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ABSTRACT
Shared autonomy systems allow robots to either operate
autonomously or request assistance from a human operator. In
such settings, the human operator may exhibit sub-optimal be-
haviours, influenced by latent variables such as attention level or
task proficiency. In this paper, we consider shared autonomy sys-
tems composed of multiple robots and one human. In this setting,
we aim to synthesise a controller that selects, at each decision step,
the actions to be taken by each robot and which (if any) robot the
human operator should assist. To efficiently allocate the human
operator to a robot at any given time, we propose a controller that
reasons about the uncertainty over the latent variables impacting
the human operator’s performance. To ensure scalability, we use
an online bidding system, where each robot plans while consider-
ing its belief over the human’s performance, and bids according to
the direct benefit of human assistance and how much information
will be gained by the system about the human. We experiment on
two domains, where we outperform approaches for allocation of
human assistance that do not consider the human’s latent variables,
and show that the performance of the overall system increases
when robots consider the information gained by requesting human
assistance when bidding.
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1 INTRODUCTION
As autonomous robots become increasingly reliable and integrated
into our lives [18, 21], they occasionally enter situations where they
cannot complete their task without human intervention. Shared
autonomy systems address this challenge by allowing the control
of a robot to be shared between a human and an autonomous
agent. As automation improves, the level of human supervision
required for each robot decreases. In this context, we examine
scenarios where a single human operator oversees multiple robots.
Allocating human assistance optimally to these robots becomes a
complex issue, particularly when multiple robots require assistance
simultaneously.Moreover, the human operatormay possess varying
skills, making them more proficient at assisting with some tasks
compared to others, but these skill differences may be unknown
to the robots. In this paper, we introduce an efficient approach to
allocate human assistance within multi-robot systems characterized
by uncertainty surrounding the human operator’s performance.

Shared autonomy systems reduce the workload on the human
operator [2] by deciding when a human or autonomous controller
should operate the robot. The system’s controller determines the
optimal operator (human or autonomy) by reasoning over its inter-
nal model of both the human and the autonomous robot. Typically,
these internal models use Markov decision processes (MDPs) [11]
to account for the stochastic nature of the operators. However,
human behaviour is inherently diverse, making it challenging to
predict human performance accurately before execution. To ad-
dress this variability, Costen et al. [9], Nanavati et al. [22], Wray
et al. [30] have utilized partially observable MDPs (POMDPs) and
Bayes-adaptive MDPs (BAMDPs) to model the human operator,
incorporating probability distributions to represent the human’s
true location or internal state. The papers that consider uncertainty
over the human focus on systems involving one robot and one
human. We extend this to systems with multiple robots and one
human.

We define our system as a multi-robot shared autonomy system,
where a human operator supervises multiple robots. The multi-
robot shared autonomy system can be framed as a scenario where
robots must share a constrained resource: the human operator.
Multi-robot systems with constrained resources typically use de-
centralised approaches, as solving the joint model can become
computationally infeasible. These approaches often assume fixed
resource availability with known impacts on the robots [23], such
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as battery charge, and typically provide offline solutions where the
resources are pre-allocated to robots before deployment [32]. How-
ever, when there is uncertainty over the outcome of consuming
a resource, decentralised approaches fail to provide policies that
change as other robots observe the effect of a resource. Thus, decen-
tralised approaches are not suited to our scenario, where the robots
must adapt their decision-making as other robots learn about the
human operator’s abilities through observations.

We propose a bidding system to distribute uncertain human
assistance efficiently, avoiding the need to solve a joint model. The
human is described using a hidden parameter polynomial MDP
(HPP-MDP), a class of uncertain MDP where the transition function
is parameterised by a set of latent parameters. At every decision
step, each robot uses BAMCP [17], an online tree-search algorithm,
to plan for a combined human-robot HPP-MDP that models a single-
robot shared autonomy system. This assumes that the robot can
always access human assistance. If the optimal action requires
human operation, then the robot submits a bid to the centralised
controller. This bid is based on the difference in value between
the human taking control and the robot executing autonomously.
The centralised controller then awards human help to the highest
bidder, with the other robots executing their optimal autonomous
action. Then, the centralised belief distribution over the human
operator’s latent parameters is updated by considering the outcome
of the human’s action. This is then repeated until all robots have
completed their tasks.

Planning with single-robot models introduces challenges: robots
cannot predict if the information they receive is useful to others,
and other robots may make observations that alter the posterior
distribution over the latent parameters, hindering long-term plan-
ning. This is because planning over single-robot shared autonomy
model does not capture the long-term effects of the other robots
in the true, joint shared-autonomy model. These issues lead to un-
dervaluing explorative actions, which leads to sub-optimal human
help allocation. To address this, we add an exploration bonus which
considers the variance in the posterior distribution over the latent
parameters. The HPP-MDP formulation of the shared autonomy
system allows us to keep a closed-form representation of the pos-
terior distribution over the human’s performance, reducing the
computational complexity of calculating the variance.

Our main contributions are the modelling of a multi-robot shared
autonomy system with uncertain human performance as an un-
certain MDP; the bidding system to allocate human help; and the
explicit reward function motivating the reduction in the variance
over the belief in human performance. To the best of our knowl-
edge, this is the first approach proposed to solve multi-robot shared
autonomy systems where there is uncertainty in the human oper-
ator’s performance. We compare our approach to 1) solving the
joint model using the BAMCP algorithm [17], and 2) a decentral-
ized approach proposed by Dahiya et al. [12], which considers a
multi-robot system where the human operators have known suc-
cess rates. We empirically show that our approach outperforms the
joint model under time constraints and the method proposed in
Dahiya et al. [12] in two domains.

2 RELATEDWORK
2.1 Shared Autonomy Systems
Shared autonomy systems are useful in settings where the workload
on the human can be reduced by letting autonomy take control in
low-risk tasks [27]. Common assumptions in many of these systems
is that the human operator can operate the system at all times and
they can act perfectly [3]. Some systems use the human operator
as an example to learn from [14, 25], with the long-term objective
of reducing the reliance on human operators over time.

However, human operators’ capabilities are not always guaran-
teed and can be influenced by a variety of factors, such as fatigue,
distraction, and ability [31]. The variance in the human opera-
tor’s performance can be explicitly modelled using Markov mod-
els [8, 15, 20]. This allows the autonomous agent to consider the
stochasticity in the human operator’s behaviour when planning,
such as the probability of the human failing a task. However, the
factors that affect the human’s performance are not always observ-
able to the agent. Jean-Baptiste et al. [19] and [9] use POMDPs to
model the uncertainty over the human operator’s behaviour. The
factors affecting the human operator (such as skill level or fatigue)
are modelled as latent internal states, and the agent must maintain
and reason over a belief distribution over the latent states. By solv-
ing models with partial observability fully, it is possible find the
policy for the agent where exploration (learning about the human
operator) and exploitation (using the information about the human
to gain rewards) are optimally balanced. These papers only con-
sider systems where there is one agent and one human operator. In
contrast, we consider the setting where there are multiple agents
and one human operator.

2.2 Multi-Agent Shared Autonomy Systems
As the amount of human intervention required per robot decreases,
we can move to a system where a single human operator supervises
multiple robots. This can be useful in search-and-rescue missions,
as well as multi-robot systems in warehouses [26]. In these systems,
using a single joint model to describe the multi-agent system can
be intractable, as the state and action space grows exponentially
with the number of agents. To solve the joint model, Rosenfeld et al.
[26] restricts the horizon of the problem to only 1 or 2 decision
steps. This short horizon allows the problem to be solved fully for
the current and next action, but is unable to consider the effects of
those actions into the future.

Swamy et al. [28] highlights the difficulty of the human appro-
priately choosing the best robot to help in scenarios with large
numbers of robots. They focus on the human choosing a robot to
help, while we consider the robots determining how useful human
help would be. They suggest a method where the system learns
the human’s preferences for helping robots when there is a small
number of robots. This learnt preference is generalised to fit prob-
lems with a larger number of robots, thus able to suggest the most
appropriate robot for the human to help. However, this method
assumes that the human always chooses the optimal robot to help
initially, and does not consider the possibility that the human may
choose the wrong robot.

Other approaches for allocating human assistance in multi-agent
shared autonomy systems impose rules onto the system to reduce
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the complexity of the problem. Cai et al. [7] assumes that the time
taken by the human and the robot for every task is exactly known
and that the human is always faster or equal to the robot. These
assumptions reduce the problem to a deterministic scheduling prob-
lem.

Similar to our work, Dahiya et al. [12] considers a multi-agent
system where the human operator can take over at an agent’s
request. They consider the possibility that the human operator may
fail a task, and use anMDP to model the dynamics of the human and
the autonomous agents. The agent with the highest benefit from
human intervention is given human help, and this benefit is defined
as the difference in the relative expected cost of the agent doing the
task autonomously versus the human helping. These benefits are
calculated offline before the system is deployed, and they assume
that the probability of the human failing a task is known. Therefore,
their system is unable to adapt if the human operator does not
perform tasks as expected. We compare our approach to theirs in
Section 6.

2.3 Multi-agent constrained resource problems
Systemswithmultiple agents have beenmodelled usingmulti-agent
MDPs (MMDPs) [5], which have joint state and action spaces. The
state space of an MMDP grows exponentially with the number of
agents, making it computationally intractable to solve fully. Thus
MMDPs are generally solved using decentralised methods when
the transition probabilities for each agent are independent [4]. Our
multi-agent shared autonomy system can be framed as a multi-
agent system where the agents must share a constrained resource,
the human operator with independent transition probabilities. In
MMDPs with global resource constraints, each agent has its own
set of transition and reward dynamics, but their actions are coupled
by a global resource constraint [32], such as advertising space [6].

Both [23, 32] solve constrained resource multi-agent systems
using a mixed integer linear program (MILP) to pre-allocate the
resource offline to each agent at every decision step. While MILP-
based solutions can guarantee that hard constraints are satisfied,
they are not scalable to large problems as their complexity grows
exponentially with the horizon. If the resource has a soft constraint
where some constraint violations are permitted, we can use column
generation algorithms for offline policy synthesis that guarantees
the resource constraint to be satisfied in expectation [29, 33]. Col-
umn generation algorithms are more scalable than MILP, as they
parallelise the computation by finding policies for each agent in-
stead of solving the joint problem. Alternative approaches for soft
constraints consider the risk of resource violations in the form
of a chance-constraint [13] and a conditional value-at-risk con-
straint [16].

In contrast to [29], where the agents have partial observability of
their state and a deterministic shared resource, we consider the case
where the agents have full observability of their state, but they must
reason over the uncertainty over the effect of the shared resource
on the transition probabilities. This leads to a problem where the
observation made by one agent may affect the optimal policy for
another agent, because the other agents’ observation may resolve
some of the uncertainty in the transition function. Therefore, we
cannot use decentralised methods such as column generation. In

this paper, we propose an approach to address this problem of a
constrained resource with an uncertain effect on the agent in a
multi-agent system without solving the joint model.

3 PRELIMINARIES
MDPs have been widely used in planning problems to describe
the stochastic behaviour of agents. MDPs allow us to reason over
aleatoric uncertainty, such as the randomness in the success of the
autonomous robot completing a task.

Definition 3.1 (MDP). A Markov Decision Process (MDP) is de-
fined by the tuple𝑀 = ⟨𝑆, 𝑠, 𝐴,𝑇 , 𝑅,𝛾⟩, where:

• 𝑆 is the set of states and 𝑠 is the initial state;
• 𝐴 is the set of actions;
• 𝑇 (𝑠, 𝑎, 𝑠′) = 𝑃 (𝑠′ | 𝑠, 𝑎) is the probabilistic transition func-
tion;

• 𝑅 : 𝑆 ×𝐴 → R is the reward function;
• 𝛾 is the discount factor,

where the goal of the agent is to maximise the cumulative dis-
counted reward.

When a human is operating the robot, the probability of suc-
cessful task completion is dependent on unobservable factors such
as their skill level or fatigue. Uncertain MDPs can be used to de-
scribe worlds where there is uncertainty over the exact transition
probabilities. An uncertain MDP is defined by the tuple M =

⟨𝑆, 𝑠, 𝐴, {𝑇𝜃 }𝜃 ∈Θ, 𝑅,𝛾⟩, where the transition dynamics {𝑇𝜃 }𝜃 ∈Θ are
governed by a set of global latent parameters, 𝜃 , such that
𝑇𝜃 (𝑠, 𝑎, 𝑠′) = 𝑃 (𝑠′ | 𝑠, 𝑎;𝜃 ). The latent parameter 𝜃 ∈ Θ is an 𝑁−
dimensional vector, i.e. Θ = R𝑁 . The agent has a prior distribu-
tion, 𝑃0 (𝜃 ) over the parameter space Θ. As the agent observes the
outcome of actions, the posterior distribution over the parameters
is updated using Bayes’ rule, 𝑃𝑡 (𝜃 ) ∝ 𝑃0 (𝜃 ) · 𝑃 (𝜃 | ℎ𝑡 ), where
ℎ𝑡 = 𝑠0𝑎0𝑠1 · · · 𝑠𝑡 is the history of the agent’s actions and observa-
tions.

A challenge in using uncertain MDPs is how to update the pos-
terior distribution over the latent parameters. In our setting, we
are interested in capturing the change in variance of the posterior
distribution as the outcome of the human operator’s action is ob-
served. To reduce the computational complexity of this, we use a
hidden parameter polynomial MDP (HPP-MDP) [10], a model that
uses polynomials to represent the uncertain transitions, to model
the shared autonomy system. The HPP-MDP allows us to maintain
a closed-form representation of the posterior distribution over the
latent parameters, and thus allows us to efficiently calculate the
variance of the posterior distribution.

Definition 3.2 (HPP-MDP). An HPP-MDP is defined by the tuple
M = ⟨𝑆, 𝑠, 𝐴,Θ, 𝑃0 (𝜃 ),𝑇Θ, 𝑅,𝛾⟩, where:

• 𝑆 and 𝑠 ∈ 𝑆,𝐴, 𝑅 and 𝛾 are as in the MDP definition;
• Θ = [0, 1]𝑁 is the parameter space of a set of 𝑁 latent
parameters. We denote elements of Θ as 𝜃 = (𝜃1, · · · , 𝜃𝑁 );

• 𝑃0 (𝜃 ) is the prior distribution over 𝜃 , where 𝑃0 (𝜃 ) ∈ 𝑃𝑜𝑙 (𝜃 )
i.e. it is a polynomial function of 𝜃 ;

• 𝑇Θ : 𝑆 × 𝐴 × 𝑆 → 𝑃𝑜𝑙 (𝜃 ) is the polynomial set of possible
transition functions.
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To be well formed, the transition functions must be valid for all
𝜃 ∈ Θ, such that∑︁

𝑠′∈𝑆
𝑇𝜃 (𝑠, 𝑎, 𝑠′) = 1,∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, 𝜃 ∈ Θ. (1)

The optimal policy maps the history of the trajectory the action
with the highest Q-value, which is defined as:

𝑄∗ (𝑠, ℎ𝑡 , 𝑎) = 𝑅(𝑠, 𝑎)+

max
𝑎∈𝐴

¤
∫
𝜃 ∈Θ

∑︁
𝑠′∈𝑆

𝑇𝜃 (𝑠, 𝑎, 𝑠′)𝑃𝑡 (𝜃 )𝛾𝑉 ∗ (𝑠′, ℎ𝑡𝑎𝑠′)𝑑𝜃
(2)

where 𝑉 ∗ (𝑠, ℎ𝑡 ) = max𝑎∈𝐴𝑄∗ (𝑠, ℎ𝑡 , 𝑎) is the optimal value func-
tion.

Uncertain MDPs can be solved using a Monte-Carlo search
tree based algorithm, such as the BAMCP algorithm [17]. BAMCP
is a Monte-Carlo tree search algorithm which builds a history-
dependent tree by sampling the prior distribution 𝑃0 (𝜃 ) to generate
a sample MDP. The sample MDP used to simulate a run, and the
trajectory taken is used to update the history-dependent nodes.
BAMCP estimates the Q-value of each node, and the estimates
converge towards the optimal Q-value as the number of samples in-
creases. The optimal policy will give the optimal trade-off between
exploratory actions to reduce the uncertainty over the human op-
erator’s performance, and exploitative actions that minimise the
expected cost of the system.

4 SHARED AUTONOMOUS SYSTEMS WITH
UNCERTAIN HUMAN OPERATORS

We first consider a shared autonomy system with one human op-
erator and one robot, and then extend this to consider multiple
robots and one human operator. In our shared autonomy system,
the controller determines when and which robot the human oper-
ator should asisst, and determines the best action the robots and
human should take.

4.1 Autonomous Robot Model
Autonomous robot 𝑖 ∈ [𝐾] = {1, . . . 𝐾} has an environment de-
scribed by the set of states 𝑆𝑖 , and an initial state of 𝑠𝑖 . The be-
haviour of autonomous robot 𝑖 is known, so we can describe their
behaviour with an MDP, 𝑀𝑖 = ⟨𝑆𝑖 , 𝑠𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 , 𝛾⟩. 𝐴𝑖 is the set of
possible actions in the autonomous robot’s domain, such as cardinal
directions. 𝑅𝑖 (𝑠, 𝑎) defines the reward associated with autonomous
robot 𝑖 attempting action 𝑎 in state 𝑠 .

4.2 Single-Robot Shared Autonomy Systems
In a shared autonomy systemwith a single robot and a human opera-
tor, the controller of the systemmust determine whether the human
operator or the autonomy should perform the next action, while rea-
soning over the uncertainty of the human operator’s performance.
The autonomous robot 𝑖 is described by𝑀𝑖 = ⟨𝑆𝑖 , 𝑠𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 , 𝛾⟩.

When the robot is operated by a human, we describe their perfor-
mance with an HPP-MDP, M𝑖,ℎ = ⟨𝑆𝑖 , 𝑠𝑖 , 𝐴𝑖,ℎ, 𝑃0 (𝜃 ),𝑇𝑖,Θ, 𝑅𝑖,ℎ, 𝛾⟩.
𝐴𝑖,ℎ is the set of actions the human can take, and 𝑃0 (𝜃 ) is the
controller’s prior distribution over the human operator’s latent
parameters. The transition probability function 𝑇𝑖,𝜃 (𝑠, 𝑎, 𝑠′) is a

polynomial function of 𝜃 ∈ Θ, where Θ describes the space of all
possible human performance. 𝑅𝑖,ℎ (𝑠, 𝑎) is the reward function for
the controller when a human attempts an action.

The aim of the controller of the system is to determine whether
the human or the autonomy should operate the robot and the action
they should take to maximise the expected cumulative reward of
the system. As the controller does not know the true value of 𝜃 ,
the controller must balance learning about the human operator’s
performance by requesting the human to attempt actions that will
inform the posterior distribution 𝑃𝑡 (𝜃 ), and using the current poste-
rior distribution to choose actions that will maximise the expected
reward of the next action. We use a HPP-MDP to model the shared
autonomy system.

Definition 4.1 (Single-Robot Shared Autonomy System). The single-
robot shared autonomy system for robot 𝑖 is described by the tuple
M𝑖
𝑆𝐴

= ⟨𝑆𝑖 , 𝑠𝑖 , 𝐴𝑖𝑆𝐴, 𝑃0 (𝜃 ),𝑇
𝑖
𝑆𝐴
, 𝑅𝑖
𝑆𝐴
, 𝛾⟩, where:

• The set of actions 𝐴𝑆𝐴 is the union of the set of actions by
the robot and the human operator, 𝐴𝑖

𝑆𝐴
= 𝐴𝑖 ∪𝐴𝑖,ℎ ;

• The transitions 𝑇 𝑖
𝑆𝐴

are defined by the following:

𝑇 𝑖𝑆𝐴 (𝑠, 𝑎, 𝑠
′) =

{
𝑇𝑖,𝜃 (𝑠, 𝑎, 𝑠′) if 𝑎 ∈ 𝐴𝑖,ℎ
𝑇𝑖 (𝑠, 𝑎, 𝑠′) if 𝑎 ∈ 𝐴𝑖

(3)

where the transition probabilities for the actions taken by
the robot is fixed, while the transition probabilities for the
actions taken by the human operator are governed by the
history of the trajectory.

• The reward function𝑅𝑖
𝑆𝐴

is the union of the reward functions
for the autonomous robot and the human operator, such that

𝑅𝑖𝑆𝐴 (𝑠, 𝑎) =
{
𝑅𝑖,ℎ (𝑠, 𝑎) if 𝑎 ∈ 𝐴𝑖,ℎ
𝑅𝑖 (𝑠, 𝑎) if 𝑎 ∈ 𝐴𝑖 .

(4)

4.3 Multi-Robot Shared Autonomy Systems
We consider the problem where there are 𝐾 robots and one human
operator, where there is uncertainty over how the human operator
may perform. The controller must determinewhen to deploy human
assistance and which robot to deploy the human to. Each robot has
a separate set of tasks, so the set of robots operated by autonomy
can be described as ⟨𝑀1, 𝑀2, . . . , 𝑀𝐾 ⟩. Similarly, each robot can be
operated by the human operator, so the set of robots operated by
the human operator can be described as ⟨M1,ℎ,M2,ℎ, . . . ,M𝐾,ℎ⟩.
We model 𝐾 robot shared autonomy system with a HPP-MDP.

Definition 4.2 (Multi-Robot Shared Autonomy System). A shared
autonomy system with 𝐾 robots is described by the tuple M𝑆𝐴 =

⟨𝑺𝑆𝐴, 𝒔𝑆𝐴𝑨𝑆𝐴, 𝑃0 (𝜃 ),𝑇𝑆𝐴, 𝑅𝑆𝐴, 𝛾⟩, where:
• 𝑺𝑆𝐴 =

>𝐾
𝑖=1 𝑆𝑖 is the state space;

• 𝒔𝑆𝐴 = (𝑠1, 𝑠2 . . . 𝑠𝐾 ) is the initial state;
• The set of actions A𝑆𝐴 is defined as the subset of (𝐴1,ℎ ∪
𝐴1) × · · · × (𝐴𝐾,ℎ ∪ 𝐴𝐾 ) for which there is at most one
element corresponding to a human actions. More precisely,
(𝑎1, · · · , 𝑎𝐾 ) ∈ A𝑆𝐴 if and only if there is at most one 𝑗 for
which 𝑎 𝑗 ∈ 𝐴𝑖,ℎ and for all other 𝑘 ≠ 𝑗 , 𝑎𝑘 ∈ 𝐴𝑘 . Thus, there
is at most one action done by the human operator in the
joint action.
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• For 𝒂 = (𝑎1, · · ·𝑎𝐾 ) ∈ A𝑆𝐴 , define 𝒂 |ℎ as the index of the hu-
man operator action in 𝒂, or ⊥ if there is no human operator
action in 𝒂. The joint transition function 𝑇𝑆𝐴 is defined as:

𝑇𝑆𝐴 (𝒔, 𝒂, 𝒔′) =


∏
𝑖∈[𝐾 ]

𝑇𝑖 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖 ′) if 𝒂 |ℎ = ⊥

𝑇𝑗,𝜃 (𝑠 𝑗 , 𝑎 𝑗 , 𝑠 𝑗 ′)
∏

𝑖∈[𝐾 ]− 𝑗

𝑇𝑖 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖 ′) if 𝒂 |ℎ = 𝑗

(5)
where [𝐾]− 𝑗 = {1, . . . , 𝑗 − 1, 𝑗 + 1, . . . , 𝐾}.

• The joint reward function 𝑅𝑆𝐴 (𝒔, 𝒂) is the sum of the reward
functions for each robot, 𝑅𝑆𝐴 (𝒔, 𝒂) =

∑𝐾
𝑖=1 𝑅𝑖 (𝑠𝑖 , 𝑎𝑖 ).

Solving the M𝑆𝐴 will give the optimal policy that balances the
robots’ need for assistance and the need to learn about the human
operator’s performance.

5 BIDDING SYSTEM FOR SHARED
UNCERTAIN OPERATOR

The shared autonomy system model with multiple robots, M𝑆𝐴

has a state space S𝑆𝐴 that expands exponentially with the num-
ber of robots, 𝐾 . Therefore, trying to solve this model directly is
intractable. We instead propose a bidding system where each robot
bids for the human operator’s assistance. The bid describes how
much the robot will benefit from the human operator helping them,
given the robot’s current state. We define this as the difference in
the expected reward when the human operates the robot, and when
the autonomy operates the robot. The bid for the 𝑖th robot in local
state 𝑠 with a history ℎ𝑡 is:

Bid𝑖 (𝑠) = max
𝑎ℎ∈𝐴𝑖,ℎ

𝑄M𝑖,ℎ
(𝑠, ℎ𝑡 , 𝑎ℎ) − max

𝑎𝑖 ∈𝐴𝑖

𝑄M𝑖,ℎ
(𝑠, ℎ𝑡 , 𝑎𝑖 ), (6)

where 𝑄M𝑖,ℎ
(𝑠, ℎ, 𝑎) is the Q-value defined in Equation 2 for the

HPP-MDPM𝑖,ℎ . We will first outline the bidding system, then how
the bids are generated.

5.1 Bidding System
In our bidding system, there is a centralised controller, and𝐾 robots,
where for robot 𝑖 ,𝑀𝑖 andM𝑖,ℎ respectively models the robot being
operated by auto and the human. The robots maintain a shared
prior distribution 𝑃0 (𝜃 ) over the human operator’s latent parameter
𝜃 . Each robot generates a bid for human help, and the controller
instructs the human to assist the robot with the highest positive
bid. The human will act according to argmax𝑎ℎ∈𝐴𝑖,ℎ

𝑄 (𝑠, ℎ𝑡 , 𝑎ℎ),
and the other robots will act according to argmax𝑎𝑖 ∈𝐴𝑖

𝑄 (𝑠, ℎ𝑡 , 𝑎𝑖 ).
The robot receiving human help will observe the outcome of the
human’s action, and updates the posterior distribution 𝑃𝑡 (𝜃 ) with
the information gained during the interaction. This posterior distri-
bution is shared with the other robots. This is because the system
is cooperative, and the robots choose to share the observations of
the human operator with the other robots to prevent asymmetry
in the information available to each robots. Such asymmetry in
information may result in sub-optimal bids from robots that do not
have all the information available to them. This process is repeated
until all robots have finished their tasks. A diagram of the bidding
process is shown in Figure 1.

Figure 1: Diagram of the bidding process.

5.2 Bid Generation
For a given posterior distribution 𝑃𝑡 (𝜃 ) over the latent variables,
and a human operator described byMℎ , the robot𝑀𝑖 can formulate
a shared autonomy system M𝑖

𝑆𝐴
. The robot assumes that they

have access to human help at any time, and only they are able
to observe the human and update the posterior distribution. This
shared autonomy system can be solved using the BAMCP algorithm
to get the history-dependent Q-values. These Q-values would only
consider the expected rewards collected by the robot, and not the
expected rewards collected by the other robots. We can use these
Q-values to generate a bid for the human operator using Equation 6.
However, this does not consider 1) how the observations made by
the robot can help increase the rewards collected by other robots,
and 2) how the posterior distribution may change during a run
due to observations made by others. We address these problems by
making the following modifications to the BAMCP algorithm.

5.2.1 Planning Horizon. In a typical BAMCP algorithm, a search
tree is built by sampling the prior distribution to generate a sample
MDP. The sample MDP is then simulated until reaching a goal state,
and the trajectory taken is used to update the history-dependent
nodes. This is defined as a single trial. As the number of samples
increases, the distribution of the sample MDPs reaching nodes
will converge to the posterior distribution over the latent variables
given the node’s history. However, information gained by other
robots during a run can change the posterior distribution, making
simulating until the end of a run unrealistic, as it cannot account
for external changes in the distribution.

We therefore use a short planning horizon, as the runs with
longer planning horizons do not accurately reflect the posterior
distribution. This allows for a shorter run time. At the end of the
planning horizon, we use an heuristic value function 𝑉𝑖 (𝑠) to esti-
mate the expected reward collected from the state. The heuristic
value function 𝑉𝑖 (𝑠), where the robot assumes no help from the
human operator, is found by using value iteration [24] to solve
𝑀𝑖 . This expected reward is then back-propagated through the
nodes. This allows us to simulate the run with a short planning
horizon to consider the benefits of asking for human help, while
still considering the long-term aim of reaching a goal state.
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5.2.2 Variance-Based Reward Bonus. When an robot has a short
planning horizon, the Q-value of an action does not reflect the true
value of an informative action, as the exploitation that can occur in
later transitions is not considered. An informative action is a human
action that may not directly result in rewards, but will inform the
posterior distribution over the latent variables. Furthermore, in a
multi-robot system, there may be actions that can benefit other
robots, but not the robot that is taking the informative action. The
robot only considers their own state-action space to compute the Q-
values of these actions, and thuswill not consider the expected value
of the action for other robots. This leads to the robot undervaluing
informative actions. To address this problem, we explicitly reward
actions that reduce the variance of the belief distribution over the
human operator’s behaviour by altering the reward function of the
BAMCP algorithm. The new history-dependent reward function
for robot 𝑖 is defined as:

𝑅𝑖new (𝑠, ℎ, 𝑎) = (1 − 𝛼) · 𝑅𝑖𝑆𝐴 (𝑠, 𝑎)

+ 𝛼 ·
(
var(𝜃 | ℎ) −

∫
𝜃 ∈Θ

∑︁
𝑠′∈𝑆

𝑇 𝑖𝑆𝐴 (𝑠, 𝑎, 𝑠
′)𝑃𝑡 (𝜃 )var(𝜃 | ℎ, 𝑎, 𝑠′)𝑑𝜃

)
,

(7)
where 𝛼 is the tuning parameter determining the weight of the
variance term.

Calculating the variance using sample-based methods can be
computationally expensive. The HPP-MDP reduces the compu-
tational complexity, as the posterior distribution over the latent
variables is a polynomial function of 𝜃 . We can express the posterior
distribution at a node with history ℎ as:

𝑃 (𝜃 | ℎ) =
𝐽∑︁
𝑗=1

𝛽 𝑗

𝑁∏
𝑖=1

𝜃
𝑎
𝑗

𝑖

𝑖
, (8)

where 𝛽 𝑗 is the coefficient of the 𝑗th term of the polynomial func-
tion, and 𝑎 𝑗

𝑖
is order of 𝜃𝑖 in the 𝑗th term of the polynomial func-

tion [10]. This can be used to calculate the variance of the posterior
distribution at a node with history ℎ as:

var(𝜃 | ℎ) =
𝑁∑︁
𝑘=1

[∫
𝜃 ∈Θ

𝑃 (𝜃 | ℎ) · 𝜃2
𝑘
𝑑𝜃 −

(∫
𝜃 ∈Θ

𝑃 (𝜃 | ℎ) · 𝜃𝑘𝑑𝜃
)2]

=

𝑁∑︁
𝑘=1

{
𝐽∑︁
𝑗=1

𝛽 𝑗

(∏
𝑖≠𝑘

1
𝑎
𝑗
𝑖
+ 1

)
· 1
𝑎
𝑗

𝑘
+ 3

−

𝐽∑︁
𝑗=1

𝛽 𝑗

(∏
𝑖≠𝑘

1
𝑎
𝑗
𝑖
+ 1

)
· 1
𝑎
𝑗

𝑘
+ 2


2 }
.

(9)
The closed-form expression for the variance allows us to efficiently
calculate the variance of the posterior distribution at each node in
the search tree. We use this to calculate the new reward function
in Equation 7 when running the BAMCP algorithm.

6 EXPERIMENTS
We compare the performance of our bidding system to the joint
HPP-MDP approach and a baseline where the system assumes to
know the human’s behaviour, proposed by Dahiya et al. [12]. The

Figure 2: The 𝑗th task for robot 𝑖 in the sequential task do-
main. The probability of robot 𝑖 entering the success state
is known to be 𝑇𝑖 (𝑛 𝑗 , 𝑎𝑖 , 𝑠 𝑗 ). The probability of the human
entering the success state is 𝑇𝑖,𝜃 (𝑛 𝑗 , 𝑎𝑖,ℎ, 𝑠 𝑗 ), a function of 𝜃 .

methods are compared on two domains, a sequential task and a
robot navigation task. We show empirically that our bidding system
can produce a similar performance to the joint HPP-MDP approach
under fixed time constraints. We outperform the approach proposed
by Dahiya et al. [12] when there is uncertainty over the human’s
performance.

6.1 Sequential Tasks
We use this domain to directly compare joint HPP-MDP approach
to our bidding system, and analyse the impact of 𝛼 on the total
rewards collected. We use a small domain with two robots, as the
joint HPP-MDP approach cannot scale to larger domains.

6.1.1 Domain. We consider a domain with two robots, where they
each have 10 tasks to complete. The tasks must be completed in a
sequential order, and the task will either result in success or failure.
This will either yield a positive or negative reward. The robot can
attempt the task, or they can request help from the human operator.
The probability of success for the robot for any given task is known,
while the human operator’s probability of success is expressed as a
polynomial function over a latent parameter, 𝜃 . For example, the
probability of success for task 𝑗 for the human operator could be
expressed as 𝑇𝜃 (𝑛 𝑗 , 𝑎ℎ, 𝑠 𝑗 ) = 0.4 + 0.3 · 𝜃 , where 𝜃 is unknown to
the robot. An example of a task is shown in Figure 2. We configure
the tasks such that 80% of robot 1’s tasks have low reward and
high uncertainty over the human’s success rate ( 𝑇𝜃 (𝑛 𝑗 , 𝑎ℎ, 𝑠 𝑗 ) =
0.1 + 0.9 · 𝜃 ), while 20% of robot 2’s tasks have high reward and
high uncertainty over the human’s success rate (𝑇𝜃 (𝑛 𝑗 , 𝑎ℎ, 𝑠 𝑗 ) =

0.05+0.8 ·𝜃 ). This configuration is designed to demonstrate how the
information gained about the human by one robot can be beneficial
to others, so acting independently does not result in overall higher
rewards. The decay rate 𝛾 is 1.0, and at the end of the 10 tasks, the
robot will enter a zero-reward absorbing state.

6.1.2 Algorithms. We apply the following methods on the sequen-
tial task domain: Our bidding system with a planning horizon of
2 steps, and 𝛼 ∈ [0, 1]. The joint HPP-MDP model is solved with
a BAMCP-based solver.

6.1.3 Results. The joint HPP-MDP solver took on average 10.5
minutes to run 150, 000 trials per decision step. Our bidding system
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Figure 3: Results for bidding system and joint HPP-MDP
solver on the sequential tasks domain with 𝑘 = 2 robots and
𝑁 = 10 tasks.

was run for 2 minutes per decision step. The results are shown in
Figure 3. Our bidding system performs at an equivalent level to the
joint HPP-MDP approach when 𝛼 is between 0.4 and 0.6. As shown
in Figure 3, the bidding system is sensitive to extreme values of 𝛼 ,
where low values of 𝛼 result in a lack of informative actions, while
high values of 𝛼 result in a lack of exploitative actions. As the num-
ber of tasks increases, the time taken to solve the joint HPP-MDP
model increases, while the time taken to solve our bidding system
remains constant. For example, we found that a three robot domain
with 10 tasks took approximately 193 minutes to run 150, 000 steps,
making it impractical to use the joint HPP-MDP model to allocate
the human operator. Therefore, in problems where there are longer
horizons or a higher number of robots, the joint HPP-MDP model
may not be able to solve the problem in a reasonable amount of time,
while our bidding system can still produce a competitive solution.

6.2 Robot Navigation
Dahiya et al. [12] proposes a framework for multi-robot shared
autonomy, where the human operator can help the robot navigate
to a goal. They used MDPs to model the robot and the human’s
behaviour, and each operator is modelled with a known probability
of failure for each segment of the path to the goal. However, it
is difficult to know how well the human can teleoperate the ro-
bot in a given environment. Therefore, a model with uncertainty
over the human’s performance may be able to better capture the
true environment. We compare the performance of our bidding
system approach to the approach proposed by Dahiya et al. [12] on
a domain where the human’s failure probabilities are unknown.

6.2.1 Domain. Fixed Path Domain Four robots are navigating in
a city block-like randomly generated environment. The start and
end location is also randomly generated, and the route planner finds
a path. The path is split into 8 segments, where each segment is
described as a single transition that can be done either by the robot
or the human operator. In each segment, the autonomous robot
can attempt the transition and may end in a fail state, where they
cannot progress. Once in a fail state, a human must intervene to
leave the fail state. There are two types of transitions possible, type-
I and type-II transitions. In a type-I transition, the human operator

(a) Type I and II transitions for human operators. 𝑃𝑛
𝐻

is the probabil-
ity of reaching the next state when the human controls the robot,
and𝑄𝑛

𝐻
is the probability the human can recover the robot from a

fail state in type II transition.

(b) Example Domain with two robots. The regions with type I transi-
tions are coloured in blue, type II transitions are coloured in red.

Figure 4: Robot Navigation Domain

can go from a fail state to the end of the segment, while in a type-
II transition, the human operator must return to the start of the
segment before the autonomous robot can attempt the transition
again. This is shown in Figure 4a. An example of the domain is
shown in Figure 4b, where the type-I and II transition regions are
shown in the blue and red areas. The decay rate for this domain
was set to 𝛾 = 1.0, and the goal state was defined by a zero-reward
absorbing state.

Generalized Domain Dahiya et al. [12]’s domain assumed the
path was known to the robot, and the route was split into 8 seg-
ments independent of the start and end location. We generalize
this domain to a five-by-five grid, where 𝑘 robots can move in the
cardinal directions. The transition from adjacent states has an equal
probability of being a type I or type II transition. The start and end
location in the grid is randomly generated.

In both the fixed path and general domains, the human success
probabilities are randomly generated by sampling from a continu-
ous range of possible values. The algorithms cannot directly observe
the human’s success probabilities, but they are given a continu-
ous range of possible values. We fix the reward of attempting the
transition at −2, the reward of entering the fail state is −4, and the
reward of the human helping the robot is −0.75.

6.2.2 Algorithm. Fixed Path Domain Dahiya et al. [12] proposes
a decentralised method for human help allocation in a multi-robot
shared autonomy system, where the robot with the highest need for
human assistance is given human help. The robot determines the
need for human assistance based on their MDP. The MDP outlines a
direct path of eight transitions from the start to the end location and
gives the probabilities of success for each transition for the human
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Figure 5: The difference in average reward per agent between
our bidding system and the baseline, Dahiya et al. [12].

and autonomous operator. This is used to compute the Whitter
Index [1] for each state. The index represents the additional human
cost required to add into the reward function such that the expected
total reward of the robot attempting the task is higher than when
the human attempts the task. This involves an implicit assumption
that the human will always outperform the robot, and the method
assumes that the performance of the human is known. The robot
with the highest Whitter index is given human help.

Generalized Domain In Dahiya et al. [12], the MDP is gener-
ated by placing seven waypoints between the start and end location,
and the path planning between the two points is considered to be
a separate problem. In this general domain, the path between the
start and end location is found by solving the MDP where we only
consider autonomous actions. This path is then used to generate a
sequence of transitions from the start to the end location. Unlike
the fixed path domain, the number of transitions is not fixed at
eight.

Bidding System In both the fixed path and generalized domain,
we apply our bidding system with a planning horizon that termi-
nates once the robot reaches the next waypoint, and 𝛼 = 0.99. We
set 𝛼 high to balance the relative magnitudes of the first and second
term in Equation 7. Every robot was given two minutes to compute
their bid. As the algorithm was implemented in python, these com-
putation times could be substantially improved. The two minutes
bid computation time was fixed to ensure convergence of the policy.
As shown in Fig. 5, the bidding system outperforms the baseline
even at low computation times. In comparison, Dahiya et al. [12]
took 15.2 ± 4.8 seconds to compute their static policy.

6.2.3 Results. Fixed Path Domain In the fixed path domain,
under Dahiya et al. [12] the robots had an average reward of
−200.44 ± 2.27, while our bidding system had an average reward
of −132.07 ± 1.29. In a deadlock situation, where multiple robots
submit the same bid, the robot with the lowest index is given human
help, and this can be seen in Figure 6.

Generalized Path Domain We varied the number of robots
in the domain from 2 to 8 and compared the average reward per
robot for our bidding system and the method proposed by Dahiya
et al. [12]. As shown in Figure 7, our bidding system outperforms
the method proposed by Dahiya et al. [12] in all cases. The average
reward per robot decreased as the number of robots increased for

Figure 6: The average reward of the robots in the fixed path
domain, using our bidding system and the method proposed
by Dahiya et al. [12].

Figure 7: Average reward per robot in the general domain,
where the number of robots is varied.

both approaches. This is because the human is being shared among
more robots, and thus the human is less likely to be able to help an
robot.

7 CONCLUSION
We have presented a efficient approach to allocating human as-
sistance in a multi-robot shared autonomy system when there is
uncertainty over the human operator’s performance. Our online
bidding system explicitly considered reducing the variance over the
latent parameters governing the human operator. We demonstrated
the computational infeasiblity of using a joint model for shared
autonomy systems with large number of robots, and compared our
approach to one where the uncertainty over the human’s perfor-
mance was not considered. In future work, we will consider systems
with multiple human operators, and where the human operator’s
performance can change during execution.
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