
Designing Redistribution Mechanisms for Reducing Transaction
Fees in Blockchains

Sankarshan Damle
∗

IIIT, Hyderabad

Hyderbad, India

sankarshan.damle@research.iiit.ac.in

Manisha Padala
∗

IISc, Bangalore

Bangalore, India

manishap@iisc.ac.in

Sujit Gujar

IIIT, Hyderabad

Hyderbad, India

sujit.gujar@iiit.ac.in

ABSTRACT

Blockchains deploy Transaction Fee Mechanisms (TFMs) to deter-

mine which user transactions to include in blocks and determine

their payments (i.e., transaction fees). Increasing demand and scarce

block resources have led to high user transaction fees. As these

blockchains are a public resource, it may be preferable to reduce

these transaction fees. To this end, we introduce Transaction Fee Re-

distribution Mechanisms (TFRMs) – redistributing VCG payments

collected from such TFMs as rebates to minimize transaction fees.

Classic redistribution mechanisms (RMs) achieve this while ensur-

ing Allocative Efficiency (AE) and User Incentive Compatibility

(UIC). Our first result shows the non-triviality of applying RM in

TFMs. More concretely, we prove that it is impossible to reduce

transaction fees when (i) transactions that are not confirmed do not

receive rebates and (ii) the miner can strategically manipulate the

mechanism. Driven by this, we propose Robust TFRM (R-TFRM):

a mechanism that compromises on an honest miner’s individual

rationality to guarantee strictly positive rebates to the users. We

then introduce Robust and Rational TFRM (R2-TFRM) that uses

trusted on-chain randomness that additionally guarantees miner’s

individual rationality (in expectation) and strictly positive rebates.

Our results show that TFRMs provide a promising new direction

for reducing transaction fees in public blockchains.
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1 INTRODUCTION

Public blockchains have achieved mainstream prominence with

Bitcoin [30] and Ethereum [4] processing > 1𝑀 transactions daily

[39, 40]. Most commonly, public blockchains comprise a crypto-

graphically linked series of blocks. Each blockmay consist of several

individual transactions. Miners, tasked with block creation, add a
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subset of transactions from the set of outstanding transactions

(referred to as mempool). To incentivize miners to add their trans-

action to the block, transaction creators (henceforth users) include
a fee as a commission. The fee absorbs the users’ valuation for their

transaction being added to the block. Roughgarden [34] proposes

transaction fee mechanisms (TFMs) to study the strategic interaction

between the miner and the users.

Transaction Fee Mechanism (TFM). TFMs resemble a classic

auction setting. Users place a bid to include their transactions in

the block, and the miner mimics an auctioneer to select the sub-

set, which maximizes its revenue. E.g., Bitcoin’s TFM resembles

a first-price auction, where the block’s miner greedily adds the

transactions with the highest bids. Unfortunately, an increasing

demand, cryptocurrency’s market volatility, and supply-demand

economics have led to users’ over-paying [2]. E.g., Messias et al.

[27] show that 30% of Bitcoin fees are two orders of magnitude

more than recommended.

Considering public blockchains as a shared resource, it’s desir-

able not to impose charges for transaction confirmation. However,

given the infeasibility of confirming every transaction due to re-

source constraints, one may prefer only to confirm transactions

with higher value (pertaining to their importance to users). The

absence of transaction fees could lead users to misrepresent the

value of their transactions in order to secure confirmation. There-

fore, this paper aims to design TFMs that minimize transaction fees

while upholding other incentive-related properties.

Clearly, the minimization of transaction fees is at odds with

the miner’s objective of maximizing revenue. Thus, the task of

designing TFMs tominimize fees is more intricate than in the classic

auction setting, primarily because, in TFMs, miners have complete

control over the transactions they include in their blocks [34].

Our Goal. We aim to design a TFM that satisfies certain game

theoretic properties like (i) Allocative Efficiency (AE): confirmed

transactions maximize the overall valuation, (ii) User Incentive

Compatibility (UIC): users bid their true valuation, and Individual

Rationality (IR): users receive non-negative payoff. At the same time,

the TFM must actively reduce transaction fees for users, thereby

enhancing the blockchain’s appeal. Unfortunately, from the famous

Green-Laffont Impossibility Theorem [26], we know that it is impos-

sible to design a TFM that is both AE and UIC and which guarantees

zero net transaction fees – in mechanism design commonly referred

to as strong budget balance.
Given this, our objective is to design a TFM that is both AE and

UIC while minimizing the transaction fees (or is weakly budget
balanced). Motivated fromMaskin et al. [26], the mechanism design

literature proposes the use ofGroves’ RedistributionMechanism (RM)

for this purpose [7, 18, 26]. In Groves’ RM, the VCG mechanism is
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Figure 1: Overview of the framework for Transaction Fee Redistribution Mechanisms (TFRMs)

executed, and then the surplus money is redistributed among the

users while preserving other game-theoretic properties.

Along similar lines, this paper introduces Transaction Fee Re-
distribution Mechanisms (TFRMs): a general class of TFMs based

on RMs where the miner offers rebates from the transaction fees

collected to the users while retaining AE, UIC, and IR. By offering

users rebates, TFRMs, in effect, reduce the transaction fees paid by

them. Figure 1 provides an overview.

TFRM: Challenges. Designing such TFRMs has the following

primary challenges.

Miner IC (MIC): As miners possess complete control over the trans-

actions included in their blocks [34], they may deviate from the

intended TFM allocation rule (i.e., selecting a different subset from

the mempool) and may introduce “fake” transactions (i.e., trans-

actions created strategically to increase their revenue) into their

blocks [34]. This is similar to shill bidding [33] in traditional auc-

tions. Thus, it is imperative that a TFRM maintains AE, UIC, and

low transaction fees even in the face of miner manipulation (or,

alternately, in the presence of a strategic miner).
Roughgarden [34] introduces the notion of miner IC (MIC) to

model theminer’s strategic behavior. In auction theory, theMyerson-

Satterthwaite impossibility theorem [29] states that it is impossible

to design a mechanism that is AE, IR, weakly budget balanced, and

IC for both sides of the market. Designing TFRMs has similarities

with such a two-sided auction, and achieving both sides’ IC (with

other properties) is elusive.

User IC (UIC): Typically, RMs ensure UIC by offering rebates to

everyone participating in the auction (irrespective of the allocation).

In TFRMs, the transactions that are only part of the mempool (i.e.,

are not part of the block) are not available to the blockchain. Thus,

unlike RMs, in TFRMs, we cannot offer rebates for each available

transaction. As some transactions do not receive rebates, we can

easily construct instances where the users of these transactions

have an incentive to overbid to get included in the block and receive

rebates. Thus, ensuring UIC in TFRM is non-trivial. As such, we

propose restricted UIC (RUIC), which ensures that bidding truthfully

is a weakly dominant strategy only for the users whose transactions

are included in the block.

Our Contributions. Broadly, we (i) formally introduce TFRMs

(refer to Figure 1 for an overview), (ii) analyze the challenges due to

miner manipulation in vanilla-TFRMs, and (iii) introduce two novel

TFRMs, namely R-TFRM and R2-TFRM that are robust to miner

manipulation. We discuss these in detail next.

(1) Ideal-TFRM. As we cannot offer rebates to all transactions in
the mempool, we begin our analysis with an “Ideal-TFRM” that
offers non-zero rebates only to confirmed transactions. Un-

fortunately, we show that it is impossible for Ideal-TFRM to

satisfy UIC while offering non-zero rebates to confirmed trans-

actions (Theorem 2).

(2) TFRM: Effect of A Strategic Miner. We shift our focus to

TFRMs that provide rebates to all transactions included in the

block. An RM’s effectiveness is measured using the Redistribu-

tion Index (RI) [19], which is the fraction of the VCG surplus

redistributed. To absorb the effect of strategic miners, we in-

troduce Resilient Redistribution Index (RRI). RRI measures the

fraction of redistributed funds under optimal miner manipu-

lation. We prove that it is impossible to design a TFRM that

satisfies AE, RUIC, and is IR for both users (IR𝑢 ) and miners

(IRM), while guaranteeing strictly positive RRI (Theorem 3).

(3) Robust TFRM (R-TFRM). Given these impossibilities, we pro-

pose R-TFRM: a TFRM that guarantees strictly positive RRI and
satisfies all user-specific properties. However, R-TFRM is not

individually rational for the miner
1
.

At its core, R-TFRM builds on an RM with VCG payments as

transaction fees and a linear rebate function. The rebate function

maximizes the worst-case rebate while satisfying RUIC, IR𝑢 ,

and Approx-IRM. Designing such a rebate function is equivalent

to solving the linear program in Figure 4 for its coefficients. We

finally show that the payments are reduced by a fraction 𝑘/𝑛,
where 𝑘 transactions are confirmed out of the 𝑛 included in the

block (Theorem 5). The fraction remains the same, even with

miner manipulation, i.e., RRI is also 𝑘/𝑛. In other words, each

confirmed user sees a reduction by (1 − 𝑘/𝑛) in its transaction

fee compared to the equivalent VCG-based TFM.

(4) Robust and Rational TFRM (R2-TFRM). R-TFRM ensures

positive RRI by compromising IRM. Another way of ensuring

positive RRI is by randomly offering rebates to the users. Such

an approach guarantees IRM, in expectation. R2-TFRM uses

this approach wherein each user receives the rebate given by

R-TFRM with probability 𝛼 and does not receive any rebate

probability 1 − 𝛼 . The randomization is carried out by the

blockchain in a trusted manner [8]. Theorem 6 shows that for

1
We remark that miners, or block proposers in general, often have alternate revenue

streams (e.g., block rewards [30] or attestation rewards [36]). These rewards can

primarily help absorb the reduction in revenue due to reduced transaction fees. They

may also alleviate the lack of IRM guarantee in R-TFRM.
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𝛼 ∈ (0, 𝛼) & 𝛼 < 1, R2-TFRM is AE, IR𝑢 , and RUIC and IRM, in

expectation. Further, it ensures an expected RRI of 𝛼 · 𝑘/𝑛.

2 RELATEDWORK

The role of transaction fees in decentralized cryptocurrencies such

as Bitcoin and Ethereum has been studied in relation to (i) transac-

tion latency [23, 24, 31], (ii) fairness [2, 35] and most recently, as

decentralized auction-based mechanisms [8, 15, 34, 41].

Transaction Fee Mechanism (TFM). Roughgarden [34] formu-

lated the transaction creator and miner interaction as an auction

setting. More concretely, the author expresses popular mechanisms

in the TFM framework, including first-price, second-price, and EIP-

1559. Roughgarden [34] introduces user incentive compatibility

(UIC), miner incentive compatibility (MIC), and off-chain agree-

ment (OCA) proof as desirable incentive properties for TFMs. E.g.,

EIP-1559 satisfies UIC, MIC, and OCA-proof – under specific con-

straints on the base fee. Ferreira et al. [15] present a dynamic posted-

price TFM, which is UIC (if the network is not congested) and MIC.

The authors also provide an equilibrium posted price based on the

demand. Chung and Shi [8] show it is impossible to construct a

TFM that simultaneously satisfies UIC, MIC, and OCA-proof (when

only a single user and the miner collude). To address the impossi-

bility, they introduce a penalty to the creator of a fake transaction,

discounted by a parameter “𝛾 .” The authors present a randomized

(based on trusted on-chain randomness) second-price auction that

satisfies the three properties. Lastly, the authors in [41] relax UIC

to Bayesian UIC (BUIC) to construct another second-price-based

auction, satisfying BUIC, MIC, and OCA-proof.

Redistribution Mechanism (RM). Popular auction-based mecha-

nisms like VCG and Groves [9, 16, 38] satisfy AE and UIC but do

not satisfy SBB. Faltings [14] and Guo and Conitzer [20] achieve

SBB by compromising on AE. Hartline and Roughgarden [22] pro-

pose a mechanism that maximizes the sum of the users’ utility in

expectation. de Clippel et al. [12] “destroy” some items to maximize

the users’ utilities, leading to approximate AE and SBB. Parkes et al.

[32] propose an alternate approach by proposing an optimization

problem, which is approximately AE, SBB.

Maskin et al. [26] first propose the idea of redistribution of the

surplus as far as possible after preserving UIC and AE. Bailey [1],

Cavallo [6], [28], and Guo and Conitzer [19] consider a setting of

allocating 𝑘 homogeneous objects among 𝑛 competing users with

unit demand. Guo and Conitzer [21] generalize their work in [19]

to multi-unit demand to obtain worst-case optimal (WCO) RM.

In summary, the current TFM literature only focuses on the sat-

isfiability of desirable incentive properties and not on reducing the

user cost. Given that a decentralized cryptocurrency (e.g., Bitcoin or

Ethereum) is a public resource, re-imaging a TFM as an RM will (i)

continue to guarantee these properties but, crucially, (ii) minimize

the cost paid by the user.

3 PRELIMINARIES

We now (i) formally introduce TFMs, (ii) relevant game-theoretic

definitions, and (iii) summarize redistribution mechanisms.

Transaction Fee Mechanism (TFM) Model. We have a strategic

but myopic
2
miner building a block 𝐵 (with finite capacity) for the

underlying blockchain. There are 𝑚 transactions available to be

confirmed in amempool 𝑀 . However, the block can hold only up to

𝑛 < 𝑚 transactions. We assume that all transactions are of the same

size. Among the 𝑛 transactions included in the block, the miner

confirms 𝑘 ≤ 𝑛 transactions
3
.

Let each user 𝑖 value the confirmation of its transaction at 𝜃𝑖 ∈
R≥0. Each user 𝑖 submits a bid 𝑏𝑖 ∈ R≥0. We have Θ := [𝜃𝑖 ] and
b := [𝑏𝑖 ]. Given the bid profile and valuation profile, the transaction
fee mechanism is characterized by the inclusion rule, confirmation

rule, and payment rule, as defined below.

Definition 1 (Transaction Fee Mechanism (TFM) [8, 34].).

Given a bid profile b, we define TFM as T := (x𝐼 , x𝐶 , p) where:
• x𝐼 is a feasible block inclusion rule, i.e.,

∑
𝑖∈𝑀 𝑥 𝐼

𝑖
(b) ≤ 𝑛 where

𝑥 𝐼
𝑖
(·) ∈ {0, 1}. Let the set of included transactions be 𝐼 = {𝑖 |𝑥 𝐼

𝑖
=

1, 𝑖 ∈ 𝑀}.
• x𝐶 is a feasible block confirmation rule, i.e.,

∑
𝑖∈𝑀 𝑥𝐶

𝑖
(b) ≤ 𝑘

where 𝑥𝐶
𝑖
(·) ∈ {0, 1}. Let the set of confirmed transaction be 𝐶 =

{𝑖 : 𝑥𝐶
𝑖
= 1, 𝑖 ∈ 𝑀}. Trivially, 𝐶 ⊆ 𝐼 .

• p is the payment rule with the payment for each included transac-
tion 𝑖 be 𝑝𝑖 , i.e., ∀𝑖 ∈ x𝐼 , the payment is denoted by 𝑝𝑖 (b, x𝐼 , x𝐶 ).
In TFMs, the included (but not confirmed) bids are often used as

‘price-setting’ bids [8]. We use the example of a second-price TFM

to explain Definition 1 better.

Example 1 (Second-price TFM (SPA) [8, 34].). W.l.o.g., assume

that b = (𝑏1, . . . , 𝑏𝑚) are bids in decreasing order. Now, the inclu-

sion rule is 𝑥 𝐼
𝑖
= 1, ∀𝑖 ∈ {1, . . . , 𝑛} and zero otherwise, i.e., the top

𝑛 transactions are included in the block. With 𝑘 = 𝑛 − 1, the con-

firmation rule is 𝑥𝐶
𝑖

= 1, ∀𝑖 ∈ {1, . . . , 𝑘} and zero otherwise. The

top 𝑘 (among 𝑛) transactions are confirmed, and the last included

transaction is the price-setting transaction. Each confirmed user

𝑖 ∈ [𝑘] pays 𝑝𝑖 = 𝑏𝑘+1 to the miner and unconfirmed user (𝑖 ∈ 𝐼 \𝐶)
pays 𝑝𝑖 = 0. The miner’s net revenue is 𝑘 · 𝑏𝑘+1.

In order to define the desirable properties of a TFM, we first

define user and miner utilities.

Utility Model.We first reiterate that we assume that the miners

and transaction creators (or users) are myopic [8, 15, 34, 41]. For

each user 𝑖 , let its transaction 𝑖’s valuation be 𝜃𝑖 ∈ R≥0 with bid𝑏𝑖 ∈
R≥0. We have Θ := [𝜃𝑖 ] and b := [𝑏𝑖 ]. Now, given T = (x𝐼 , x𝐶 , p),
each user 𝑖’s quasi-linear utility 𝑢𝑖 is defined as:

𝑢𝑖 (𝜃𝑖 , b) :=
(
1𝑥𝐶

𝑖
=1 · 𝜃𝑖

)
− 𝑝𝑖 (b, x𝐼 , x𝐶 ) (1)

We now define the miner’s utility. Since the miner has complete

control over the transactions, it adds to its block [34], it can add

a set of “fake” transactions (say 𝐹 ) to deviate from the intended

allocation rule x = (x𝐶 , x𝐼 ). The miner’s utility (say 𝑢M), given T ,

and for the block 𝐵, is given by:

𝑢M (𝐹, b) :=
∑︁

𝑖∈𝐵∩𝑀
𝑝𝑖 (b, x𝐼 , x𝐶 ) (2)

That is, the miner’s utility only depends on the set of transactions

𝐵 ∩𝑀 since for transactions in 𝐹 , it is paying to itself.

2
A miner is myopic if its utility is its net revenue from the current block [8, 15, 34].

3
This is analogous to the ‘homogeneous’ (unit demand) setting in the RM literature [21].
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3.1 TFMs: Desirable Properties

We now define the relevant incentive properties of a TFM (from

[15, 34]). We begin by defining Individual Rationality.

Individual Rationality (IR). To incentivize participation, mecha-

nism designers focus on IR.

Definition 2 ((Ex-post) Individual Rationality (IR)). Given
a TFM T = (x𝐼 , x𝐶 , p), we say that it satisfies IR for both the users
and miners if their utility post participation in the mechanism is
non-negative, i.e., 𝑢𝑖 (·) ≥ 0,∀𝑖 ∈ 𝑀 and 𝑢M (·) ≥ 0.

Note. We denote a mechanism that is IR w.r.t. miner as IRM and IR

w.r.t. user as IR𝑢 .

User Incentive Compatibility (UIC). To provide a good user

experience, TFMs must satisfy UIC, i.e., they must incentivize users

to report their true valuation as their bids (or transaction fees).

Definition 3 (User Incentive Compatibility (UIC) [34]). Given
a TFM T = (x𝐼 , x𝐶 , p), we say that each user 𝑖’s strategy 𝑏★

𝑖
= 𝜃𝑖

satisfies UIC, if bidding 𝑏★
𝑖
maximizes its utility𝑢𝑖 (Eq. 1), irrespective

of the bids of others. More formally, ∀𝑖 ∈ 𝑀, we have

𝑢𝑖 (𝜃𝑖 , 𝑏★𝑖 = 𝜃𝑖 , b−𝑖 ) ≥ 𝑢𝑖 (𝜃𝑖 , 𝑏𝑖 , b−𝑖 ),∀𝜃𝑖 ,∀b−𝑖 ,
where b−𝑖 are the bids of all users excluding 𝑖 .

As we show later, ensuring UIC while minimizing transaction

fees in a TFM is challenging. Hence, we focus on the incentive

compatibility of a ‘restricted’ set of users whose transactions are

included in the block. We define restricted UIC (RUIC), which states

that for all the included users, reporting truthfully is IC irrespective

of what the remaining included users report.

Definition 4 (Restricted UIC (RUIC)). Given a TFM T =

(x𝐼 , x𝐶 , p), we say that RUIC is satisfied if, ∀𝑖 included in the block
i.e., ∀𝑖 ∈ 𝐼 , we have,

𝑢𝑖 (𝜃𝑖 , 𝑏★𝑖 = 𝜃𝑖 , b𝐼\𝑖 ) ≥ 𝑢𝑖 (𝜃𝑖 , 𝑏𝑖 , b𝐼\𝑖 ),∀𝜃𝑖 , b𝐼\𝑖
where b𝐼\𝑖 is the bids of users included in the block excluding user 𝑖 .

Other Properties. Outside of these common TFM properties, we

also define additional properties, namely allocative efficiency (AE)

and weakly/strongly budget balance (WBB/SBB).

Definition 5 (Allocative Efficiency (AE)). We say that a
TFM T = (x𝐼 , x𝐶 , p) satisfies AE if given Θ, the mechanism con-
firms the transactions which maximize the overall valuation. That
is, for any given Θ and every feasible allocation x𝐶 , we have: x★ :=

argmaxx𝐶
∑
𝑖∈𝑀 𝑥𝐶

𝑖
· 𝜃𝑖

Definition 6 (Weakly/Strongly Budget Balance (WBB/SBB)).

We say that a TFM T = (x𝐼 , x𝐶 , p) satisfies WBB if the total payment
to the miner is non-negative, i.e.,

∑
𝑖∈𝐼 𝑝𝑖 ≥ 0. When the equality

holds, a TFM is strongly budget balanced (SBB), i.e.,
∑
𝑖∈𝐼 𝑝𝑖 = 0.

3.2 Groves’ Redistribution Mechanism (RM)

Towards minimizing the user cost in a TFM, we employ Redis-
tribution Mechanisms (RMs) [26]. In RM, the users are charged

VCG payments, and the money is redistributed back to users while

ensuring UIC. The redistribution is decided by constructing an ap-

propriate rebate function, 𝑔 : b → R. We desire rebate functions

that ensure maximum rebate (or, equivalently, minimize the trans-

action fees in TFM). To utilize an RM as a TFM, we require that

it satisfies UIC/RUIC and (ex-post) IR for the users and the miner.

An RM is IR for users when each user’s overall payment, including

the rebate, provides a non-negative utility. Likewise, we say that

an RM is IR for the miner when the total rebate is less than the

payment (transaction fees) received. We also want the RM to be

anonymous [21].

Definition 7 (Anonymity). An RM satisfies anonymity if the
rebate function is the same for all the users, i.e., ∀𝑖, 𝑗 ∈ [𝑛] and 𝑖 ≠ 𝑗 ,
𝑔𝑖 (·) = 𝑔 𝑗 (·) = 𝑔(·).

Note that an anonymous rebate function may still result in dif-

ferent redistribution payments to different users as the input to the

function may be arbitrarily different.

Rebate Function. We aim to design an appropriate rebate func-

tion for an anonymous RM such that incentive properties from

Section 3.1 hold. The rebate function must also redistribute most of

the payments (VCG payments) as much as possible to minimize the

user cost. We begin by providing the following characterization for

designing UIC rebate functions.

Theorem 1 ([17]). In an RM, any deterministic, anonymous re-
bate function 𝑔(·) is UIC iff the rebate for user 𝑖 is defined as 𝑟𝑖 :=
𝑔(𝑏1, 𝑏2, . . . , 𝑏𝑖−1, 𝑏𝑖+1, . . . , 𝑏𝑛), ∀𝑖 ∈ [𝑛],where𝑏1 ≥ 𝑏2 ≥ . . . ≥ 𝑏𝑛 .

The rebate function is UIC if the rebate for a user 𝑖 is independent

of its own bid. In general, it could take any form. E.g., the linear

rebate function is defined as,

Definition 8 (Linear Rebate Function [19]). The rebates to
a user 𝑖 follow a linear rebate function if the rebate is a linear com-
bination of the bid vectors of all the remaining users. That is, 𝑟𝑖 =
𝑐0 + 𝑐1𝑏1 + . . . + 𝑐𝑖−1𝑏𝑖−1 + 𝑐𝑖𝑏𝑖+1 + . . . + 𝑐𝑛−1𝑏𝑛−1 where 𝑐 𝑗 ∈ R, ∀𝑗 .

Given a rebate function, the fraction of VCG payment redis-

tributed depends on the input bids. Thus, we study the worst-case

and average-case performance of the rebate functions.

Definition 9 (Worst-case/Average Redistribution Index

(RI) [19]). The Worst-case or Average RI of an RM is defined as the
worst-case or average-case fraction of VCG surplus that gets redis-
tributed among the users, respectively. That is, given that 𝑝 (b) =∑
𝑖 𝑝𝑖 (b), the total VCG payment collected:

𝑒wc = inf

b:𝑝 (b)≠0

∑
𝑖 𝑟𝑖

𝑝 (b) and 𝑒avg = Eb:𝑝 (b)≠0

[∑
𝑖 𝑟𝑖

𝑝 (b)

]
(3)

Guo and Conitzer [21] propose Worst-case Optimal (WCO), an RM

that uniquely maximizes the worst-case RI (among all RMs that are

deterministic, anonymous, and satisfy UIC, AE, and IR) when the

items are homogeneous with unit demand [21, Theorem 1].

TFM <> RM.We assume that each block has 𝑘 slots available for

confirmation, and any user equally values transaction confirmation

at every slot. Each transaction only requires one slot for confirma-

tion. Thus, this is a homogeneous setting with unit demand.

4 IDEAL-TFRM: IMPOSSIBILITY OF ACHIEVING

STRICTLY POSITIVE RI

We now present a first attempt at implementing an RM for minimiz-

ing transaction fees using the second-price TFM (refer to Example 1).
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In a second-price TFM, the transactions/bids are sorted in decreas-

ing order. The top 𝑘 bids are confirmed with the 𝑛 = (𝑘 + 1)𝑡ℎ
transaction as the price-setting one. Each confirmed transaction

pays 𝑝 = 𝑏𝑘+1; with the net miner revenue as 𝑘 · 𝑏𝑘+1. To minimize

the user fees, we must “redistribute” the collected surplus.

It may be preferable to only provide rebates to users whose

transactions are confirmed (i.e., are among the top 𝑘 bids) since

each such user pays𝑏𝑘+1. If we also provide rebates to the remaining

𝑛 − 𝑘 users, the remaining transactions in the mempool may prefer

to overbid just enough also to get included in the block. By doing so,

they can grab rebates for free
4
. Thus, to achieve UIC, we must not

provide rebates to unconfirmed transactions. With this motivation,

we propose the following.

Ideal-TFRM. The goal is to maximize the fraction of VCG payments

redistributed to the users, denoted by 𝑓 , while ensuring non-zero

rebates only to confirmed transactions. Further, in Ideal-TFRM,
we would like the rebate offered to each user to be less than the

payment it makes. Eq. 4 captures this optimization.

max

𝑟𝑖 ,𝑖∈x
𝑓 s.t.

∑︁
𝑖∈𝐶

𝑟𝑖 ≥ 𝑓 ·
∑︁
𝑖∈𝐶

𝑝𝑖

and 𝑝𝑖 ≥ 𝑟𝑖 , ∀𝑖 ∈ 𝐶 and 𝑟𝑖 = 0, ∀𝑖 ∈ 𝐼 \𝐶

 (4)

Here, 𝑟𝑖 = 𝑔(𝑏1, 𝑏2, . . . , 𝑏𝑖−1, 𝑏𝑖+1, . . . , 𝑏𝑛) is the rebate (Defini-
tion 8) for each user 𝑖 ∈ 𝑀 with 𝑝𝑖 as the VCG payment. The goal

is to find an optimal 𝑔(·) such that 𝑒wc is maximized.

Unfortunately, we now show that for both the worst and average-

case, Ideal-TFRM admits zero rebates for the users with confirmed

transactions, i.e., 𝑟𝑖 = 0, ∀𝑖 ∈ x𝐶 while guaranteeing UIC.

Worst-case Rebate. Theorem 2 formally
5
shows the impossibility

of simultaneously guaranteeing UIC and minimizing transaction

fees in Ideal-TFRM.

Theorem 2 (Ideal-TFRM Impossibility). If 𝑟★ is an anonymous
rebate function that satisfies Theorem 1, no Ideal-TFRM can guaran-
tee a non-zero redistribution index (RI) in the worst case, i.e., 𝑒wc = 0.

Proof Sketch. Informally, if the rebate function is anonymous

(Definition 7) and the user with the highest valued transaction

is confirmed and receives a positive rebate. Then, it is easy to

show that there exists a different bid profile for which the last

unconfirmed transaction must receive the same positive rebate.

Therefore, the only way to ensure zero rebates for unconfirmed

transactions is also to ensure zero rebates for every confirmed

transaction. Thus, the worst-case RI is zero. □

Average-case Rebate. Theorem 2 shows that 𝑒wc = 0 in Ideal-TFRM,
for a linear rebate function. We now aim to find a non-linear re-
bate function that maximizes 𝑒avg in Ideal-TFRM. However, it is
analytically intractable to characterize similar results to show the

outcome of a rebate function that maximizes 𝑒avg. As such, we sim-

ulate the optimization in Eq. 4 as a Neural Network (NN), similar

to [13, 25, 37].

Architecture & Setup.We consider a typical 3-layer feed-forward

NN with bias, ReLU activation, and with AdamW optimizer. The

4
Assigning future costs to transactions not confirmed, e.g., as in [8] (Section 2), may

help overcome such manipulation. We leave the analysis for future work.

5
We refer the reader to [10] for the formal proofs of the results presented in this work.

(1) Inclusion Rule (x𝐼 ) . Select highest 𝑛 transactions from the mempool,

𝑀 . W.l.o.g., assume that these 𝑛 transactions are ordered as 𝑏1 ≥
𝑏2 ≥ . . . ≥ 𝑏𝑛 =⇒ 𝑥 𝐼

𝑖
= 1, ∀𝑖 ∈ {1, . . . , 𝑛}.

(2) Confirmation Rule (x𝐶 ) . Select highest 𝑘 bids from the 𝑛 included,

𝑥𝐶
𝑖

= 1, ∀𝑖 ∈ [𝑘 ], where 𝑘 ≤ 𝑛 − 2.

(3) Payment Rule (p) . Each confirmed user 𝑖 (i.e., 𝑖 ∈ 𝐶) pays 𝑝𝑖 =

𝑏𝑘+1 − 𝑟𝑖 . Each included but not confirmed user 𝑗 (𝑗 ∈ 𝐼 \𝐶) pays
𝑝 𝑗 = −𝑟 𝑗 .

(4) Miner Revenue Rule. The miner receives the net revenue of

∑𝑛
𝑖=1 𝑝𝑖 .

Figure 2: TFRM: General Framework

input to our NN is the 𝑛-dimensional bid vector b𝐼 sampled from a

specific distribution. Each hidden layer comprises 2𝑛 neurons, with

𝑛 as the output layer’s dimension. Given b𝐼 , the NN computes the

payments and rebates to the confirmed and included transactions.

Loss Function. For optimization, our loss function is a weighted

sum of the following three quantities: (i) average rebate to the 𝑛

bidders (denote as 𝑟avg), (ii) feasibility, i.e.,
∑
𝑖 𝑟𝑖 ≤ ∑

𝑖 𝑝𝑖 (denote

as 𝑟feas) and (iii) zero-rebate, i.e., 𝑟𝑖 = 0,∀𝑖 ∈ 𝐼 \𝐶 (denote as 𝑟zero).

More concretely, for weights 𝛽1, 𝛽2 ∈ (0, 1) the loss function takes

the form: Loss = 𝑟avg + 𝛽1 · 𝑟feas + 𝛽2 · 𝑟zero .
Training Details. We keep 𝑛 = 10 and 𝑘 = 7. For the optimizer,

we choose a fixed learning rate 𝜂 = 5𝑒 − 4. The batch size is 1000,

and we train for 50,000 epochs.

Results. We observe that 𝑒avg ≈ 0 when transactions are sampled

from 𝑈 [0, 1] and N(0, 1). That is, the average case rebate to con-

firmed transactions is zero, even with non-linear rebate functions.

We conclude that it is impossible to design a TFRM with a linear

rebate function that is UIC (Theorem 1) and offers a non-zero rebate

to any user. Our experiments also highlight that this may also

be unlikely for non-linear rebate functions. Therefore, the next

section introduces the general TFRM framework, where we focus

on restricted UIC.

5 TRANSACTION FEE REDISTRIBUTION

MECHANISM (TFRM)

As both 𝑒avg ≈ 𝑒wc = 0 for Ideal-TFRM, we must also provide

rebates to users whose transactions are included but not confirmed.

With this, we present the general TFRM framework in Figure 2.

In a TFRM, out of the𝑚 outstanding transactions in themempool,

we include the 𝑛 highest bids in the block (denoted by the set 𝐼 ).

Among the bids in the block, we confirm the 𝑘 highest bids (denoted

by the set 𝐶) where 𝑛 ≥ 𝑘 + 2. The remaining bids (denoted by the

set 𝑃 ) are included but not confirmed; we refer to them as price-

setting transactions. That is, |𝐼 | = 𝑛, |𝐶 | = 𝑘 and |𝑃 | = 𝑛 −𝑘 . W.lo.g.,

we assume that 𝑏1 ≥ 𝑏2 ≥ . . . ≥ 𝑏𝑛 . Hence, 𝐶 = {𝑏1, . . . 𝑏𝑘 } and
𝑃 = {𝑏𝑘+1, . . . , 𝑏𝑛}. Each user 𝑖’s payment is computed based on the

VCG payments and a rebate function, with 𝑟𝑖 as the rebate to user

𝑖 . Since 𝑘 bids are confirmed, the VCG payment for the confirmed

transactions is the (𝑘 + 1)𝑡ℎ highest bid, i.e., 𝑏𝑘+1.

TFRM: RUIC. While the rebate function satisfies Theorem 1, note

that TFRM is not UIC. E.g., users not part of the block may report

𝑏 > 𝜃 to grab the additional rebate, as only confirmed bids pay the
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transaction fee. However, TFRM satisfies RUIC, i.e., it is UIC for

users included in the block to bid their true valuation. All included

users, confirmed or not, are offered rebates, implying that 𝑘 slots

offered to 𝑛 users are equivalent to the allocation of 𝑘 resources

among 𝑛 users. Thus, by Theorem 1, TFRM is RUIC.

We now show that in the presence of a strategic miner, the TFRM

in Figure 2 results in net zero rebates to confirmed users.

TFRM: Effect of Strategic Miners. In general, strategic miners

may introduce fake transactions to increase their revenue. In the

second-price TFM itself (Example 1), the miner may introduce a

fake bid
ˆ𝑏𝑘+1 = 𝑏𝑘 to increase its revenue to 𝑘 ·𝑏𝑘 from the intended

𝑘 ·𝑏𝑘+1. Similarly, fake transactions can also affect the rebate offered

by a TFRM. The miner’s deviation may result in the following: (i)

Fake bids affect the rebate of all users, potentially reducing the

rebate, and (ii) As a fake bidder, the miner pays the rebate to itself.

Thus, designing TFRMs to minimize transaction fees may only

work if made resilient to such strategic manipulations. Unlike RMs,

TFRMs must quantify the rebate redistributed to the genuine users.

Towards this, we define the following metric:

Definition 10 (Resilient Redistribution Index (RRI)). Given
that the miner manipulates the bids b to ˆb, RRI is the fraction of
the received payments that are redistributed in the worst case to the
actual users. Given 𝐶 confirmed and 𝑃 unconfirmed users, let 𝑆 ⊆ 𝐼

be the subset of users that are not impersonated by the miner. Then:
𝑒wc = inf

ˆb,𝑝 (:,ˆb)≠0

∑
𝑖∈𝑆 𝑟𝑖

𝑝 ( ·;ˆb)
.

TFRM: Impossibility of Strictly Positive RRI. It is desirable to

have a TFRM that is AE, RUIC, IRM and IR𝑢 while ensuring RRI > 0

in the worst-case, i.e., 𝑒wc > 0. Unfortunately, Theorem 3 proves

that it is impossible to design such a TFRM with strategic miners.

Theorem 3 (TFRM: RRI Impossibility). Given a strategic miner,
it is impossible to design a TFRM with a linear rebate function that is
RUIC, AE, both IR𝑢 and IRM, and guarantees a strictly positive RRI,
i.e., 𝑒wc > 0.

Proof Sketch. A linear rebate that is RUIC and IR𝑢 and IRM
must depend only on bids 𝑏𝑘+2, . . . , 𝑏𝑛 . Changing these bids does
not affect the payment received by the miner. Hence, the miner

can replace these bids with fake bids such that the rebate is zero

without any change in the payments. □

These results establish that preventing user manipulation en-

tirely is not possible in the TFRM framework. Therefore, we focus

on ensuring Restricted UIC (RUIC), which ensures that users of

transactions included in the block will not misreport their values.

Further, we know from Theorem 3 that even with RUIC, the miner

can easily manipulate any known RM that satisfies all the desirable

properties. The theorem also shows that the manipulation will lead

to strictly zero rebate. Thus, in the next section, we propose Robust

TFRM (R-TFRM), which relaxes IRM, to ensure a positive rebate

even with miner manipulation.

6 R-TFRM: A TFRM ROBUST TO MINER

MANIPULATION

To ensure strictly positive RRI, we compromise on IRM, i.e., the

utility of an honest miner may be negative. However, we ensure

Maximize: 𝑓 ⊲RRI
Subject to: For every b ≥ 0,

𝑟𝑛 ≥ 0 ⊲IR𝑢
𝑛∑︁
𝑖=1

𝑟𝑖 ≤ 𝑘 · 𝑏𝑘 ⊲Approx-IR𝑚

𝑘∑︁
𝑖=1

𝑟𝑖 ≥ 𝑓 · 𝑘 · 𝑏𝑘+1 ⊲Worst-case Fraction

where 𝑟𝑖 = 𝑐0 + 𝑐1𝑏1 + . . . + 𝑐𝑖−1𝑏𝑖−1 + 𝑐𝑖𝑏𝑖+1 + . . . + 𝑐𝑛−1𝑏𝑛

Figure 3: R-TFRM: Linear Program for Rebate Function with

Approx-IR𝑚

Maximize: 𝑓

Subject To:

∑𝑖
𝑗=𝑘

𝑐 𝑗 ≥ 𝑓 , ∀𝑖 ∈ {𝑘, . . . , 𝑛 − 1}

(𝑛 − 𝑘) · 𝑐𝑘 ≤ 𝑘 and 𝑛

𝑛−1∑︁
𝑗=𝑘

𝑐 𝑗 ≤ 𝑘

𝑛

𝑘+𝑖−1∑︁
𝑗=𝑘

𝑐 𝑗 + (𝑛 − 𝑘 − 𝑖) · 𝑐𝑘+𝑖 ≤ 𝑘, ∀𝑖 ∈ [𝑛 − 𝑘 − 1]

Figure 4: R-TFRM: Linear Program Independent of the Bid

Vector b

that when the miner is strategic, it can always guarantee itself a

non-zero utility. We denote such a TFRM that is resilient to miner

manipulation by Robust TFRM (R-TFRM). Designing R-TFRM in-

volves constructing an appropriate rebate function. We focus on a

linear rebate function that maximizes the worst-case redistribution

index RRI while ensuring IR𝑢 . We still want RUIC; hence, we use

the rebate function as given in Theorem 1.

IR𝑢 Constraints. Each included user must have a non-negative

utility, i.e., 𝑢𝑖 ≥ 0,∀𝑖 ∈ 𝐼 . W.l.o.g., we assume that 𝑏1 ≥ 𝑏2 ≥ . . . 𝑏𝑛
and IR for user 𝑛 is ensured when 𝑟𝑛 ≥ 0 as 𝑢𝑛 = 𝑟𝑛 . In Claim 1, we

show that 𝑟𝑖 ≥ 0,∀𝑖 if 𝑟𝑛 ≥ 0; hence R-TFRM will be IR𝑢 .

Claim 1. R-TFRMwith𝑛 included transactions and rebates (𝑟1, . . . , 𝑟𝑛)
is user IR (IR𝑢 ) if 𝑟𝑛 ≥ 0.

Approx-IRM Constraints. In any classic RM, to ensure IRM, there

is an additional constraint to ensure that the total rebate is less than

the VCG payments, i.e.,

∑
𝑖 𝑟𝑖 ≤ 𝑘 · 𝑏𝑘+1. We modify this constraint

to ensure

∑
𝑖 𝑟𝑖 ≤ 𝑘 · 𝑏𝑘 . This change is because a strategic miner

can manipulate the VCG auction to insert a fake bid
ˆ𝑏𝑘+1 = 𝑏𝑘 .

Figure 3 describes the linear program to solve for such a rebate

while maximizing the RRI fraction 𝑓 .

We now aim to write the linear program in Figure 3 such that it

is only dependent on 𝑛, 𝑘, 𝑐′
𝑖
𝑠 and independent of the bid vector, b.

For this purpose, we now state the following claims.

Claim 2. If 𝑐0, . . . , 𝑐𝑛−1 satisfy IR𝑢 and Approx-IRM, then 𝑐𝑖 = 0

for 𝑖 = 0, . . . , 𝑘 − 1.
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Claim 3. The IR𝑢 constraint 𝑟𝑛 ≥ 0 and the worst-case fraction
constraint (refer to Figure 3) is equivalent to having

∑𝑖
𝑗=𝑘

𝑐 𝑗 ≥ 𝑓 , ∀𝑖 ∈
{𝑘, . . . , 𝑛 − 1}.

Claim 4. The Approx-IRM constraint can be replaced by:

(𝑛 − 𝑘)𝑐𝑘 ≤ 𝑘 & 𝑛

𝑛−1∑︁
𝑗=𝑘

𝑐 𝑗 ≤ 𝑘 and

𝑛

𝑘+𝑖−1∑︁
𝑗=𝑘

𝑐 𝑗 + (𝑛 − 𝑘 − 𝑖)𝑐𝑘+𝑖 ≤𝑘, 𝑖 ∈ {1, . . . , 𝑛 − 𝑘 − 1}

Using Claims 3 and 4, we reformulate the linear program in

Figure 3 so that it is independent of the bid vectors. Figure 4 presents

this reformulated LP.

Optimal worst-case Redistribution Fraction. We next provide

the analytical solution to the linear program in Figure 4 and thereby

also state the optimal worst-case fraction redistributed.

Theorem 4. For any 𝑛 and 𝑘 such that 𝑛 ≥ 𝑘 + 2, the R-TFRM
mechanism is unique. The fraction redistributed to the top-k users in
the worst case is given by: 𝑓 ∗ = 𝑘

𝑛 . In R-TFRM, the rebate function is
characterized by the following: 𝑐∗

𝑘
= 𝑘

𝑛 and 𝑐∗
𝑖
= 0, ∀𝑖 ≠ 𝑘.

Observe that the total redistribution to the users, when the miner

is honest for R-TFRM, is given by

𝑛∑︁
𝑖=1

𝑟𝑖 =
𝑘

𝑛
[(𝑘 · 𝑏𝑘+1) + (𝑛 − 𝑘)𝑏𝑘 ] (5)

This value may exceed 𝑘 · 𝑏𝑘+1, thus violating IRM. However, it

satisfies Approx-IRM as

∑𝑛
𝑖=1 𝑟𝑖 ≤ 𝑘 · 𝑏𝑘 (refer Figure 3). R-TFRM is

similar to the Bailey-Cavallo mechanism [1]. The primary difference

is due to the Approx-IRM constraint, which makes 𝑐𝑘 = 𝑘/𝑛 instead

of 𝑐𝑘+1 as in Bailey-Cavallo.

6.1 R-TFRM: Analyzing Impact of Miner

Manipulation on Rebate and Miner Revenue

With an honest miner, R-TFRM maximizes the worst-case redistri-

bution index such that it is AE, RUIC, IR𝑢 , and Approx-IRM. We now

analyze the effect of miner manipulation on R-TFRM. Previously,

we saw that it is impossible to ensure non-zero RRI (Theorem 3),

but with R-TFRM we show that RRI is strictly positive even with

miner manipulation.

Reduction in Transaction Fees. The rebate function for R-TFRM
is characterized by the constants given in Theorem 4.With these, we

now calculate RRI (Definition 10), i.e, 𝑒wc, for R-TFRM. Theorem 5

shows that irrespective of miner manipulation, 𝑐∗
𝑘
= 𝑘

𝑛 fraction of

payments will be returned.

Theorem 5. Consider 𝑛 included transactions with the set 𝐶 as
confirmed transactions such that |𝐶 | = 𝑘 with the remaining 𝑛 − 𝑘

as price-setting transactions. Irrespective of any miner manipulation,
R-TFRM ensures strictly positive RRI or 𝑒wc = 𝑐∗

𝑘
= 𝑘

𝑛 .

From Theorem 4 and Theorem 5, we see that in R-TFRM, the

fraction of payments redistributed to the top-k users, i.e., 𝑘/𝑛, is
the same for honest and strategic miner. This implies that R-TFRM
is resilient to miner manipulation while being worst-case optimal.

Utility of Strategic Miner. From Theorem 5, if a miner is strategic

and impersonates the price-setting transactions, the miner will

receive positive utility. The miner will preferably set the fake bid

ˆ𝑏𝑘+1 close to𝑏𝑘 . Hence, themaximumutility to aminer that deviates

by impersonating the price-setting bids is: 𝑢M = (1 − 𝑘/𝑛) · 𝑘 · 𝑏𝑘 .
As we assume 𝑛 ≥ 𝑘 + 2, the miner’s maximum utility is minimized

for 𝑘 = 𝑛 − 2.

The fraction redistributed to the genuine users is still
𝑘
𝑛 of the

payments received even when the miner impersonates the con-

firmed transactions. We illustrate this with an example next.

Example 2. It is possible for the miner to insert fake transac-

tions with high enough bids such that they are confirmed. Consider

𝑛 = 5 and 𝑘 = 3 where 𝑏1 = 𝑏2 = 100, 𝑏3 = 10 and 𝑏4 = 𝑏5 = 4.

If the miner is only impersonating the price setting transactions,

then it puts
ˆ𝑏4 = 𝑏3 and arbitrary

ˆ𝑏5 < 𝑏3, then its overall utility

is

(
1 − 𝑘

𝑛

)
𝑘𝑏𝑘 = 12. Whereas if the miner is given more flexibility

to insert a fake transaction within the confirmed and unconfirmed

bids, it receives more payments. For e.g., let
ˆ𝑏1 = 200 and

ˆ𝑏3 = 100

hence the ordered bids are
ˆ𝑏1 ≥ 𝑏1 ≥ 𝑏2 ≥ ˆ𝑏3. Therefore, effectively,

the first two transactions are confirmed, and they pay 100 each.

Further, due to R-TFRM, it returns a rebate of
𝑘
𝑛 100 to each of the

two users, thus obtaining an overall utility of (1 − 3/5) 200 = 80.

7 R2-TFRM: ROBUST AND RATIONAL TFRM

R-TFRM compromises Miner IR to ensure positive RRI. We now

introduce randomness in R-TFRM to obtain a mechanism that en-

sures positive utility to an honest miner, i.e., satisfies 𝐼𝑅𝑚 . Towards

this, we propose Robust and Rational TFRM, R2-TFRM (Figure 5). In

R2-TFRM, the rebate is not guaranteed for every included transac-

tion. Instead, an included transaction gets a rebate with probability

𝛼 , 𝛼 ∈ [0, 1] where the rebate value is calculated using R-TFRM.

Hence R2-TFRM reduces to R-TFRM when 𝛼 = 1. On the other

extreme, when 𝛼 = 0, R2-TFRM reduces to a second price auction.

R2-TFRM: On-chain Randomness. As stated, each transaction

receives a rebate with a probability 𝛼 . Similar to other TFMs [8], we

employ trusted on-chain randomness for this randomization. Re-

searchers have proposed such trusted randomized protocols using

various cryptographic primitives [3, 11]. Significantly, the miner of

the block cannot exert any influence on this randomization.

R2-TFRM: Incentive and RRI Guarantees. Theorem 6 proves

that R2-TFRM mimics the incentive guarantees of R-TFRM. More-

over, for an appropriate 𝛼 , R2-TFRM is also IRM in expectation.

Theorem 6. For any 𝑛 and 𝑘 such that 𝑛 ≥ 𝑘 + 2 and any bid
profile b = (𝑏1, . . . , 𝑏𝑛), and probability 𝛼 ∈ (0, 1) R2-TFRM has an
expected redistribution fraction (expectation over𝛼) 𝑓 ∗ = 𝛼 ·𝑘𝑛 . Further
it satisfies𝐴𝐸, 𝑅𝑈 𝐼𝐶 , 𝐼𝑅𝑢 , and is 𝐼𝑅𝑚 when 𝛼 ≤ 𝛼 = 𝑛

𝑘+(𝑛−𝑘 )𝑏𝑘/𝑏𝑘+1 .

Proof Sketch. We divide the proof into two parts.

• Firstly, notice that R2-TFRM is AE since the top 𝑘 bids are con-

firmed and IR𝑢 , since payments are governed by VCG and all

the rebates, are positive. Although in R2-TFRM every user is

not deterministically given rebates, so it is RUIC in expectation,

where the expectation is over 𝛼 . This is because a user’s rebate

is independent of its own bid.
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(1) Inclusion Rule (x𝐼 ) . Select highest 𝑛 transactions from the mempool,

𝑀 . W.l.o.g., assume that these 𝑛 transactions are ordered as 𝑏1 ≥
𝑏2 ≥ . . . ≥ 𝑏𝑛 =⇒ 𝑥 𝐼

𝑖
= 1, ∀𝑖 ∈ {1, . . . , 𝑛}.

(2) Confirmation Rule (x𝐶 ) . Select highest 𝑘 bids from the 𝑛 included,

𝑥𝐶
𝑖

= 1, ∀𝑖 ∈ [𝑘 ], where 𝑘 ≤ 𝑛 − 2.

(3) Payment Rule (p) . Each confirmed user 𝑖 (i.e., 𝑖 ∈ 𝐶) pays

𝑝𝑖 =

{
𝑏𝑘+1 − 𝑟𝑖 w.p. 𝛼

𝑏𝑘+1 w.p. (1 − 𝛼 )
Each included but not confirmed user 𝑗 (i.e., 𝑗 ∈ 𝐼 \𝐶) pays

𝑝 𝑗 =

{
−𝑟 𝑗 w.p. 𝛼

0 w.p. (1 − 𝛼 )
The rebate 𝑟𝑖 is given by Theorem 4.

(4) Miner Revenue Rule. The miner receives the net revenue of

∑𝑛
𝑖=1 𝑝𝑖 .

Figure 5: R2-TFRM: Robust and Rational TFRM

• Next, we now formally show that R2-TFRM is IRM in expec-

tation. The payment obtained by an honest miner is given by

𝑘𝑏𝑘+1. The expected rebate paid by the honest miner is given

by 𝛼

[
𝑘 𝑘
𝑛𝑏𝑘+1 + (𝑛 − 𝑘) 𝑘𝑛𝑏𝑘

]
. If 𝛼 = 1, the refund is equal to the

refund in R-TFRM given by Eq. 5. In order to ensure IRM for the

honest miner, the following must be true,

𝑘𝑏𝑘+1 ≥ 𝛼

[
𝑘
𝑘

𝑛
𝑏𝑘+1 + (𝑛 − 𝑘)𝑘

𝑛
𝑏𝑘

]
=⇒ 𝛼 ≤ 𝑛𝑏𝑘+1

𝑘𝑏𝑘+1 + (𝑛 − 𝑘)𝑏𝑘
Therefore, R2-TFRM satisfies IRM when 𝛼 =

𝑛𝑏𝑘+1
𝑘𝑏𝑘+1+(𝑛−𝑘 )𝑏𝑘 and

the total rebate is 𝑘 · 𝑏𝑘+1.
This completes the proof of the theorem. □

𝑏𝑘+1 → 𝑏𝑘 =⇒ R-TFRM and R2-TFRM Become Equivalent.

From Theorem 6, an honest miner obtains non-negative utility

when,

𝛼 ≤ 𝑛

𝑘 + (𝑛 − 𝑘)𝑏 𝑓
(6)

where, 𝑏 𝑓 =
𝑏𝑘
𝑏𝑘+1

is the bid ratio. W.l.o.g as the bids are ordered

(Figure 5) 𝑏 𝑓 ≥ 1. When 𝑏 𝑓 = 1, i.e., 𝑏𝑘 = 𝑏𝑘+1 we have 𝛼 = 1 and

R-TFRM ⇐⇒ R2-TFRM. This implies that every user receives a

rebate, and the miner IR is not violated.

This may seem to contradict R-TFRM not being IRM; however,

we can think of 𝑏𝑘+1 → 𝑏𝑘 as one of the deviations of the strategic

miner. And R-TFRM is IRM when the miner is strategic. Further-

more, as 𝑏 𝑓 increases, the upper bound on 𝛼 becomes smaller. To

still guarantee IRM, the overall rebate (i.e., 𝛼 · 𝑘𝑛 ) decreases.
Observe that, in the worst case, trivially, 𝛼 = 0. Generally, the

bound on 𝛼 will depend on the bid distribution. Sampling the bids

uniformly, i.e., b ∼ U[0, 1], the expected value of 𝛼 (using order

statistics) is, Eb [𝛼] = 𝑛/(𝑛 + 1) (i.e., 𝛼 → 1 for large values of 𝑛).

R2-TFRM: Analyzing Miner Manipulation. Like R-TFRM, R2-
TFRM also ensures strictly positive RRI even with miner manipula-

tion as formally stated in Theorem 7.

Theorem 7. Consider 𝑛 included transactions with the set 𝐶 as
confirmed transactions such that |𝐶 | = 𝑘 with the remaining 𝑛 − 𝑘

as price-setting transactions. Irrespective of any miner manipulation
R2-TFRM ensures: expected RRI or E𝛼 [𝑒wc] = 𝛼 · 𝑘𝑛 .

Proof Sketch. The result follows from the similar result in The-

orem 5 for R-TFRM and the fact that the miner has no control over

the randomization in R2-TFRM. □

We observe that irrespective of the miner manipulation, the users

receive back the fraction 𝛼 · 𝑘𝑛 of the payment made on expectation.

Based on what fake transactions the miner inserts, the payments

change, but the refund fraction remains the same as for the case

when the miner is honest.

Discussion on TFRMs

Given that the current TFM literature assumes that users andminers

are myopic, we believe that redistributing the surplus is an effective

method to reduce the net payments paid by the users. Another

desirable property in TFMs is that of predictable transaction fees,

i.e., reducing the volatility of the fees paid by the users. For instance,

EIP-1559 [5] uses a deterministic function based on the previous

block consumption to calculate a network-determined minimum

threshold fee (called base fee) paid by each user. The users can

also pay a priority fee over the base fee to incentivize the miners

to include their transactions. The base fee aims to reduce the fee

volatility and aims to arrive at amarket clearing price. Crucially, this

minimum threshold fee is burned – transferred to an unspendable

address – implying that the miner does not receive this fee as

revenue. We see that burning some fraction of the fee is necessary

to guarantee such properties. In such mechanisms, the priority

fee calculated post-burning can be further reduced by employing

TFRMs.

8 CONCLUSION

In this paper, we argued the importance of minimizing user costs in

a TFM. Our key idea is to employ a redistribution mechanism-based

approach for determining the transaction fees in TFM, namely,

TFRM. Due to strategic miner manipulation, we first show that

guaranteeing a strictly positive rebate in a TFRM and other desirable

properties is impossible. Hence, we propose R-TFRM, which ensures

strictly positive rebates even in the worst case but compromises on

miner’s IR. However, we show that in R-TFRM, a strategic miner

will never incur negative utility while still guaranteeing strictly

positive rebates to the users. We also propose R2-TFRM which uses

blockchain’s inherent randomness to guarantee a strictly positive

rebate to the users while also respecting the miner’s IR.

Future Work. Future directions can explore TFRMs with random-

ized rebate functions, which may likely satisfy stronger notions of

IC and IR. Another approach may be to explore non-linear rebate

functions, which may provide a better redistribution index on av-

erage. In addition, unlike this work, future work can also explore

transactions with varying sizes.
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