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ABSTRACT
Schelling’s model considers 𝑘 types of agents each of whom needs

to select a vertex on an undirected graph, where every agent prefers

neighboring agents of the same type. We are motivated by a recent

line of work that studies solutions that are optimal with respect to

notions related to the welfare of the agents. We explore the param-

eterized complexity of computing such solutions. We focus on the

well-studied notions of social welfare (WO) and Pareto optimality

(PO), alongside the recently proposed notions of group-welfare op-

timality (GWO) and utility-vector optimality (UVO), both of which

lie between WO and PO. Firstly, we focus on the fundamental case

where 𝑘 = 2 and there are 𝑟 red agents and 𝑏 blue agents. We show

that all solution-notions we consider are intractable even when

𝑏 = 1 and that they do not admit an FPT algorithm when parame-

terized by 𝑟 and 𝑏, unless FPT = W[1]. In addition, we show that

WO and GWO remain intractable even on cubic graphs. We comple-

ment these negative results with an FPT algorithm parameterized

by 𝑟, 𝑏 and the maximum degree of the graph. For the general case

with 𝑘 types of agents, we prove that for any of the notions we

consider the problem remains hard when parameterized by 𝑘 for

a large family of graphs that includes trees. We accompany these

negative results with an XP algorithm parameterized by 𝑘 and the

treewidth of the graph.
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1 INTRODUCTION
Residential segregation is a phenomenon that is observed in many

areas around the globe. As a result of de-facto segregation, people

group together forming communities based on traits such as race,

ethnicity, and socioeconomic status, and residential areas become

noticeably divided into segregated neighborhoods. Half a century
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ago, Schelling [26] proposed a simple agent-based model to study

how residential segregation emerges from individuals’ perceptions.

At a high level, Schelling’s model works as follows. There are

two types of agents, say red and blue, each of whom is placed on a

unique node on a graph. Agents are aware of their neighborhood;

agents of the same type are considered “friends” and those of the

opposite type “enemies”. Agents are indifferent to empty vertices.

An agent is happy with their location if the fraction of friends in

their neighborhood is at least 𝜏 , where 𝜏 ∈ [0, 1] is a tolerance

parameter. Schelling proposed a random process that starts from

a random initial assignment and agents who are unhappy in their

current neighborhood relocate to a different, random, empty node,

whilst happy agents stay put. It is expected that when agents are not

tolerant towards a diverse neighborhood, 𝜏 > 1

2
, these dynamics

will converge to a segregated assignment. However, Schelling’s

experimentation on grid graphs showed that even when agents are

in favour of integration, i.e. 𝜏 ≈ 1

3
, the final assignment will be

segregated.

Since Schelling’s model was proposed, it has been the subject

of many empirical studies in sociology [11], in economics [27, 28],

and more recently in computer science. For example, [2–5, 16]

analyze Schelling’s model on a grid graph with its original random

dynamics, as well as many variants of this random process. They

show that assignments converge to largemonochromatic subgraphs

with a high probability, confirming Schelling’s research.

More recently, Bullinger et al. [9] studied assignments with cer-

tain welfare guarantees for the agents and the computational com-

plexity of computing them. In Schelling’s model high social welfare

translates to high segregation. However, there are certain scenar-

ios where segregation essentially captures the effectiveness of an

allocation of agents over a network. As an example, think of the

nodes of the graph as the resources of an organization, the edges

as compatibility and interference between the resources, and the

types of agents as different working groups, or skilled workers.

Under this point of view, “segregation” is desirable, since we have

better utilization of both the available workers and resources. For

this reason, the welfare guarantees studied by [9] are the focus of

this paper, albeit under the prism of parameterized complexity.

In parameterized algorithmics [12], the running-time of an algo-

rithm is studied with respect to a parameter 𝑘 ∈ N0 and input size 𝑛.
The basic idea is to find a parameter that describes the structure of

the instance such that the combinatorial explosion can be confined

to this parameter. In this respect, the most favorable complexity

class is FPT (fixed-parameter tractable), which contains all problems

that can be decided by an algorithm running in time 𝑓 (𝑘) · 𝑛O(1)
,

where 𝑓 is a computable function. Algorithms with this running-

time are called fixed-parameter (FPT) algorithms. A less favorable,
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but still positive, outcome is an XP algorithm, which is an algorithm 
running in time O(𝑛𝑓 (𝑘) ); problems admitting such algorithms be-
long to the class XP. Finally, showing that a problem is W[1]-hard 
rules out the existence of a fixed-parameter algorithm under the 
well-established assumption that W[1] ≠ FPT.

1.1 Our Contributions
We explore the parameterized complexity of computing assign-
ments for Schelling’s model that optimizes some welfare guarantee. 
We study four solution notions: social-welfare optimality (WO), 
Pareto optimality (PO), group-welfare optimality (GWO) and utility-
vector optimality (UVO). We denote the problem as 𝜙-Schelling, 
where 𝜙 ∈ {WO, PO, GWO, UVO}. The task is to find an assignment 
that satisfies notion 𝜙  for a given Schelling instance. While WO 
and PO are well-studied notions in various domains, the solution 
concepts of GWO and UVO were proposed by Bullinger et al. [9]. 
There it was proven that both UVO and GWO lie between WO and 
PO. At a high level, an assignment is GWO if we cannot increase 
the total utility of one type of agents without decreasing the util-
ity of the other type; an assignment is UVO if it is not possible to 
improve the sorted utility vector of the agents. While Bullinger, 
Suksompong, and Voudouris showed that all four notions do not 
admit an polynomial-time algorithm in general, unless P = NP, 
their parameterized complexity remained open.

We firstly focus on the fundamental case where we have two 
types of agents: 𝑟 red agents and 𝑏 blue agents. In Theorem 3 we 
show that 𝜙-Schelling is NP-hard (unless P = NP) even when 
𝑏 = 1, for every 𝜙 ∈ {WO, PO, GWO, UVO}. In Theorem 5 we ex-
tend this negative result and show that deciding if there exists a 
perfect assignment, i.e. an assignment where every agent has only 
friends as neighbors, is W[1]-hard when parameterized by 𝑟 + 𝑏. 
This implies Corollary 6: For every 𝜙 ∈ {WO, PO, GWO, UVO}, 𝜙-
Schelling when parameterized by 𝑟 + 𝑏 does not admit a fixed 
parameter algorithm unless FPT = W[1]. Hence, if we want to de-
rive a positive result, we need to restrict the topology of the graph. 
In Theorem 7, we show that restricting the maximum degree of the 
graph does not always suffice; we prove that both WO-Schelling 
and GWO-Schelling remain intractable even on cubic graphs. We 
complement these negative results with Theorem 8; we show that 
𝜙-Schelling is in FPT, for all four optimality notions, parameter-

ized by 𝑟 + 𝑏 + Δ, where Δ denotes the maximum degree of the 
graph. In fact, we show that 𝜙-Schelling admits a polynomial time 
preprocessing algorithm, called kernel, that yields an instance with 
at most O(Δ2 · 𝑟2 · 𝑏2) many vertices.

Then, we turn our attention to the general case where there 
are multiple types of agents, which we denote by SchellingM. In 
Theorem 9, we prove that deciding existence of a perfect assign-
ment is W[1]-hard when parameterized by the number of types 
of agents, 𝑘 , for a large family of graphs that includes trees1. The 
same proof also establishes that it is NP-hard when 𝑘 is part of the 
input and not bounded by a function of the parameter for the same 
family of graphs. Again, we get the corresponding intractability for 
𝜙-SchellingM as corollaries, for every 𝜙 ∈ {WO, PO, GWO, UVO}. 
We complement this with three positive results. In Theorem 12 
we derive an XP algorithm parameterized by the number of types

1
See Thm. 9 for the exact definition of this subclass of graphs.

and the treewidth of the graph. By using the same algorithm, we

get Corollary 17 that shows an FPT algorithm for 𝜙-SchellingM

parameterized by the number of agents plus the treewidth of the

graph. Finally, by slightly modifying this algorithm, we get Corol-

lary 18 that shows that if the number of types is any fixed constant,

then the problem of finding a perfect assignment, if one exists,

admits an FPT algorithm parameterized by the treewidth.

1.2 Further Related Work
A different line of work studies Schelling games, a strategic setting

of Schelling’s model. There, unhappy agents will move to different

positions that maximize the fraction of friends in the neighborhood.

The focus is now shifted to the existence of Nash equilibria, i.e.,

assignments where no agent has incentives to change their position.

Agarwal et al. [1] consider jump Schelling games with 𝑘 ≥ 2 types,

with agents that can deviate to empty nodes in the graph and

stubborn agents which do not move regardless of their utility. They

provedNP-hardness for computing a Nash equilibrium and for WO.

Also, Agarwal et al. [1] study swap Schelling games, where agents

of different types exchange their positions if at least one of them

strictly increase their utility. Again, they showed that deciding

whether a Nash equilibrium exists is NP-hard. Furthermore, in

order to measure the diversity in assignments, they introduced the

degree of integration that counts the number of agents exposed to

agents not of their type. They showed that computing assignments

that maximize this measure is hard.

More recently, Kreisel et al. [22] answered some open questions

from Agarwal et al. [1] where they proved stronger NP-hardness
results for the existence of swap-equilibria and jump-equilibria. In

addition, they introduced and studied two measures that capture

the robustness of equilibria in Schelling games.

Bilò et al. [6] investigate the existence of equilibria via finite

improvement paths on different graph classes for swap Schelling

games, and study a local variant wherein agents can only swap

with agents in their neighborhood. Kanellopoulos et al. [19] study

price of anarchy and price of stability in modified Schelling games,

where the agent includes herself as part of the neighborhood. They

prove tight bounds on the price of anarchy for general and some

specific graphs with 𝑘 ≥ 2 and 𝑘 = 1. Furthermore, there are other

extensions and variations of Schelling games [7, 10, 14, 15, 20].

Statements where proofs or details are omitted due to space constraints

are marked with ★. A version containing all proofs and details is

provided as supplementary material.

2 PRELIMINARIES
For every positive integer 𝑛, let [𝑛] = {1, 2, . . . , 𝑛}. Given two

vectors x, y of length 𝑛, we say that x weakly dominates y if x(𝑖) ≥
y(𝑖) for every 𝑖 ∈ [𝑛]; x strictly dominates y if at least one of the

inequalities is strict.

A Schelling instance ⟨𝐺,𝐴⟩, consists of an undirected graph 𝐺 =

(𝑉 , 𝐸) and a set of agents 𝐴, where |𝐴| ≤ |𝑉 |. Every agent has a

type, or color. When there are only two colors available, we assume

that 𝐴 = 𝑅 ∪ 𝐵, where 𝑅 contains red agents and 𝐵 contains blue

agents. We denote 𝑟 = |𝑅 | and 𝑏 = |𝐵 |. Agents 𝑖 and 𝑗 are friends
if they have the same color; otherwise, they are enemies. For any

agent 𝑖 ∈ 𝐴 we use 𝐹 (𝑖) to declare the set of his friends.
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An assignment v = (𝑣 (1), . . . , 𝑣 ( |𝐴|)) for the Schelling instance 
⟨𝐺, 𝐴⟩ maps every agent in 𝐴 to a vertex 𝑣 ∈ 𝑉 , such that every 
vertex is occupied by at most one agent. Here, 𝑣 (𝑖) ∈ 𝑉 is the vertex 
of 𝐺 that agent 𝑖 occupies. For any assignment v and any agent 
𝑖 ∈ 𝐴, 𝑁𝑖 (v) = { 𝑗 ∈ 𝐴 : 𝑣 (𝑖)𝑣 ( 𝑗) ∈ 𝐸} denotes the set of neighbors 
of 𝑣 (𝑖) ∈ 𝑉 that are occupied under v. Let 𝑓𝑖 (v) = |𝑁𝑖 (v) ∩𝐹 (𝑖) | and 
let 𝑒𝑖 (v) = |𝑁𝑖 (v) | − 𝑓𝑖 (v) be respectively the numbers of neighbors 
of agent 𝑖 who are his friends and his enemies under v. The utility 
of agent 𝑖 under assignment v, denoted 𝑢𝑖 (v), is 0 if |𝑁𝑖 (v) | = 0, 
and is defined as

𝑢𝑖 (v) =
𝑓𝑖 (v)
|𝑁𝑖 (v) |

=
𝑓𝑖 (v)

𝑓𝑖 (v) + 𝑒𝑖 (v)

if |𝑁𝑖 (v) | ≠ 0. The social welfare of v is the sum of the utilities of all

agents, formally SW(v) = ∑
𝑖∈𝐴 𝑢𝑖 (v). For 𝑋 ∈ {𝑅, 𝐵} we denote

SW𝑋 (v) = ∑
𝑖∈𝑋 𝑢𝑖 (v).

We use u(v) to denote the vector of length |𝐴| that contains the
utilities of the agents under v, sorted in non-increasing order. Simi-

larly, let u𝑋 (v) denote the corresponding vector of utilities of the
agents in 𝑋 ∈ {𝑅, 𝐵}. An assignment v is utility-vector dominated

by v′ if u(v′) strictly dominates u(v); v is group-welfare dominated

by v′ if SW𝑋 (v′) ≥ SW𝑋 (v), where 𝑋 ∈ {𝑅, 𝐵}, and at least one

of the inequalities is strict. An assignment v is:

• welfare optimal, denoted WO, if for every other assignment

v′ we have SW(v) ≥ SW(v′);
• Pareto optimal, denoted PO, if and only if there is no v′ such
that u𝑋 (v′) weakly dominates u𝑋 (v) for 𝑋 ∈ {𝑅, 𝐵} and at

least one of the dominations is strict;

• utility-vector optimal, denoted UVO, if it is not utility-vector

dominated by any other assignment;

• group-welfare optimal, denotedGWO, if it is not group-welfare

dominated by any other assignment;

• perfect, denoted Perfect, if every agent gets utility 1.

As previouslymentioned, UVO andGWOwere introduced by Bullinger

et al. [9] where the following were proven.

Proposition 1. If an assignment v is WO, then it is UVO, GWO,

and PO. If v is UVO or GWO, then it is PO.

Observation 1. If Schelling instance ⟨𝐺,𝐴⟩ admits a Perfect as-

signment, then every PO assignment is Perfect.

In this paper we study the complexity of 𝜙-Schelling, where 𝜙 ∈
{WO, PO,GWO,UVO, Perfect}. In other words, given a Schelling

instance ⟨𝐺,𝐴⟩, we want to find an assignment v satisfying the

given optimality notion.

𝜙-Schelling

Input: A Schelling instance ⟨𝐺,𝐴⟩
Question: Output an assignment v satisfying 𝜙 or cor-

rectly output that no such assignment exists.

Observe that when 𝜙 ∈ {WO, PO,GWO,UVO} there always

exists an assignment that satisfies the optimality notion; this fact on

its own does not imply anything for the complexity of the associated

problem. On the other hand, Perfect assignments do not always

exist and for this reason, we define the decision problem Perfect-

Schelling-E.

Perfect-Schelling-E

Input: A Schelling instance ⟨𝐺,𝐴⟩
Question: Decide if there exists a perfect assignment v.

2.1 Parameterized Complexity
We refer to the handbook by Diestel [13] for standard graph termi-

nology. We also refer to the standard books for a basic overview of

parameterized complexity theory [12], and assume that readers are

aware of the complexity classes FPT, XP,W[1], and the notion of

polynomial kernels. We denote by N the set of natural numbers, by

N0 the set N ∪ {0}. Let 𝐾𝑖, 𝑗 be the complete bipartite graph with

parts of size 𝑖 and 𝑗 .

Treewidth. A nice tree-decomposition T of a graph 𝐺 = (𝑉 , 𝐸)
is a pair (𝑇, 𝜒), where 𝑇 is a tree (whose vertices we call nodes)

rooted at a node ro and 𝜒 is a function that assigns each node 𝑡 a

set 𝜒 (𝑡) ⊆ 𝑉 such that the following hold:

• For every 𝑢𝑣 ∈ 𝐸 there is a node 𝑡 such that 𝑢, 𝑣 ∈ 𝜒 (𝑡).
• For every vertex 𝑣 ∈ 𝑉 , the set of nodes 𝑡 satisfying 𝑣 ∈ 𝜒 (𝑡)
forms a subtree of 𝑇 .

• |𝜒 (ℓ) | = 0 for every leaf ℓ of 𝑇 and |𝜒 (ro) | = 0.

• There are only three kinds of non-leaf nodes in 𝑇 :

Introduce node: a node 𝑡 with exactly one child 𝑡 ′ such
that 𝜒 (𝑡) = 𝜒 (𝑡 ′) ∪ {𝑣} for some vertex 𝑣 ∉ 𝜒 (𝑡 ′).
Forget node: a node 𝑡 with exactly one child 𝑡 ′ such that

𝜒 (𝑡) = 𝜒 (𝑡 ′) \ {𝑣} for some vertex 𝑣 ∈ 𝜒 (𝑡 ′).
Join node: a node 𝑡 with two children 𝑡1, 𝑡2 such that

𝜒 (𝑡) = 𝜒 (𝑡1) = 𝜒 (𝑡2).
The width of a nice tree-decomposition (𝑇, 𝜒) is the size of a

largest set 𝜒 (𝑡) minus 1, and the treewidth of the graph 𝐺 , denoted

tw(𝐺), is the minimumwidth of a nice tree-decomposition of𝐺 . We

let 𝑇𝑡 denote the subtree of 𝑇 rooted at a node 𝑡 , and use 𝜒 (𝑇𝑡 ) to
denote the set

⋃
𝑡 ′∈𝑉 (𝑇𝑡 ) 𝜒 (𝑡

′) and𝐺𝑡 to denote the graph𝐺 [𝜒 (𝑇𝑡 )]
induced by the vertices in 𝜒 (𝑇𝑡 ).

Proposition 2 ([21]). There exists an algorithm which, given an

𝑛-vertex graph 𝐺 and an integer 𝑘 , in time 2
O(𝑘) · 𝑛 either outputs a

nice tree-decomposition of𝐺 of width at most 2𝑘 + 1 and O(𝑛) nodes,
or determines that tw(𝐺) > 𝑘 .

3 PARAMETERIZING BY 𝑟 AND 𝑏

In this section, we study𝜙-Schelling parameterized by the number

of red and blue agents. Firstly, we focus on the number of blue

agents, 𝑏. Observe that in this case, if 𝑟 + 𝑏 = |𝑉 |, there is a trivial
XP algorithm since there are

(𝑛
𝑏

)
= O(|𝑉 |𝑏 ) assignments in total;

for any choice of the positions of the 𝑏 blue agents, the remaining

vertices have to be occupied by red agents. This XP algorithm is,

in a sense, the best we can hope for; Bullinger et al. [9], although

they do not mention it, show that WO-Schelling parameterized

by 𝑏 does not admit an FPT algorithm unless FPT = W[1].
The above-mentioned XP algorithm works because we can triv-

ially extend a choice for the positions of the blue agents to a com-

plete assignment; there are no choices to be made for red agents.

This is no longer possible when 𝑟 + 𝑏 < |𝑉 |. For this case, Agarwal
et al. [1] showed that WO-Schelling is NP-hard even when 𝑏 = 1.

However, their proof was relying on the assumption that the blue
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agent is “stubborn”, i.e. the blue agent had a fixed position on the 
graph. We strengthen their result by showing that the problem 
remains intractable, even when the blue agent is not stubborn.

Theorem 3. Assuming P ≠ NP, there is no polynomial-time al-
gorithm for 𝜙-Schelling, for 𝜙 ∈ {WO, PO, UVO, GWO}, even when 
𝑏 = 1.

Proof. We will prove hardness via a reduction from Cliqe, 
where we are given a graph 𝐻 and an integer 𝑘 and the goal is 
to decide the existence of a set 𝑆 ⊆ 𝑉 (𝐻 ), where |𝑆 | = 𝑘 , such 
that 𝐻 [𝑆] induces a clique. Namely, we will construct a Schelling 
instance ⟨𝐺, 𝐴⟩ such that if someone gives us an assignment v for 
⟨𝐺, 𝐴⟩ with a guarantee that v satisfies PO, then we can in polyno-
mial time decide Cliqe on ⟨𝐻, 𝑘⟩. Note that by Proposition 1, if an 
assignment v satisfies 𝜙  ∈  {WO, UVO, GWO}, then it also satisfies 
PO, hence an algorithm that outputs an assignment v that satisfies 
𝜙 ∈ {WO, PO, UVO, GWO}, always outputs an assignment that sat-
isfies PO. Given an instance ⟨𝐻, 𝑘 ⟩ of Cliqe, where 𝐻  =  (𝑉 ′, 𝐸 ′) 
and |𝑉 ′ | = 𝑠 , we construct an instance of PO-Schelling as follows.

• There are 𝑠2 + 𝑘 red agents and one blue agent.

• 𝐺 ′
is a clique of size 𝑠2, where 𝐺 ′ = (𝑋,𝑌 ).

• The topology𝐺 = (𝑉 , 𝐸) is defined so that𝑉 = {𝑥} ∪𝑉 ′∪𝑋 ,
where 𝑥 is a fresh new vertex, and 𝐸 = 𝐸 ′ ∪ 𝑌 ∪ { 𝑥𝑣 : 𝑣 ∈
𝑉 ′} ∪ { 𝑣𝑤 : 𝑣 ∈ 𝑉 ′,𝑤 ∈ 𝑋 }.

Note that since 𝑏 = 1, it follows that for every assignment v we

get u𝐵 (v) = 0. We show that 𝐻 admits a clique of size 𝑘 if and only

if the utility-vector for the red agents of every PO assignment v
is equal to the vector uPO = (1, . . . , 1, 𝑠2+𝑘−1

𝑠2+𝑘 , . . . , 𝑠
2+𝑘−1
𝑠2+𝑘 ), where

there are 𝑠2 red agents with utility 1 and 𝑘 red agents with utility

𝑠2+𝑘−1
𝑠2+𝑘 = 1 − 1

𝑠2+𝑘 .
First, assume 𝐻 has a clique of size 𝑘 . We create an assignment

v for ⟨𝐺,𝐴⟩ such that 𝑠2 red agents are on vertices in 𝐺 ′
and the

remaining 𝑘 red agents are assigned to the clique in 𝐻 . The blue

agent is assigned to vertex 𝑥 . Observe that, since there is no edge

between 𝐺 ′
and 𝑥 , all agents in 𝐺 ′

are only connected to agents of

their type. No agents in 𝐺 ′
are isolated because it is clique of size

𝑠2. Hence, 𝑢𝑖 (v) = 1 for every agent 𝑖 ∈ 𝐺 ′
. For the remaining 𝑘 red

agents, observe that they are connected to every other red agent

and the blue agent. Hence, 𝑢𝑖 (v) = 𝑠2+𝑘−1
𝑠2+𝑘 for every agent 𝑖 ∈ 𝐻 .

Therefore, u(v) = uPO. Thus, if there exists a clique of size 𝑘 in G

then an assignment v with the utility vector equal to uPO exists.

For the other direction, we will show that if such assignment v
with u𝑅 (v) = uPO exists, then it is necessarily PO and there exists

a clique of size 𝑘 in 𝐻 . Let v be an assignment in ⟨𝐺,𝐴⟩. We show

that either uPO strictly dominates u𝑅 (v), or u𝑅 (v) = uPO and the

graph 𝐻 admits a clique of size 𝑘 . Observe that if the blue agent is

not at vertex 𝑥 , but instead at a vertex in𝑉 (𝐻 ) ∪𝑋 , then minimum

𝑠2 + 𝑘 − (𝑠 − 1) of the red agents lose utility. Each of these red

agents lose minimum
1

𝑠2+𝑘 of their utility due to the blue agent

becoming part of their neighborhood and the fact that there are

𝑠2 + 𝑘 + 1 agents in total. It follows that in this case uPO strictly

dominates u𝑅 (v). Else, the blue agent is assigned the vertex 𝑥 by

v. Now, every red agent at a vertex in 𝐻 loses at least
1

𝑠2+𝑘 of their

utility. It follows that exactly 𝑘 red agents are assigned a vertex in

𝐻 , otherwise uPO strictly dominates u𝑅 (v). Finally, if a red agent 𝑖

at a vertex in 𝐻 is not adjacent to all the red agents, then the loss

of utility of agent 𝑖 is at least 1

𝑠2+𝑘−1 > 1

𝑠2+𝑘 . Therefore, if the 𝑘 red

agents at the vertices of 𝐻 do not form a clique, then uPO strictly

dominates u𝑅 (v). It follows that if uPO does not strictly dominates

u𝑅 (v), then the 𝑘 agents that are assigned the vertices of 𝐻 by the

assignment v form a clique and u𝑅 (v) = uPO. □

Recall, there is always an assignment v for 𝜙-Schelling when

𝜙 ∈ {WO, PO,UVO,GWO}. However, as our theorem shows, it is

still intractable to find such an assignment (assuming P ≠ NP).
Someone could wonder if the associated problems are complete

for some of the complexity classes that belong to NP and capture

problems that are guaranteed to admit a solution, like PPAD, PPA,
or PLS [18, 25]. However, this is unlikely to be the case. The proof

of Theorem 3 can be easily modified (for example by planting a

clique minus one edge in the original clique instance) to show that,

assuming P ≠ NP, there is no polynomial-time algorithm to verify

whether an assignment v satisfies an optimality condition. Hence,

it is unlikely that 𝜙-Schelling for 𝜙 ∈ {WO, PO,UVO,GWO} be-
longs to any of the above mentioned classes and in TFNP more

generally [24].

On the positive side, we can easily get an XP algorithm for

Perfect-Schelling parameterized by 𝑏.

Theorem 4. For Perfect-Schelling there is an XP-algorithm pa-

rameterized by 𝑏.

Proof. Observe that when 𝑏 = 1, there is no Perfect assignment

since the unique blue agent cannot get utility 1. Now, for 𝑏 > 1 we

proceed as follows. We guess the 𝑏 vertices, denoted 𝐵, that blue

agents occupy under the constraint that every connected compo-

nent induced by 𝐵 has size at least 2. There are 𝑂 ( |𝑉 |𝑏 ) such many

guesses. Then, we consider the graph induced by 𝑆 := 𝑉 −𝐵−𝑁 (𝐵),
where 𝑁 (𝐵) contains all the vertices adjacent to at least one vertex

in 𝐵. We focus on the connected components induced by 𝑆 that have

size at least 2; let us denote this graph 𝐺 ′
. If 𝐺 ′

contains less than

𝑟 vertices, then we reject the guess. Otherwise, we start assigning

red agents to the vertices of 𝐺 ′
in the following manner. We order

the connected components of 𝐺 ′
in decreasing size. Then, greedily

we start assigning red agents to the vertices of each component

under the constraint that every new agent we assign to the current

connected component is either the first agent assigned to a vertex

of this component, or he is adjacent to a vertex already occupied

by an agent. When we will consider the last agent, there are two

cases.

• The last agent is assigned to a vertex adjacent to a vertex

with a red agent. In this case, every red agent has at least one

red neighbor and no blue neighbors and every blue agent has

a blue neighbor and no red neighbors. Thus, the assignment

is Perfect.

• The last agent 𝑎 is the first agent assigned to a vertex of

a connected component of 𝐺 ′
. Then, we check the largest

connected component of𝐺 ′
. If there is a red agent that can be

reassigned to a vertex adjacent to 𝑎, while the remaining red

agents of his previous component still have utility 1, then we

make the reassignment and we have a Perfect assignment.

Otherwise, we can conclude that the original guess of 𝐵

cannot be extended to a Perfect assignment and we proceed

to the next guess.
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Hence, in time 𝑂 ( |𝑉 |𝑏 ) we can decide if a Perfect assignment exists 
and if it does compute one in the same time. □

Next, we show that the XP-algorithm from Theorem 4 is actually 
the best we can hope for. In fact we show that the problem is hard 
even if we parameterize by 𝑟 + 𝑏.

Theorem 5. Perfect-Schelling-E is W[1]-hard when parameter-

ized by 𝑟 + 𝑏.

Proof. We will prove the theorem via a reduction from Bi-

Cliqe. The input for an instance of BiCliqe is a bipartite graph

𝐻 = (𝑃 ∪𝑄,𝑌 ) and an integer 𝑘 . The task is to decide whether 𝐻

contains a complete bipartite subgraph with 𝑘 vertices in each side

of 𝐻 . It is known that BiCliqe is W[1]-hard when parameterized

by 𝑘 [23]. Given 𝐻 = (𝑃 ∪ 𝑄,𝑌 ) and 𝑘 , we construct an instance

⟨𝐺,𝐴⟩ of Perfect-Schelling as follows. The graph 𝐺 = (𝑉 , 𝐸) will
be the complement of 𝐻 . This means that 𝑉 = 𝑃 ∪𝑄 and 𝑢𝑣 ∈ 𝐸 if

and only if 𝑢𝑣 ∉ 𝑌 . Furthermore, we create 𝑘 red and 𝑘 blue agents,

i.e. 𝑟 = 𝑏 = 𝑘 . We will ask if there is a perfect assignment v.
Firstly, assume that {𝑝1, . . . , 𝑝𝑘 } ∈ 𝑃 and {𝑞1, . . . , 𝑞𝑘 } ∈ 𝑄 form

a complete bipartite subgraph of 𝐻 . We create an assignment v for

⟨𝐺,𝐴⟩, by assigning a blue agent to vertex 𝑝𝑖 and a red agent to

vertex 𝑞𝑖 for every 𝑖 ∈ [𝑘]. Observe that since 𝑝𝑖 is adjacent to all

𝑞1, . . . , 𝑞𝑘 in 𝐻 , it follows that in𝐺 , which recall is the complement

of 𝐻 , the vertex 𝑝𝑖 is not adjacent to any of the vertices 𝑞1, . . . , 𝑞𝑘 .

Hence, there is no edge 𝑢𝑣 ∈ 𝐸 such that 𝑢 is occupied by a red

agent and 𝑣 is occupied by a blue agent. In addition, observe that in

𝐺 the vertices 𝑝1, . . . , 𝑝𝑘 induce a clique and the vertices 𝑞1, . . . , 𝑞𝑘
induce a clique as well. Hence, under v every blue agent is adjacent

to all remaining blue agents and no red agent, and every red agent

is a neighbor to all remaining red agents and no blue agent. This

means that v is perfect.

For the other direction, assume that there exists a perfect as-

signment v in ⟨𝐺,𝐴⟩. Hence, no red agent has a blue agent as a

neighbor in v; if this was the case, then both agents would get utility
strictly less than 1. So, assume that under v, 𝑣 ∈ 𝑃 is occupied by a

blue agent. Then there is no vertex 𝑢 ∈ 𝑃 occupied by a red agent

under v; this is because 𝑃 forms a clique in 𝐺 . Thus, all red agents

occupy vertices of 𝑄 and no blue agent occupies a vertex in 𝑄 ; this

is because 𝑄 forms a clique in 𝐺 . Hence, we can conclude that in v:
• the blue agents occupy the vertices 𝑝1, 𝑝2, . . . , 𝑝𝑘 in 𝑃 ;

• the red agents occupy the vertices 𝑞1, 𝑞2, . . . , 𝑞𝑘 in 𝑄 ;

• there is no edge 𝑝𝑖𝑞 𝑗 , where 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑘].
Hence, in the dual of 𝐺 , which is 𝐻 , for every 𝑖 ∈ [𝑘] and every

𝑗 ∈ [𝑘] the edge 𝑝𝑖𝑞 𝑗 exists. Thus, {𝑝1, . . . , 𝑝𝑘 } and {𝑞1, . . . , 𝑞𝑘 }
form a solution of BiCliqe. □

The combination of Theorem 5, Proposition 1, and Observation 1,

gives us the following corollary.

Corollary 6. There is no FPT algorithm for 𝜙-Schelling when

parameterized by 𝑟 +𝑏, for 𝜙 ∈ {Perfect,WO, PO,UVO,GWO}, unless
FPT = W[1].

4 BOUNDED DEGREE GRAPHS
In light of the negative results from the previous section, we turn

our attention on instances where the structure of𝐺 is restricted. In

this section, we focus on the maximum degree Δ of 𝐺 . We prove

that, unless P = NP, no polynomial-time algorithm that finds a WO,

resp. GWO, assignment exists even when 𝐺 = (𝑉 , 𝐸) is cubic, i.e.
every vertex has degree 3.

Theorem 7. Assuming P ≠ NP, there is no polynomial-time algo-

rithm solving WO-Schelling and GWO-Schelling on cubic graphs,

even if 𝑟 + 𝑏 = |𝑉 |.

Proof. It follows from Proposition 1 that it suffices to show

that, unless P = NP, no polynomial-time algorithm finds a GWO

assignment on cubic graphs. The proof is via a reduction from

MinBisection on cubic graphs [8]. An instance of MinBisection

consists of a graph𝐺 = (𝑉 , 𝐸) and an integer 𝑘 . We have to decide if

there exists a partition of 𝑉 into 𝑃 and 𝑄 such that |𝑃 | = |𝑄 | = |𝑉 |
2

where the number of edges 𝑢𝑣 ∈ 𝐸 with 𝑢 ∈ 𝑃 and 𝑣 ∈ 𝑄 is at most

𝑘 . The constructed instance ⟨𝐺,𝐴⟩ of GWO-Schelling is on the

same graph 𝐺 and set of agents 𝐴 which has
|𝑉 |
2

red agents and

|𝑉 |
2

blue agents. We will ask if there is an assignment v such that

the welfare of each group is at least
|𝑉 |
2

− 𝑘
3
.

So, assume that there is a partition 𝑉 into 𝑃 and 𝑄 with |𝑃 | =
|𝑄 | = |𝑉 |

2
such that there are exactly ℓ ≤ 𝑘 edges between 𝑃 and

𝑄 . We create an assignment v by placing all blue agents on 𝑃 and

all red agents on 𝑄 . Observe that since |𝐴| = |𝑉 | and since the

graph is cubic, for every 𝑖 we have that 𝑓𝑖 (v) = 3 − 𝑒𝑖 (v) and that

|𝑁𝑖 (v) | = 3. Thus, for 𝑋 ∈ {𝑅, 𝐵}

SW𝑋 (v) =
∑
𝑖∈𝑋

𝑓𝑖 (v)
|𝑁𝑖 (v) |

=
∑
𝑖∈𝑋

3 − 𝑒𝑖 (v)
3

=
|𝑉 |
2

−
∑
𝑖∈𝑋

𝑒𝑖 (v)
3

.

Furthermore, observe that if 𝑖 is a blue agent, i.e. occupies a vertex

in 𝑃 , all his enemies occupy vertices in 𝑄 and vice versa. Hence,∑
𝑖∈𝐵 𝑒𝑖 (v) =

∑
𝑖∈𝑅 𝑒𝑖 (v) = ℓ ≤ 𝑘 . Thus, for 𝑋 ∈ {𝑅, 𝐵}, SW𝑋 (v) =

|𝑉 |
2

− ℓ
3
≥ |𝑉 |

2
− 𝑘

3
.

For the other direction, assume that we have an assignment v
such that for 𝑋 ∈ {𝑅, 𝐵} we have SW𝑋 (v) ≥ |𝑉 |

2
− 𝑘

3
. From the

arguments above, we know that SW𝑅 (v) = SW𝐵 (v) =
|𝑉 |
2

− ℓ
3
,

where ℓ is the number of edges between vertices assigned to blue

agents and the vertices assigned to red agents. Thus, ℓ ≤ 𝑘 and

there exists at most 𝑘 edges in 𝐺 where one of the endpoints is

occupied by a red agent and the other endpoint is occupied by a

blue agent. The proof is completed by creating a partition of 𝑉 by

setting 𝑃 to contain all the vertices occupied by blue agents and 𝑄

to contain all the vertices occupied by red agents. It follows that

there are at most 𝑘 edges between 𝑃 and 𝑄 .

□

Theorems 5 and 7 show that we cannot hope for an efficient

algorithm, at least for WO and GWO, just by parameterizing only

by 𝑟 +𝑏 or only by the maximum degree Δ. We complement this by

providing an FPT algorithm for 𝜙-Schelling when parameterized

by 𝑟 + 𝑏 + Δ.

Theorem 8 (★). For every 𝜙 ∈ {Perfect,WO, PO,UVO,GWO},
there is an FPT-algorithm for 𝜙-Schelling parameterized by 𝑟 +𝑏 +Δ.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

429



Moreover, 𝜙-Schelling admits a kernel with at most O(Δ2 · 𝑟2 · 𝑏2) 
many vertices.

Proof Sketch. Let ⟨𝐺, 𝐴⟩ be a Schelling instance. Let𝐶1, . . . , 𝐶𝑘 
be the connected components of 𝐺 such that |𝐶1 | ≥ |𝐶2 | ≥ · · · ≥ 
|𝐶𝑘 |. We will prove the theorem in two steps. First we show that if 
|𝐶1 | ≥ (Δ + 1) · 𝑟 · (1 + Δ ·𝑏), then we can construct an assignment v 
such that SW(v) = 𝑟 + 𝑏 in polynomial time. Afterwards, we show 
that there always exists a solution that maximizes social welfare 
that does not intersect any of the components 𝐶𝑟 +𝑏+1, . . . , 𝐶𝑘 and 
if 𝑓 (𝑟 + 𝑏 + Δ) ≥ |𝐶1 | ≥ |𝐶2 | ≥ . . . |𝐶𝑟 +𝑏 |, we can find a solution 
that maximizes social welfare in FPT time; for example by trying 
all possible assignments that assign all agents to the components 
𝐶1, 𝐶2, . . . , 𝐶𝑟 +𝑏 .

Assume that |𝐶1 | ≥ (Δ+1) ·𝑟 ·Δ· (1+𝑏) and let us pick an arbitrary 
set 𝑋 ⊆ 𝐶1 such that 𝐺 [𝑋 ] is connected and |𝑋 | = 𝑟 . We assign 
all red agents to the vertices in 𝑋 . Now |𝑁 [𝑋 ] | ≤ (Δ + 1)𝑟 , where 
𝑁 [𝑋 ] is the closed neighborhood of 𝑋 , and |𝑁 (𝑁 [𝑋 ]) | ≤ Δ(Δ+1)𝑟 . 
However, every connected component of 𝐺 [𝐶1 \ 𝑁 [𝑋 ]] contains a 
vertex with a neighbor in 𝑁 [𝑋 ]. Hence, 𝐺 [𝐶1 \ 𝑁 [𝑋 ]] has at most 
Δ(Δ+1)𝑟 many connected components and if |𝐶1 | ≥ (Δ+1)𝑟 Δ(1+𝑏) 
it follows that |𝐶1 \ 𝑁 [𝑁 [𝑋 ]] | ≥ (Δ + 1) · 𝑟 · Δ · 𝑏 and by the 
pigeonhole principle at least one of the connected components of 
𝐺 [𝐶1 \ 𝑁 [𝑋 ]] has 𝑏 vertices. We can assign all blue agents to a 
connected subgraph of such a component. Let v be the assignment 
we obtained above. Since no blue agent is assigned to 𝑁 (𝑋 ) and 
𝑋 is connected, we get SW𝑅 (v) = 𝑟 whenever 𝑟 ≥ 2 and, since 
all blue agents are also assigned to a connected subgraph of 𝐺 , 
we get SW𝐵 (v) = 𝑏 whenever 𝑏 ≥ 2. Hence from now on we 
can assume that all connected components of 𝐺 have size at most 
(Δ + 1) · 𝑟 · Δ · (1 + 𝑏).

It remains to show that we can focus on the 𝑟 + 𝑏 largest compo-

nents. We can observe that if agents of some type are assigned to 
some component 𝐶𝑞 , 𝑞 > 𝑟 + 𝑏, then we can reassign all of them 
to some component 𝐶𝑝 , 𝑝 ≤ 𝑟 + 𝑏, such that no vertex of 𝐶𝑝 is 
occupied by any agent so far. Moreover, this operation does not 
decrease the social welfare. Hence, we can remove all connected 
components 𝐶𝑞 , 𝑞 > 𝑟 + 𝑏, from the instance and we are left with 
at most 𝑟 + 𝑏 components, each with at most O(Δ2 · 𝑟 · 𝑏) many 
vertices. We can solve this in time O((Δ2 · 𝑟 · 𝑏 · (𝑟 + 𝑏))𝑟 +𝑏 ) by 
enumerating all possible assignments of the agents. □

5 MULTIPLE TYPES
Next, we depart from the standard model and study Schelling in-
stances with multiple types, denoted 𝜙-SchellingM and Perfect-
SchellingM-E, respectively. We show that Perfect-SchellingM-E 
is W[1]-hard when parameterized by (the number of) agent-types. 
Our reduction shows that the intractability holds for a variety of 
graphs. In fact, it reveals that the sizes of the connected components 
of the graph are sufficient for proving hardness, without depending 
on the internal structure of every component. We will prove our 
result in two steps. In the first step, we will prove that the problem 
is hard even when 𝐺 is a collection of connected components with 
arbitrary structure. Then, we will show how to get hardness even 
when 𝐺 is a tree.

Theorem 9 (★). Let G be an arbitrary class of connected graphs

that contains at least one graph of size 𝑠 for every 𝑠 ∈ N. Perfect-
SchellingM-E is NP-hard andW[1]-hard when parameterized by

agent-types, even when every connected component of 𝐺 is in G.

Proof sketch. We will prove our result via a reduction from

UnBinPacking. An instance of UnBinPacking consists of a set 𝐼

of items, where every item 𝑖 ∈ 𝐼 has a positive integer size 𝑠𝑖 > 1

given in unary, and 𝑘 bins of size 𝐵 each
2
. The task is to decide if

there is a partition of the items into 𝑘 subsets 𝐼1, 𝐼2, . . . , 𝐼𝑘 such that

the size of each subset is exactly 𝐵. UnBinPacking is W[1]-hard

parameterized by the number of bins 𝑘 [17].

Given an instance of UnBinPacking, we will create an instance

of SchellingM with 𝑘 types of agents, where for each type there

are 𝐵 agents, hence there are 𝑘 · 𝐵 agents in total. The graph𝐺 will

be the union of the graphs𝐺1,𝐺2, . . . ,𝐺 |𝐼 | , where𝐺𝑖 is isomorphic

to a connected graph in G with 𝑠𝑖 vertices. We will ask whether

there is a perfect assignment for ⟨𝐺,𝐴⟩.
The correctness is proven by observing that in any perfect parti-

tion, the agents are neighbors only to agents of the same type, and

hence any connected component contains only agents of a specific

type. □

As a corollary of Theorem 9, we can prove that the problem

remains W[1]-hard even when 𝐺 is a tree.

Corollary 10 (★). Perfect-SchellingM-E is NP-hard and W[1]-

hard when parameterized by agent-types, even if 𝐺 is a tree.

Again, using Proposition 1 and Observation 1, we can get the

following corollary.

Corollary 11. Assuming P ≠ NP, for every 𝜙 ∈ {WO, PO,UVO,

GWO, Perfect}, there is no polynomial-time algorithm for𝜙-SchellingM

even when 𝐺 is a tree. Moreover, assuming FPT ≠ W[1], there is no
FPT algorithm for 𝜙-SchellingM parameterized by agent-types, even

when 𝐺 is a tree.

In the rest of this section, we give an algorithm for𝜙-SchellingM

that matches the lower bound from Corollary 11. Namely, we

give an XP algorithm for the problem parameterized by the num-

ber of agent-types and the treewidth of the graph. Recall that

trees have treewidth 1 and hence SchellingM does not admit an

FPT algorithm parameterized by agent-types and treewidth unless

FPT = W[1]. The rest of the section is devoted to the proof of the

following theorem.

Theorem 12. There is an |𝐴|O(𝑘 ·tw(𝐺)) · |𝑉 (𝐺) | time algorithm

for 𝜙-SchellingM, 𝜙 ∈ {Perfect,WO, PO,GWO,UVO}, where 𝑘 is

the number of agent-types.

Let ⟨𝐺,𝐴⟩ be an instance of 𝜙-SchellingM with 𝑘 agent-types,

where 𝐺 has treewidth at most𝑤 . For a type 𝑖 ∈ [𝑘], let 𝐴𝑖 denote
the set of all agents of type 𝑖 . Moreover, let T = (𝑇, 𝜒) be a tree-
decomposition of𝐺 of width at most𝑤 . Note that every assignment

that is WO is also 𝜙 by Proposition 1, hence regardless of 𝜙 we can

compute a WO assignment. The algorithm is a standard bottom-up

dynamic programming along a nice tree-decomposition. As always,

the main challenge is to decide what records we should keep for

2
To get 𝑠𝑖 > 1, we can multiply 𝐵 and every 𝑠𝑖 without changing the answer to the

decision question.
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so

each node 𝑡 of 𝑇 . Here each record models an equivalence class of 
partial assignments for the sub-instance induced by the vertices in 
𝐺𝑡 , i.e., the graph 𝐺 induced by all vertices contained in bags in the 
subtree rooted at 𝑡 .

Consider some node 𝑡 ∈ 𝑉 (𝑇 ). We would like to compute a table 
Γ𝑡 , where each entry of the table corresponds to some equivalence 
class of partial assignments and the value of that entry is the "best" 
partial assignment in the equivalence class.

For the algorithm to be efficient, we need the number of equiva-
lence classes to be small and we should be able to compute each 
entry in Γ𝑡 efficiently from the tables for the children of 𝑡 . First, let 
us formally define a  partial assignment over the subset of agents 
𝐴′ ⊆ 𝐴 to be an assignment v𝐴′ = (𝑣 (𝑎1), 𝑣 (𝑎2), . . . , 𝑣 (𝑎 |𝐴′ |)), 
where 𝐴′ = {𝑎1, 𝑎2, . . . , 𝑎 |𝐴′ | }. A partial assignment is then an as-
signment over some subset of agents. In node 𝑡 , we are interested in 
the partial assignment that we can obtain by taking a (full) assign-
ment and restricting it to the agents that are assigned me vertex
in 𝐺𝑡 . For a partial assignment v we let SW

𝑡 (v) =
∑
𝑖∈𝐴′ 𝑢𝑖 (v),

where 𝐴′ ⊆ 𝐴 is the set of agents assigned to vertices in 𝐺𝑡 − 𝜒 (𝑡)
by v. Note that SW𝑡 (v) does not contain the utilities of vertices

in the bag 𝜒 (𝑡). This is because the utilities of these vertices still
depend on the vertices in 𝑉 (𝐺) \𝑉 (𝐺𝑡 ) and might be different in

an assignment v′ whose restriction to 𝐺𝑡 results in v.
A (description of) the equivalence class C for the node 𝑡 is a tuple

⟨Sizes, 𝜒 -Types, 𝜒 -Neighbors⟩, where
• Sizes : [𝑘] → N such that 0 ≤ Sizes(𝑖) ≤ |𝐴𝑖 | for all 𝑖 ∈ [𝑘],
• 𝜒 -Types : 𝜒 (𝑡) → {0, . . . , 𝑘}, and
• 𝜒 -Neighbors : 𝜒 (𝑡) → N𝑘 such that for every vertex 𝑣 ∈
𝜒 (𝑡), if 𝜒 -Neighbors(𝑣) = ⟨𝑛1, 𝑛2, . . . , 𝑛𝑘 ⟩, then 0 ≤ 𝑛𝑖 ≤
|𝐴𝑖 | for all 𝑖 ∈ [𝑘].

We say that a partial assignment v belongs to the equivalence

C = ⟨Sizes, 𝜒 -Types, 𝜒 -Neighbors⟩ for the node 𝑡 if and only if:

• v assigns agents only to vertices in 𝐺𝑡 ,

• for all 𝑖 ∈ [𝑘], the number of agents of type 𝑖 assigned a

vertex in 𝐺𝑡 by v is Sizes(𝑖),
• for all 𝑣 ∈ 𝜒 (𝑡), if 𝜒 -Types(𝑣) = 0, then v does not assign

any agent to the vertex 𝑣 , else v assigns some agent of type

𝜒 -Types(𝑣) to 𝑣 , and
• for all 𝑣 ∈ 𝜒 (𝑡) and all 𝑖 ∈ [𝑘], the number of neighbors of 𝑣

in𝐺𝑡 assigned an agent of type 𝑖 is equal to 𝜒 -Neighbors(𝑣) [𝑖].
Observe, every partial assignment belongs to some equivalence

class.

We say that an equivalence class is valid if there exists a partial

assignment that belongs to the equivalence class. For a valid equiv-

alence class C, the table entry Γ𝑡 [C] should contain some partial

assignment v that belongs to C and maximizes SW
𝑡 (v).

Moreover, recall that for the root node ro of 𝑇 , we have 𝐺ro =

𝐺 and 𝜒 (ro) = ∅, hence SW
ro (v) = SW(v) and the table en-

try Γro [Cro] for the class Cro = ⟨Sizes, 𝜒 -Types, 𝜒 -Neighbors⟩,
where for all 𝑖 ∈ [𝑘] we have Sizes(𝑖) = |𝐴𝑖 | and 𝜒 -Types and
𝜒 -Neighbors are empty functions, contains an assignment that

maximizes the social welfare. First, let us observe that the number

of entries in each node is bounded.

Observation 2 (★). The number of equivalence classes for node 𝑡 ,

𝑡 ∈ 𝑉 (𝑇 ), is at most ( |𝐴| + 1)𝑘 (1+|𝜒 (𝑡 ) |) · (𝑘 + 1) |𝜒 (𝑡 ) | .

It follows from Observation 2 that it suffices to show that for

each node 𝑡 and each equivalence class C for the node 𝑡 , we can

decide in time |𝐴|O(𝑘 ·tw(𝐺))
whether C is valid and if so find the

partial assignment v that belongs to C and maximizes SW
𝑡 (v).

We will distinguish four cases depending on the type of the node

𝑡 . Moreover, when computing the entries for the node 𝑡 we always

assume that we computed all entries for the children of 𝑡 in 𝑇 .

Lemma 13 (leaf node (★)). Let 𝑡 ∈ 𝑉 (𝑇 ) be a leaf node and

C = ⟨Sizes, 𝜒 -Types, 𝜒 -Neighbors⟩ an equivalence class for 𝑡 . Then

we can in O(𝑘) time decide whether C is valid and if so compute a

partial assignment v that belongs to C and maximizes SW
𝑡 (v).

Lemma 14 (introduce node (★)). Let 𝑡 ∈ 𝑉 (𝑇 ) be an introduce

node with child 𝑡 ′ such that 𝜒 (𝑡) \ 𝜒 (𝑡 ′) = {𝑣} and Can equivalence

class for 𝑡 . Then we can in polynomial time decide whether C is

valid and if so compute a partial assignment v that belongs to C and

maximizes SW
𝑡 (v).

Proof Sketch. First note that from the properties of a tree-

decomposition it follows that all neighbors of 𝑣 are in 𝜒 (𝑣). Hence,
if for some 𝑖 ∈ [𝑘] we have that 𝜒 -Neighbors(𝑣) [𝑖] does not equal
to the number of neighbors𝑤 of 𝑣 such that 𝜒 -Types(𝑤) = 𝑖 , then
there cannot exist a partial assignment that belongs to C and C
is not valid. Else, let C′ = ⟨Sizes′, 𝜒 -Types′, 𝜒 -Neighbors′⟩ be an
equivalence class for 𝑡 ′ such that:

• for all 𝑖 ∈ [𝑘], Sizes′(𝑖) = Sizes(𝑖) − 1 if 𝜒 -Types(𝑣) = 𝑖 and
Sizes

′(𝑖) = Sizes(𝑖) otherwise;
• for all𝑤 ∈ 𝜒 (𝑡 ′) = 𝜒 (𝑡) \ {𝑣}, 𝜒 -Types′(𝑤) = 𝜒 -Types(𝑤);
• for all 𝑖 ∈ [𝑘] and𝑤 ∈ 𝜒 (𝑡 ′),
– 𝜒 -Neighbors′(𝑤) [𝑖] = 𝜒 -Neighbors(𝑤) [𝑖] − 1 if 𝑣𝑤 ∈
𝐸 (𝐺) and 𝜒 -Types(𝑣) = 𝑖;

– 𝜒 -Neighbors′(𝑤) [𝑖] = 𝜒 -Neighbors(𝑤) [𝑖], otherwise.
Observe that a partial assignment v belongs to C if and only if the

partial assignment v′ obtained from v by restriction to 𝐺𝑡 ′ belongs

to C′
and it is not difficult to see that we can also construct v given

v′ that belongs to C′
. Finally, SW

𝑡 (v) = SW
𝑡 ′ (v′) and we can get

Γ𝑡 [C] from Γ𝑡 ′ [C′]. □

Lemma 15 (forget node (★)). Let 𝑡 ∈ 𝑉 (𝑇 ) be a forget node with
child 𝑡 ′ such that 𝜒 (𝑡 ′) \ 𝜒 (𝑡) = {𝑣} and an equivalence class for 𝑡

C = ⟨Sizes, 𝜒 -Types, 𝜒 -Neighbors⟩. Then we can in O((𝑘 + 1) |𝐴|𝑘 )
time decide whether C is valid and if so compute a partial assignment

v that belongs to C and maximizes SW
𝑡 (v).

Proof Sketch. Let C be the set of all valid equivalence classes

for 𝑡 ′ such that for all C′ = ⟨Sizes′, 𝜒 -Types′, 𝜒 -Neighbors′⟩ ∈ C

it holds that:

• Sizes = Sizes
′
, and

• for all𝑤 ∈ 𝜒 (𝑡)
– 𝜒 -Types(𝑤) = 𝜒 -Types′(𝑤) and
– 𝜒 -Neighbors(𝑤) = 𝜒 -Neighbors′(𝑤).

We observe that for every partial assignment v that belongs to

C, there exists an equivalence class C′ ∈ C such that v belongs

to C′
. Hence, if C is empty, we can return that C is not valid.

Moreover, it is easy to see that a partial assignment that belongs

to some class in C also belongs to C. Finally, we can show that the

difference SW
𝑡 (v) − SW

𝑡 ′ (v) depends only on the class C′
and is
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easy to compute. Hence, to get Γ𝑡 [C] we simply iterate over all 
equivalence classes in C and output Γ𝑡 ′ [C′] in the class C′ 

that 
maximizes SW𝑡 (Γ𝑡 ′ [C′]). The running time then follows from the 
observation that |C| ≤ (𝑘 + 1) |𝐴|𝑘 

. □

Lemma 16 (join node (★)). Let 𝑡 ∈ 𝑉 (𝑇 ) be a join node with 
children 𝑡1 and 𝑡2, where 𝜒 (𝑡) = 𝜒 (𝑡1) = 𝜒 (𝑡2) and let C be an 
equivalence class for 𝑡 . Then we can in (O(|𝐴| + 1)𝑘 (1+|𝜒 (𝑡 ) |) ) time

decide whether C is valid and if so compute a partial assignment v 
that belongs to C and maximizes SW𝑡 (v).

Proof Sketch. We can show that for any partial assignment v 
that belongs to C there are two valid equivalence classes

• C1 = ⟨Sizes1, 𝜒 -Types1, 𝜒 -Neighbors1⟩ for 𝑡1, and
• C2 = ⟨Sizes2, 𝜒 -Types2, 𝜒 -Neighbors2⟩ for 𝑡2,

such that:

(A) 𝜒 -Types = 𝜒 -Types
1
= 𝜒 -Types

2
;

(B) for all 𝑖 ∈ [𝑘], Sizes(𝑖) = Sizes1 (𝑖) + Sizes2 (𝑖) − |𝑆𝑖 |;
(C) for all 𝑣 ∈ 𝜒 (𝑡) and all 𝑖 ∈ [𝑘] it holds that 𝜒 -Neighbors(𝑣) [𝑖] =

𝜒 -Neighbors
1
(𝑣) [𝑖] + 𝜒 -Neighbors

2
(𝑣) [𝑖] − |𝑁 𝑖

𝜒 (𝑡 ) (𝑣) | .

Now, let v1 be a partial assignment that belongs to C1 and v2 be a
partial assignment that belongs to C2. We can construct a partial

assignment v that belongs to C by assigning each vertex 𝑣 ∈ 𝜒 (𝑡)
to an agent of type 𝜒 -Types(𝑣), every vertex 𝑤 ∈ 𝐺𝑡1 \ 𝜒 (𝑡) an
agent of the same type as the agent assigned the vertex𝑤 by v1, and
every vertex 𝑢 ∈ 𝐺𝑡2 \ 𝜒 (𝑡) an agent of the same type as the agent

assigned the vertex 𝑢 by v2. It is straightforward to verify that v
belongs to C and that SW

𝑡 (v) = SW
𝑡1 (v1) + SW

𝑡2 (v2). Hence, the
lemma follows by trying all pairs C1 and C2 satisfying (A)–(C). □

Proof of Theorem 12. Let ⟨𝐺,𝐴⟩ be an instance of𝜙-SchellingM,

with 𝜙 ∈ {WO, PO,GWO,UVO}. We will compute a WO assign-

ment, which by Proposition 1 is PO, GWO, and UVO. The algorithm

first computes a nice tree decomposition T = (𝑇, 𝜒) of 𝐺 of width

𝑤 ≤ 2 tw(𝐺) + 1 in FPT-time [21]. Afterwards, we use the algo-

rithms of Lemmas 13, 14, 15, and 16 to compute for every node

𝑡 and every valid equivalence class C for 𝑡 a partial assignment

that belongs to C and maximizes SW
𝑡 (v) among all the partial

assignments that belong to the equivalence class C. An assignment

that maximizes the social welfare is then the partial assignment

that we computed for the root node of 𝑇 for the equivalence class

Cro = ⟨Sizes, 𝜒 -Types, 𝜒 -Neighbors⟩, where for all 𝑖 ∈ [𝑘] we have
Sizes(𝑖) = |𝐴𝑖 | and 𝜒 -Types and 𝜒 -Neighbors are empty functions.

The correctness follows from the correctness of Lemmas 13, 14, 15,

and 16. The running time of the algorithm is at most the number of

nodes of 𝑇 , i.e., at most𝑤2 |𝑉 (𝐺) |, times the maximum number of

equivalence classes for a node in 𝑡 , i.e., ( |𝐴| + 1)𝑘 (2+𝑤) · (𝑘 + 1)𝑤+1

by Observation 2, times the maximum time required to compute

a partial assignment for a node 𝑡 and an equivalence class C for

any of the four node types of a nice tree-decomposition which,

because of Lemmas 13, 14, 15, and 16, is at most (O(|𝐴| + 1)𝑘 (2+𝑤) ).
Therefore, |𝐴|O(𝑘𝑤) · |𝑉 (𝐺) | = |𝐴|O(𝑘 ·tw(𝐺)) · |𝑉 (𝐺) | is the total
running time of the algorithm. □

Observe that the number of agent-types is always at most the

number of agents. It then follows from the running time of the

algorithm that SchellingM is actually FPT when parameterized

by treewidth plus the number of agents.

Corollary 17. 𝜙-SchellingM is in FPT when parameterized by

treewidth and the number of agents, for every𝜙 ∈ {WO, PO,GWO,UVO}.

Finally, while Corollary 11 implies that we cannot obtain an FPT

algorithm if the number of agent-types is part of the parameter, un-

less FPT = W[1], it remains an interesting open question whether

this is possible for a constant number of agent types. While our

algorithm cannot resolve this in general, we would like to point

out a specific case that can be solved in FPT-time with a very

minor modification of our algorithm. Assume that we wish to max-

imize the social welfare under the additional constraint that every

agent is allowed to have only neighbors of the same type. Note

that this is the only way to get social welfare equal to the num-

ber of agents. In this case, we would reject any equivalence class

C = ⟨Sizes, 𝜒 -Types, 𝜒 -Neighbors⟩, where 𝜒 -Neighbors[𝑣] [𝑖] > 0

such that 𝜒 -Types[𝑣] ≠ 𝑖 . Moreover, if 𝜒 -Types[𝑣] = 𝑖 , then we

only care whether 𝜒 -Neighbors[𝑣] [𝑖] > 0 and the utility of the

agent that is assigned vertex 𝑣 is 1 or 𝜒 -Neighbors[𝑣] [𝑖] = 0 and

the utility of this agent is 0. Hence, we can replace 𝜒 -Neighbors by

a function from 𝜒 (𝑡) → {0, 1} with meaning:

• if 𝜒 -Neighbors(𝑣) = 0, then no neighbor of 𝑣 is assigned to

any agent;

• if 𝜒 -Neighbors(𝑣) = 1, then at least one of the neighbors of

𝑣 is assigned some agent of 𝜒 -Types(𝑣) and no neighbor of

𝑣 is assigned a agent of any other type.

The algorithm then follows more or less analogously the proof of

Theorem 12. It is easy to see that the number of these "modified"

equivalence classes is at most |𝐴|𝑘 · 2 |𝜒 (𝑡 ) | · (𝑘 + 1) |𝜒 (𝑡 ) | , which is

FPT by treewidth if the number of agent-types 𝑘 is a fixed constant.

Corollary 18. When the number of types is constant, Perfect-

SchellingM admits an FPT algorithm parameterized by treewidth.

6 CONCLUSIONS
In this paper, we studied 𝜙-Schelling for several notions, 𝜙 ∈
{WO, PO,UVO,GWO, Perfect}. We presented both strong nega-

tive results and accompanying algorithms. Our results show that

tractability of 𝜙-Schelling for every optimality notion considered

requires the underlying graph to be constrained. We highlight some

immediate open questions that deserve further study andwe believe

that novel algorithmic techniques are required to answer them.

Settle the parameterized complexity for 𝜙-Schelling when pa-

rameterized by𝑏+Δ only. Recall, Theorem 8 shows that the problem

is fixed parameter tractable when parameterized by 𝑟 + 𝑏 + Δ. Can
we strengthen this result by removing parameter 𝑟 , or does the

problem become intractable?

What is the parameterized complexity of 𝜙-Schelling under the

vertex cover parameter? It is not too hard to show that when the

number of agents equals the number of vertices of the graph the

problem is fixed parameter tractable when parameterized by vertex

cover. However, the problem remains challenging if the number of

agents is less than the number of vertices of the graph.
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