - 10958 - - 88.1 - 12124 -
0 4.7 62.5 9108 7.2 79.6 10958 7.0 88.1 12124
6k 35.1 65.3 8364 49.5 80.6 9818 59.9 88.3 11677
12k 42.8 66.4 5506 57.9 78.1 5811 72.3 87.9 6778
18k 46.5 66.9 4504 62.4 77.8 4263 75.3 86.7 4320
24k 46.3 67.7 3298 62.9 77.8 2507 77.0 87.0 2214

depots

- - 85.4 - 4148 - - 94.2 - 4330 - - 97.3 - 4487 -
0 19.2 85.4 4148 16.2 94.2 4330 16.6 97.3 4487
6k 22.3 85.4 4148 24.8 94.2 4330 25.9 97.3 4487
12k 45.5 81.0 2930 60.6 87.8 2580 69.3 90.2 2312
18k 57.5 79.8 1172 74.6 89.1 378 86.3 93.0 251
24k 58.7 82.4 837 77.1 92.3 182 87.4 95.5 73

logistics

- - 62.4 - 10629 - - 66.5 - 10467 - - 67.9 - 10388 -
0 9.7 62.4 10629 10.7 66.5 10467 9.1 67.9 10388
6k 45.1 62.8 10375 55.8 66.6 10129 55.3 68.1 10225
12k 52.0 69.1 5736 62.2 70.5 6164 70.5 70.8 7117
18k 54.8 72.7 4854 65.3 75.4 4486 77.8 76.3 4658
24k 59.1 74.5 4112 71.2 78.7 3004 81.8 79.8 3018

zenotravel

- - 92.7 - 4998 - - 97.2 - 5591 - - 98.9 - 6008 -
0 16.0 92.7 4998 17.1 97.2 5591 18.5 98.9 6008
6k 75.9 86.3 478 87.8 92.8 54 95.3 96.9 2
12k 74.5 88.1 581 87.3 91.9 51 95.1 97.9 10
18k 75.2 88.3 597 87.8 92.5 66 95.5 96.6 4
24k 75.5 88.5 590 87.3 93.4 69 94.8 97.6 14

Table 2: Performance of FSGR in terms of accuracy (in %) and Time (in seconds) considering goal recognition problems into

which the actions observed are the 30%, 50%, or 70% of the entire plan. In 𝐴S1, 𝐴S2, and 𝐴FSGR columns, we report the accuracy

of System 1 (i.e., GRNet), System 2 (i.e., PRP), and FSGR (respectively). In the 𝑇FSGR column, we report the average time taken

by FSGR to find a solution. For each domain, the first row reports the performance of System 2, and from the second row on, we

report different stages of the incremental training of System 1.

Domain Train plans
𝜏1 = 0.04 𝜏1 = 0.08 𝜏1 = 0.16

𝜏2 = 0.4 𝜏2 = 0.8 𝜏2 = 0.9 𝜏2 = 0.4 𝜏2 = 0.8 𝜏2 = 0.9 𝜏2 = 0.4 𝜏2 = 0.8 𝜏2 = 0.9

𝐴FSGR 𝑇FSGR 𝐴FSGR 𝑇FSGR 𝐴FSGR 𝑇FSGR 𝐴FSGR 𝑇FSGR 𝐴FSGR 𝑇FSGR 𝐴FSGR 𝑇FSGR 𝐴FSGR 𝑇FSGR 𝐴FSGR 𝑇FSGR 𝐴FSGR 𝑇FSGR

depots

0 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322
6k 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322 92.3 4322
12k 81.6 1884 85.2 2552 89.5 3687 83.3 1957 86.3 2607 90.0 3711 85.0 2013 87.5 2653 90.7 3721
18k 85.0 533 84.9 556 86.6 1418 87.3 579 87.3 600 88.6 1456 88.7 631 88.7 653 89.9 1501
24k 87.9 328 87.9 328 88.3 474 90.1 364 90.1 364 90.3 507 91.3 389 91.3 389 91.4 531

Table 3: Performance of FSGR in terms of accuracy (𝐴𝐹𝑆𝐺𝑅 in %) and Time (𝑇𝐹𝑆𝐺𝑅 in seconds) considering different threshold

values for the confidence (𝜏1) and the experience (𝜏2) metrics for the depots domain.

77.1% with 24𝑘 plans. This improvement leads the metacognitive
system to trust System 1 more, and thus using it more times without
exploiting System 2, which is slower and more resource-demanding.
The effect of this process can be seen in the𝑇FSGR column reporting
the average time to compute a solution by the integrated system:
the value of𝑇FSGR decreases drastically as the number of train plans
increases. For instance, in depots, the time required by FSGR to find
a solution changes from 4330 seconds to 182 seconds, more than
twenty times less. Despite this time reduction, the systemmaintains
a high accuracy which is always over 87%. Notice that with 70%
of the observed plan, the system obtains 95.5% (just 1.8 points less
than PRP) with an average time of only 73 seconds compared to
the 4430 required by PRP.

An interesting result of our approach is reported in the logistics
domain. For all the considered cases, it can be noticed that trusting
System 1 increases the overall performance of the integrated sys-
tem, which obtains an accuracy even higher than the one reached
by System 2 (that we remember being the state-of-the-art). For
instance, with 50% of the plan, System 2 has an accuracy of 66.5%,
while the integrated system, with a fully trained GRNet, reaches
78.7%. These results are due to the fact that System 1 can provide
a solution in less time than System 2, overcoming the time limit
of the system. In our experiments, we set this limit to different
values (i.e., 5, 10, 15, and 30 minutes). Due to the lack of space, we
report the results with a time limit of 30minutes for computing the
solution of a single planning instance. Although in several cases

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

359



blocksworld depots logistics zenotravel

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3: Average performance on blocksworld, depots, logistics and zenotravel domains (in columns) considering the

whole test set: (first row) Use of S1 and S2; (second row) Accuracy of S1, S2, and FSGR; (third row) Time for S1, S2, and FSGR.

this time limit is not enough for S2, the system is able to compute
a solution even for these cases by exploiting System 1 capabilities.

The results in Table 2 allow us to compare our system with two
baselines: a system that randomly predicts a goal (in Table 2, this
corresponds to the results on rows with 0 train plans, i.e. a neural
network not trained which acts as a random classifier) and the state-
of-the-art PRP (𝐴S2 and 𝑇S2 columns in Table 2 respectively). We
can see that when System 1 performs very poorly due to insufficient
training (as in the 0k rows of Table 2 and, for instance, in the 6k
row for the depots domain), the integrated system behaves almost
as PRP in terms of average accuracy and time. On the contrary,
with a properly trained System 1, the behavior of the integrated
system shows a neglectable decrease (just a few points) in terms of
accuracy with respect to PRP but with a considerable gain in terms
of time. In fact, in some cases such as in blocksworld with 24k
training plans with 70%, we can even reduce the time necessary to
compute a solution by more than 5 times. This shows the capability
of our metacognitive system to work remarkably well in both cases,
taking the best of System 1 and System 2.

In Figure 3, we graphically show the behavior of our system
for the considered domains. In the Figure, each dot represents S1
performance after each fine-tuning step using 960 plans, up to 24k
plans. The three rows report different plots showing three differ-
ent aspects and how they vary during the incremental training of
GRNet: in the first row, we report the use of Systems 1, 2 (i.e., the

percentage of times the metacognitive system adopts one of the
two systems). It can be noticed that, in each considered domain, S1
is more used when it is trained with a larger quantity of plans. For
instance, in depots, S1 is used for 68.6% of the test instances when
it is trained with 24k plans. This result is expected: in fact, a larger
training set should lead to better performance for S1 and, therefore,
the Metacognitive System should be more inclined to trust its pre-
dictions. In the second row we report the accuracy of S1, S2, and
the overall accuracy of FSGR. In the third row, we represent the
average time required to find a solution to a GR instance. It is worth
noting that while Table 2 presents results categorized according
to various percentages of observations, the figures presented here
display the average results, considering all percentages collectively
(i.e., performance refers to the whole test set). In blocksworld, it
can be noticed that the increase in the use of System 1 (see Figure
3a) corresponds to a negligible variation in accuracy (see Figure 3e),
but the time taken to compute a solution decreases (see Figure 3i).
A similar but more decisive behavior can be seen in zenotravel. In
fact, in this domain, even a limited number of plans allows GRNet
to obtain remarkably good performance reaching 80% of use very
rapidly (see Figure 3d). Again, this causes a very small variation
in terms of accuracy (see Figure 3h) but reduces the time by more
than 10 times (see Figure 3l). The performance in depots is simi-
lar in principle to that in zenotravel, except for the fact that S1
needs more plans to obtain good accuracy. For logistics, Figure 3

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

360



Domain Train 5 minutes 15 minutes
Plans AS1 AS2 AFSGR TS2 TFSGR AS1 AS2 AFSGR TS2 TFSGR

bw

- - 69.9 - 3337 - - 75.3 - 6864 -
0 6.3 69.9 3337 6.3 75.3 6864
6k 48.2 71.4 3041 48.2 76.7 6335
12k 57.7 72.1 1868 57.7 76.4 3866
18k 61.4 72.8 1398 61.4 76.4 2824
24k 62.1 73.8 917 62.1 76.9 1771

dep

- - 90.6 - 1682 - - 92.3 - 4265 -
0 17.3 90.6 1682 17.3 92.3 4265
6k 24.3 90.6 1682 24.3 92.3 4265
12k 58.5 85.2 1023 58.5 86.3 2583
18k 72.8 86.6 249 72.8 87.3 599
24k 74.4 89.4 159 74.4 90.1 364

log

- - 60.8 - 2135 - - 63.4 - 5703 -
0 9.8 60.8 2135 9.8 63.4 5703
6k 52.1 61.3 2082 52.1 63.7 5566
12k 61.6 66.7 1281 61.6 68.5 3437
18k 66.0 71.5 942 66.0 73.1 2526
24k 70.7 75.1 689 70.7 76.5 1836

zeno

- - 85.4 - 1398 - - 95.0 - 3288 -
0 17.2 85.4 1398 17.2 95.0 3288
6k 86.3 91.5 50 86.3 92.0 109
12k 85.6 92.2 58 85.6 92.6 131
18k 86.2 92.0 61 86.2 92.5 136
24k 85.9 92.7 62 85.9 93.2 137

Table 4: Performance of FSGR in terms of accuracy (in %)

and Time (in seconds), considering time limits of 5 and 15

minutes for solving each problem computed by S2. In 𝐴S1,

𝐴S2, and 𝐴FSGR columns, we report the accuracy of System

1, System 2, and FSGR (respectively). In 𝑇FSGR column, we

report the average time that FSGR needs to find a solution.

For each domain, the first row reports the performance of

System 2, from the second row instead we report different

training stages of System 1.

illustrates a crucial advantage of S1 over S2, as it demonstrates that
S1’s quicker computation of solutions allows the entire system to
produce outputs even for instances where S2 would exceed its time
constraints, resulting in higher overall accuracy (see Figure 3g).

We also evaluated how sensible our system is to different thresh-
old values of the confidence (𝜏1) and the experience (𝜏2) metrics.
Given the limited amount of space available, in Table 3 we report
the performance of the FSGR system collected only in the depots
domains. Considering three different values of 𝜏1 and 𝜏2, we can
see that when the neural network is not properly trained (using
only 1𝑘 or 6𝑘 training problems), S1 does not have enough confi-
dence or experience in its predictions, and therefore S2 is called
most of the time (resulting in an average time of 4322 seconds to
resolve a problem instance). On the other hand, when the number
of training plans increases (e.g., with 12𝑘 and 18𝑘), we can notice
some differences, especially varying 𝜏2. For all three values of 𝜏1,
setting a higher threshold for the experience metric (and, therefore,
requesting greater precision from the neural network in some spe-
cific fluents) increases the accuracy by a few points (for instance,
from 88.7 to 89.9 with 𝜏1 = 0.16) but at the expense of the com-
putation time (from 631 to 1501 seconds). Overall, note how the
accuracy remains very high in all configurations even with lower
values of both thresholds. A smaller impact can be seen when the

neural network is fully trained (24𝑘 training plans). Although in-
creasing the confidence and experience thresholds generally leads
to a longer computation time without remarkable improvements
in terms of accuracy, we can see that in general the S1 is generally
precise enough that even setting a low 𝜏2 does not lead to a loss
of accuracy (for instance, 87.9 with 𝜏2 = 0.4 and 𝜏1 = 0.04). We
have similar results for logistics, while zenotravel, which is
basically more trustworthy (given the very high performance even
with a small amount of training plans) even with high thresholds.
In blocksworld, higher threshold values provide a minor usage of
S1 but without improvements in terms of accuracy.

Finally, Table 4 reports the performance considering different
time limits (i.e., 5 and 15 minutes) to solve each problem generated
by S2. For all the considered domains, we can see that the accuracy
of S1 (column 𝐴S1) increases as the number of training plans used
increases according to what is reported in Table 2. We can also see
that, as the time limit grows, both the accuracy of System 2 (columns
𝐴S2) and the average time S2 needs to find a solution (columns𝑇S2)
increases for almost all the domains. However, this is not the case
for logistics, where the average time decreases as the time limit
increases. In this domain, FSGRmaintains the same properties seen
in Table 2. In fact, by exploiting the new information collected
through training, the metacognitive agent is able to choose S1more
often, leading to a gain in either performance or time (columns
𝐴FSGR and 𝑇FSGR). This is particularly noticeable when S2, due to
the time limit, does not perform well; for instance, in blocksworld
with 5 minutes time limit, starting from 6𝑘 training plan, FSGR
always performs better than the two separated systems both in
terms of GR Accuracy and average time.

6 CONCLUSIONS AND FUTUREWORK

This paper introduces a novel approach to goal recognition which
seamlessly integrates both intuitive and deliberative reasoning tech-
niques. By proposing a dual-process model, the paper harnesses
the power of fast, intuitive recognition for immediate goal iden-
tification, while employing slow, deliberate analysis for deeper
understanding. This unique combination leverages machine learn-
ing techniques and planning-based reasoning, effectively modeling
the dual-process system. The experimental evaluation of our system
demonstrates improved accuracy and robustness w.r.t. the state-
of-the-art system, especially in complex scenarios. In summary,
this paper contributes to the field of goal recognition by unifying
intuitive and deliberative processes, enhancing decision making,
and designing intelligent systems. It bridges the gap between rapid
inference and deep understanding, paving the way for advanced
and proficient systems. Among the directions for future work, we
intend to study effective policies to maintain the knowledge base
from past experience (e.g., [17]) and BERT-based architectures [34].

ACKNOWLEDGEMENT

This work was supported by the EU H2020 project AIPlan4EU (GA
101016442), EU ICT-48 2020 project TAILOR (GA 952215), MUR
PRIN project RIPER (No. 20203FFYLK), and Climate Change AI
project (No. IG-2023-174).

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

361



REFERENCES

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 2623–2631.

[2] Leonardo Amado, Reuth Mirsky, and Felipe Meneguzzi. 2022. Goal recognition
as reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 9644–9651.

[3] Leonardo Amado, Ramon Fraga Pereira, and Felipe Meneguzzi. 2023. Robust
neuro-symbolic goal and plan recognition. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 37. 11937–11944.

[4] Thomas Anthony, Zheng Tian, and David Barber. 2017. Thinking fast and slow
with deep learning and tree search. In Advances in Neural Information Processing
Systems. 5360–5370.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, Conference Track Proceedings.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A
neural probabilistic language model. The journal of machine learning research 3
(2003), 1137–1155.

[7] Luigi Bonassi, Alfonso Emilio Gerevini, and Enrico Scala. 2022. Planning with
Qualitative Action-Trajectory Constraints in PDDL. In Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org, 4606–4613.

[8] Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner,
Nick Linck, Andreas Loreggia, Keerthiram Murgesan, Nicholas Mattei, Francesca
Rossi, and Biplav Srivastava. 2021. Thinking Fast and Slow in AI. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 35. 15042–15046.

[9] Daniel Borrajo, Sriram Gopalakrishnan, and Vamsi K. Potluru. 2020. Goal recogni-
tion via model-based and model-free techniques. Proceedings of the 1st Workshop
on Planning for Financial Services at the Thirtieth International Conference on
Automated Planning and Scheduling, FinPlan 2020 (2020).

[10] Mattia Chiari, Alfonso Emilio Gerevini, Francesco Percassi, Luca Putelli, Ivan
Serina, and Matteo Olivato. 2023. Goal Recognition as a Deep Learning Task: the
GRNet Approach. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 33. 560–568.

[11] Carmel Domshlak, Malte Helmert, Erez Karpas, Emil Keyder, Silvia Richter,
Gabriele Röger, Jendrik Seipp, and Matthias Westphal. 2011. BJOLP: The big joint
optimal landmarks planner. (2011).

[12] Yolanda E-Martín, María D. R.-Moreno, and David E. Smith. 2015. A Fast Goal
Recognition Technique Based on Interaction Estimates. In IJCAI. AAAI Press,
761–768.

[13] M Bergamaschi Ganapini, M Campbell, F Fabiano, L Horesh, J Lenchner, A Loreg-
gia, N Mattei, F Rossi, B Srivastava, and KB Venable. 2022. Combining fast and
slow thinking for human-like and efficient decisions in constrained environments.
In Proceedings of the 16th International Workshop on Neural-Symbolic Learning
and Reasoning (NeSy 2022) Co-located with (IJCLR 2022), Vol. 3212. 171–185.

[14] Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior
Horesh, Jonathan Lenchner, Andrea Loreggia, Nicholas Mattei, Francesca Rossi,
Biplav Srivastava, and Kristen Brent Venable. 2021. Combining Fast and Slow
Thinking for Human-like and Efficient Navigation in Constrained Environments.
In Proceedings of the Thinking Fast and Slow and Other Cognitive Theories in AI,
a AAAI 2022 Fall Symposium, Westin Arlington Gateway in Arlington, Virginia,
November 17-19, 2022 (CEUR Workshop Proceedings, Vol. 3332). CEUR-WS.org.

[15] M Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh, Jon
Lenchner, Andrea Loreggia, Nicholas Mattei, Francesca Rossi, Biplav Srivastava,
and Kristen Brent Venable. 2022. Thinking fast and slow in AI: The role of
metacognition. In International Conference on Machine Learning, Optimization,
and Data Science. Springer, 502–509.

[16] Hector Geffner. 2018. Model-free, Model-based, and General Intelligence. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018. 10–17.

[17] Alfonso Emilio Gerevini, Alessandro Saetti, Ivan Serina, Andrea Loreggia, Luca
Putelli, and Anna Roubickova. 2023. Maintenance of Plan Libraries for Case-
Based Planning: Offline and Online Policies. Journal of Artificial Intelligence
Research 78 (2023), 527–577.

[18] Malik Ghallab, Dana S. Nau, and Paolo Traverso. 2016. Automated Planning and
Acting. Cambridge University Press.

[19] Gautam Goel, Niangjun Chen, and Adam Wierman. 2017. Thinking fast and
slow: Optimization decomposition across timescales. In IEEE 56th Conference on
Decision and Control (CDC). IEEE, 1291–1298.

[20] Malte Helmert. 2006. The fast downward planning system. Journal of Artificial
Intelligence Research 26 (2006), 191–246.

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-term Memory.
Neural computation 9 (12 1997), 1735–80.

[22] Daniel Kahneman. 2011. Thinking, Fast and Slow. Macmillan.
[23] Peta Masters and Sebastian Sardina. 2021. Expecting the unexpected: Goal

recognition for rational and irrational agents. Artificial Intelligence 297 (2021),
103490. https://doi.org/10.1016/j.artint.2021.103490

[24] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL-the planning
domain definition language. Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control (1998).

[25] Felipe Meneguzzi and Ramon Fraga Pereira. 2021. A Survey on Goal Recognition
as Planning. In Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021. 4524–4532.

[26] Reuth Mirsky, Roni Stern, Ya’akov (Kobi) Gal, and Meir Kalech. 2016. Sequential
Plan Recognition. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI 2016, Subbarao Kambhampati (Ed.). IJCAI/AAAI
Press, 401–407.

[27] Ramon Pereira, Nir Oren, and Felipe Meneguzzi. 2017. Landmark-based heuristics
for goal recognition. In Proceedings of the AAAI Conference onArtificial Intelligence,
Vol. 31.

[28] Ramon Fraga Pereira, Nir Oren, and Felipe Meneguzzi. 2020. Landmark-based
approaches for goal recognition as planning. Artif. Intell. 279 (2020). https:
//doi.org/10.1016/j.artint.2019.103217

[29] Miquel Ramírez and Hector Geffner. 2009. Plan Recognition as Planning. In Pro-
ceedings of the Twenty-first International Joint Conference on Artificial Intelligence,
IJCAI 2009. 1778–1783.

[30] Miquel Ramírez and Hector Geffner. 2010. Probabilistic Plan Recognition Us-
ing Off-the-Shelf Classical Planners. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2010. AAAI Press.

[31] Gabriele Röger, Florian Pommerening, andMalte Helmert. 2014. Optimal planning
in the presence of conditional effects: Extending lm-cut with context-splitting.
(2014).

[32] Francesca Rossi and Andrea Loreggia. 2019. Preferences and ethical priorities:
thinking fast and slow in AI. In Proceedings of the 18th international conference
on autonomous agents and multiagent systems. 3–4.

[33] Luísa R. A. Santos, Felipe Meneguzzi, Ramon Fraga Pereira, and André Grahl
Pereira. 2021. An LP-Based Approach for Goal Recognition as Planning. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021. AAAI Press,
11939–11946.

[34] Lorenzo Serina, Mattia Chiari, Alfonso Emilio Gerevini, Luca Putelli, and Ivan
Serina. 2022. A Preliminary Study on BERT applied to Automated Planning. In Pro-
ceedings of the 10th Italian workshop on Planning and Scheduling (IPS 2022), RCRA
Incontri E Confronti (RiCeRcA 2022), and the workshop on Strategies, Prediction,
Interaction, and Reasoning in Italy (SPIRIT 2022) co-located with 21st International
Conference of the Italian Association for Artificial Intelligence (AIxIA 2022), No-
vember 28 - December 2, 2022, University of Udine, Udine, Italy (CEUR Workshop
Proceedings, Vol. 3345). CEUR-WS.org.

[35] Shirin Sohrabi, Anton V. Riabov, and Octavian Udrea. 2016. Plan Recognition as
Planning Revisited. In Proceedings of IJCAI 2016, Subbarao Kambhampati (Ed.).
IJCAI/AAAI Press.

[36] Keith E. Stanovich and Richard F. West. 2000. Individual differences in reasoning:
Implications for the rationality debate? Behavioral and Brain Sciences 23, 5 (Oct.
2000), 645–726.

[37] Franz A. Van-Horenbeke and Angelika Peer. 2021. Activity, Plan, and Goal
Recognition: A Review. Frontiers Robotics AI 8 (2021).

[38] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, and
Eduard H. Hovy. 2016. Hierarchical Attention Networks for Document Classifi-
cation. In NAACL HLT 2016, The 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Kevin Knight, Ani Nenkova, and Owen Rambow (Eds.). The Association for
Computational Linguistics, 1480–1489.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

362

https://doi.org/10.1016/j.artint.2021.103490
https://doi.org/10.1016/j.artint.2019.103217
https://doi.org/10.1016/j.artint.2019.103217

	Abstract
	1 Introduction
	2 Background
	2.1 Thinking, Fast and Slow
	2.2 Goal Recognition

	3 Related work
	4 Fast and Slow Architecture for Goal Recognition
	4.1 System 1: GRNet
	4.2 System 2: Plan Recognition as Planning
	4.3 Metacognitive Agent
	4.4 Updating System 1 using System 2

	5 Experimental Analysis
	5.1 Results

	6 Conclusions and Future Work
	References



