
Informativeness of Reward Functions in Reinforcement Learning
Rati Devidze

MPI-SWS
Saarbrücken, Germany
rdevidze@mpi-sws.org

Parameswaran Kamalaruban
The Alan Turing Institute
London, United Kingdom
pkamalaruban@gmail.com

Adish Singla
MPI-SWS

Saarbrücken, Germany
adishs@mpi-sws.org

ABSTRACT

Reward functions are central in specifying the task we want a re-
inforcement learning agent to perform. Given a task and desired
optimal behavior, we study the problem of designing informative
reward functions so that the designed rewards speed up the agent’s
convergence. In particular, we consider expert-driven reward design
settings where an expert or teacher seeks to provide informative
and interpretable rewards to a learning agent. Existing works have
considered several different reward design formulations; however,
the key challenge is formulating a reward informativeness criterion
that adapts w.r.t. the agent’s current policy and can be optimized un-
der specified structural constraints to obtain interpretable rewards.
In this paper, we propose a novel reward informativeness crite-
rion, a quantitative measure that captures how the agent’s current
policy will improve if it receives rewards from a specific reward
function. We theoretically showcase the utility of the proposed
informativeness criterion for adaptively designing rewards for an
agent. Experimental results on two navigation tasks demonstrate
the effectiveness of our adaptive reward informativeness criterion.

KEYWORDS

Reinforcement Learning; Reward Design; Reward Informativeness

ACM Reference Format:

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. 2024. Infor-
mativeness of Reward Functions in Reinforcement Learning. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION

Reward functions play a central role during the learning/training
process of a reinforcement learning (RL) agent. Given a task the
agent is expected to perform, many different reward functions exist
under which an optimal policy has the same performance on the
task. This freedom in choosing a reward function for the task, in
turn, leads to the fundamental question of designing appropriate
rewards for the RL agent that match certain desired criteria [28, 31,
37]. In this paper, we study the problem of designing informative
reward functions so that the designed rewards speed up the agent’s
convergence [2, 8, 25, 28, 31, 37].

More concretely, we focus on expert-driven reward design set-
tings where an expert or teacher seeks to provide informative re-
wards to a learning agent [13, 16, 21, 26, 28, 31, 35, 36, 45, 46]. In

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

expert-driven reward design settings, the designed reward functions
should also satisfy certain structural constraints apart from being
informative, e.g., to ensure interpretability of reward signals or to
match required reward specifications [5, 7, 11, 13, 18, 19, 21, 22].
For instance, informativeness and interpretability become crucial
in settings where rewards are designed for human learners who are
learning to perform sequential tasks in pedagogical applications
such as educational games [33] and open-ended problem solving
domains [27]. Analogously, informativeness and structural con-
straints become crucial in settings where rewards are designed for
complex compositional tasks in the robotics domain that involve
reward specifications in terms of automata or subgoals [19, 21]. To
this end, an important research question is: How to formulate re-
ward informativeness criterion that can be optimized under specified
structural constraints?

Existing works have considered different reward design formu-
lations; however, they have limitations in appropriately incorpo-
rating informativeness and structural properties. On the one hand,
potential-based reward shaping (PBRS) is a well-studied family of
reward design techniques [3, 11, 14, 16–18, 21, 31, 43]. While PBRS
techniques enable designing informative rewards via utilizing infor-
mative potential functions (e.g., near-optimal value function for the
task), the resulting reward functions do not adhere to specific struc-
tural constraints. On the other hand, optimization-based reward
design techniques is another popular family of techniques [13, 26,
35, 36, 45, 46]. While optimization-based techniques enable enforc-
ing specific structural constraints, there is a lack of suitable reward
informativeness criterion that is amenable to optimization as part
of these techniques. In this family of techniques, a recent work [13]
introduced a reward informativeness criterion suitable for optimiza-
tion under sparseness structure; however, their informativeness
criterion doesn’t account for the agent’s current policy, making the
reward design process agnostic to the agent’s learning progress.

In this paper, we present a general framework, ExpAdaRD, for
expert-driven explicable and adaptive reward design. ExpAdaRD
utilizes a novel reward informativeness criterion, a quantitative
measure that captures how the agent’s current policy will improve
if it receives rewards from a specific reward function. Crucially, the
informativeness criterion adapts w.r.t. the agent’s current policy and
can be optimized under specified structural constraints to obtain
interpretable rewards. Our main results and contributions are:

I. We introduce a reward informativeness criterion formulated
within bi-level optimization. By analyzing it for a specific learn-
ing algorithm,we derive a novel informativeness criterion that is
amenable to the reward optimization process (Sections 4.1 and 4.2).

II. We theoretically showcase the utility of our informativeness cri-
terion in adaptively designing rewards by analyzing the conver-
gence speed up of an agent in a simplified setting (Section 4.3).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

444

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

III. We empirically demonstrate the effectiveness of our reward
informativeness criterion for designing explicable and adaptive
reward functions in two navigation environments. (Section 5).1

1.1 Related Work

Expert-driven reward design. As previously discussed, well-
studied families of expert-driven reward design techniques include
potential-based reward shaping (PBRS) [3, 11, 14, 16–18, 21, 31, 43],
optimization-based techniques [13, 26, 35, 36, 45, 46], and reward
shaping with expert demonstrations or feedback [6, 9, 10, 44]. Our
reward design framework, ExpAdaRD, also uses an optimization-
based design process. The key issue with existing optimization-
based techniques is a lack of suitable reward informativeness cri-
terion. A recent work [13] introduced an expert-driven explicable
reward design framework (ExpRD) that optimizes an informative-
ness criterion under sparseness structure. However, their informa-
tiveness criterion doesn’t account for the agent’s current policy,
making the reward design process agnostic to the agent’s learn-
ing progress. In contrast, we propose an adaptive informativeness
criterion enabling it to provide more informative reward signals.
Technically, our proposed reward informativeness criterion is quite
different from that proposed in [13] and is derived based on analyz-
ing meta-gradients within bi-level optimization formulation.

Learner-driven reward design. Learner-driven reward design
techniques involve an agent designing its own rewards through-
out the training process to accelerate convergence [2, 4, 12, 15, 24,
30, 40, 42, 48]. These learner-driven techniques employ various
strategies, including designing intrinsic rewards based on explo-
ration bonuses [4, 24, 47], crafting rewards using domain-specific
knowledge [42], using credit assignment to create intermediate
rewards [2, 15], and designing parametric reward functions by it-
eratively updating reward parameters and optimizing the agent’s
policy based on learned rewards [12, 30, 40, 48]. While these learner-
driven techniques are typically designing adaptive and online re-
ward functions, these techniques do not emphasize the formulation
of an informativeness criterion explicitly. In our work, we draw on
insights frommeta-gradient derivations presented in [12, 30, 40, 48]
to develop an adaptive informativeness criterion tailored for the
expert-driven reward design settings.

2 PRELIMINARIES

Environment. An environment is defined as a Markov Decision
Process (MDP) denoted by 𝑀 := (S,A,𝑇 , 𝑃0, 𝛾, 𝑅), where S and
A represent the state and action spaces respectively. The state
transition dynamics are captured by𝑇 : S×S×A → [0, 1], where
𝑇 (𝑠′ | 𝑠, 𝑎) denotes the probability of transitioning to state 𝑠′ by
taking action 𝑎 from state 𝑠 . The discounting factor is denoted by 𝛾 ,
and 𝑃0 represents the initial state distribution. The reward function
is given by 𝑅 : S × A → R.

Policy and performance. We denote a stochastic policy 𝜋 :
S → Δ (A) as a mapping from a state to a probability distribution
over actions, and a deterministic policy 𝜋 : S → A as a mapping
from a state to an action. For any trajectory 𝜉 = {(𝑠𝑡 , 𝑎𝑡)}𝑡=0,1,...,𝐻 ,
1Github: https://github.com/machine-teaching-group/aamas2024-informativeness-of-
reward-functions.

Algorithm 1 A General Framework for Expert-driven Explicable
and Adaptive Reward Design (ExpAdaRD)

1: Input:MDP𝑀 :=
(S,A,𝑇 , 𝑃0, 𝛾, 𝑅) , target policy 𝜋𝑇 , learning

algorithm 𝐿, informativeness criterion 𝐼𝐿 , reward constraint
set R

2: Initialize: learner’s initial policy 𝜋𝐿0
3: for 𝑘 = 1, 2, . . . , 𝐾 do

4: Expert/teacher updates the reward function:
𝑅𝑘 ← argmax𝑅∈R 𝐼𝐿 (𝑅 | 𝑅, 𝜋𝑇 , 𝜋𝐿𝑘−1)

5: Learner updates the policy: 𝜋𝐿
𝑘
← 𝐿(𝜋𝐿

𝑘−1, 𝑅𝑘)
6: Output: learner’s policy 𝜋𝐿

𝐾

we define its cumulative return with respect to reward function
𝑅 as 𝐽 (𝜉, 𝑅) :=

∑𝐻
𝑡=0 𝛾

𝑡 · 𝑅(𝑠𝑡 , 𝑎𝑡). The expected cumulative re-
turn (value) of a policy 𝜋 with respect to 𝑅 is then defined as
𝐽 (𝜋, 𝑅) := E [𝐽 (𝜉, 𝑅) |𝑃0,𝑇 , 𝜋], where 𝑠0 ∼ 𝑃0 (·), 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡), and
𝑠𝑡+1 ∼ 𝑇 (·|𝑠𝑡 , 𝑎𝑡). A learning agent (learner) in our setting seeks
to find a policy that has maximum value with respect to 𝑅, i.e.,
max𝜋 𝐽 (𝜋, 𝑅). We denote the state occupancy measure of a policy
𝜋 by 𝑑𝜋 . Furthermore, we define the state value function 𝑉 𝜋

𝑅
and

the action value function 𝑄𝜋
𝑅
of a policy 𝜋 with respect to 𝑅 as fol-

lows, respectively: 𝑉 𝜋
𝑅
(𝑠) = E[𝐽 (𝜉, 𝑅) |𝑠0 = 𝑠,𝑇 , 𝜋] and 𝑄𝜋

𝑅
(𝑠, 𝑎) =

E[𝐽 (𝜉, 𝑅) |𝑠0 = 𝑠, 𝑎0 = 𝑎,𝑇 , 𝜋]. The optimal value functions are
given by 𝑉 ∗

𝑅
(𝑠) = sup𝜋 𝑉 𝜋𝑅 (𝑠) and 𝑄∗𝑅 (𝑠, 𝑎) = sup𝜋 𝑄𝜋𝑅 (𝑠, 𝑎).

3 EXPERT-DRIVEN EXPLICABLE AND

ADAPTIVE REWARD DESIGN

In this section, we present a general framework for expert-driven
reward design, ExpAdaRD, as outlined in Algorithm 1. In our frame-
work, an expert or teacher seeks to provide informative and inter-
pretable rewards to a learning agent. In each round 𝑘 , we address a
reward design problem involving the following key elements: an un-
derlying reward function 𝑅, a target policy 𝜋𝑇 (e.g., a near-optimal
policy w.r.t. 𝑅), a learner’s policy 𝜋𝐿

𝑘−1, and a learning algorithm
𝐿. The main objective of this reward design problem is to craft a
new reward function 𝑅𝑘 under constraints R such that 𝑅𝑘 provides
informative learning signals when employed to update the policy
𝜋𝐿
𝑘−1 using the algorithm 𝐿. To quantify this objective, it is essential

to define a reward informativeness criterion, 𝐼𝐿 (𝑅 | 𝑅, 𝜋𝑇 , 𝜋𝐿𝑘−1),
that adapts w.r.t. the agent’s current policy and can be optimized
under specified structural constraints to obtain interpretable re-
wards. Given this informativeness criterion 𝐼𝐿 (to be developed in
Section 4), the reward design problem can be formulated as follows:

max
𝑅∈R

𝐼𝐿 (𝑅 | 𝑅, 𝜋𝑇 , 𝜋𝐿𝑘−1). (1)

Here, the set R encompasses additional constraints tailored to the
application-specific requirements, including (i) policy invariance
constraints Rinv to guarantee that the designed reward function
induces the desired target policy and (ii) structural constraints Rstr
to obtain interpretable rewards, as further discussed below.

Invariance constraints. Let Π∗ := {𝜋 : S → A s.t. 𝑉 𝜋
𝑅
(𝑠) =

𝑉 ∗
𝑅
(𝑠),∀𝑠 ∈ S} denote the set of all deterministic optimal policies

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

445

https://github.com/machine-teaching-group/aamas2024-informativeness-of-reward-functions
https://github.com/machine-teaching-group/aamas2024-informativeness-of-reward-functions

under 𝑅. Next, we define Rinv as a set of invariant reward functions,
where each 𝑅 ∈ Rinv satisfies the following conditions [13, 31]:

𝑄𝜋
𝑇

𝑅
(𝑠, 𝑎) −𝑉 𝜋𝑇

𝑅
(𝑠) ≤ 𝑄𝜋𝑇

𝑅
(𝑠, 𝑎) −𝑉 𝜋𝑇

𝑅
(𝑠), ∀𝑎 ∈ A, 𝑠 ∈ S.

When 𝜋𝑇 is an optimal policy under 𝑅 (i.e., 𝜋𝑇 ∈ Π∗), these condi-
tions guarantee the following: (i) 𝜋𝑇 is an optimal policy under 𝑅;
(ii) any optimal policy induced by 𝑅 is also an optimal policy under
𝑅; (iii) reward function 𝑅 ∈ Rinv, i.e., Rinv is non-empty.2

Structural constraints. We consider structural constraints
as a way to obtain interpretable rewards (e.g., sparsity or tree-
structured rewards) and satisfy application-specific requirements
(e.g., bounded rewards). We denote the set of reward functions
conforming to specified structural constraints as Rstr [5, 7, 11, 13,
18, 19, 21, 22]. We implement these constraints via a set of param-
eterized reward functions, denoted as Rstr = {𝑅𝜙 : S × A →
R where 𝜙 ∈ R𝑑 }. For example, given a feature representation
𝑓 : S × A → {0, 1}𝑑 , we employ 𝑅𝜙 (𝑠, 𝑎) = ⟨𝜙, 𝑓 (𝑠, 𝑎)⟩ in our ex-
perimental evaluation (Section 5). In particular, we will use different
feature representations to specify constraints induced by coarse-
grained state abstraction [23] and tree structure [5]. Furthermore, it
is possible to impose additional constraints on 𝜙 , such as bounding
its ℓ∞ norm by 𝑅max or requiring that its support supp(𝜙), defined
as {𝑖 : 𝑖 ∈ [𝑑], 𝜙𝑖 ≠ 0}, matches a predefined setZ ⊆ [𝑑] [13].

4 INFORMATIVENESS CRITERION FOR

REWARD DESIGN

In this section, we focus on developing a reward informativeness
criterion that can be optimized for the reward design formulation in
Eq. (1). We first introduce an informativeness criterion formulated
within a bi-level optimization framework and then propose an
intuitive informativeness criterion that can be generally applied to
various learning algorithms.

Notation. In the subscript of the expectations E, let 𝜋 (𝑎 |𝑠) mean
𝑎 ∼ 𝜋 (·|𝑠), 𝜇𝜋 (𝑠, 𝑎)mean 𝑠 ∼ 𝑑𝜋 , 𝑎 ∼ 𝜋 (·|𝑠), and 𝜇𝜋 (𝑠)mean 𝑠 ∼ 𝑑𝜋 .
Further, we use shorthand notation 𝜇𝜋𝑠,𝑎 and 𝜇𝜋𝑠 to refer 𝜇𝜋 (𝑠, 𝑎)
and 𝜇𝜋 (𝑠), respectively.

4.1 Bi-Level Formulation for Reward

Informativeness 𝐼𝐿 (𝑅)
We consider parametric reward functions of the form 𝑅𝜙 : S ×
A → R, where 𝜙 ∈ R𝑑 , and parametric policies of the form
𝜋𝜃 : S → Δ (A), where 𝜃 ∈ R𝑛 . Let 𝑅 be the underlying re-
ward function, and let 𝜋𝑇 be a target policy (e.g., a near-optimal
policy w.r.t. 𝑅). We measure the performance of any policy 𝜋𝜃 w.r.t.
𝑅 and 𝜋𝑇 using the following performance metric: 𝐽 (𝜋𝜃 ;𝑅, 𝜋𝑇) =
E
𝜇𝜋

𝑇
𝑠

[
E𝜋𝜃 (𝑎 |𝑠)

[
𝐴𝜋

𝑇

𝑅
(𝑠, 𝑎)

]]
, where𝐴𝜋

𝑇

𝑅
(𝑠, 𝑎) = 𝑄𝜋𝑇

𝑅
(𝑠, 𝑎)−𝑉 𝜋𝑇

𝑅
(𝑠)

is the advantage function of policy 𝜋𝑇 w.r.t. 𝑅. Given a current pol-
icy 𝜋𝜃 and a reward function 𝑅, the learner updates the policy
parameter using a learning algorithm 𝐿 as follows: 𝜃new ← 𝐿(𝜃, 𝑅).

To evaluate the informativeness of a reward function 𝑅𝜙 in guid-
ing the convergence of the learner’s policy 𝜋𝐿 := 𝜋𝜃𝐿 towards the
2We can guarantee point (i) of 𝜋𝑇 being an optimal policy under 𝑅 by replacing the
right-hand side with −𝜖 for 𝜖 > 0; however, this would not guarantee (ii) and (iii).

target policy 𝜋𝑇 , we define the following informativeness criterion:

𝐼𝐿 (𝑅𝜙 | 𝑅, 𝜋𝑇 , 𝜋𝐿) := 𝐽 (𝜋𝜃𝐿new (𝜙) ;𝑅, 𝜋
𝑇)

where 𝜃𝐿new (𝜙) ← 𝐿(𝜃𝐿, 𝑅𝜙). (2)

The above criterion measures the performance of the resulting pol-
icy after the learner updates 𝜋𝐿 using the reward function 𝑅𝜙 . How-
ever, this criterion relies on having access to the learning algorithm
𝐿 and evaluating this criterion requires potentially expensive policy
updates using 𝐿. In the subsequent analysis, we further examine
this criterion to develop an intuitive alternative that is independent
of any specific learning algorithm and does not require any policy
updates for its evaluation.

Analysis for a specific learning algorithm𝐿. Here, we present
an analysis of the informativeness criterion defined above, consid-
ering a simple learning algorithm 𝐿. Specifically, we consider an
algorithm 𝐿 that utilizes parametric policies {𝜋𝜃 : 𝜃 ∈ R𝑛} and per-
forms single-step vanilla policy gradient updates using 𝑄-values
computed using ℎ-depth planning [12, 40, 48]. We update the policy
parameter 𝜃 by employing a reward function 𝑅 in the following
manner:

𝐿(𝜃, 𝑅) : = 𝜃 + 𝛼 · [∇𝜃 𝐽 (𝜋𝜃 , 𝑅)]𝜃
= 𝜃 + 𝛼 · E

𝜇
𝜋𝜃
𝑠,𝑎

[[∇𝜃 log𝜋𝜃 (𝑎 |𝑠)]𝜃𝑄𝜋𝜃𝑅,ℎ (𝑠, 𝑎)] ,
where 𝑄𝜋𝜃

𝑅,ℎ
(𝑠, 𝑎) = E

[∑ℎ
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡)
��𝑠0 = 𝑠, 𝑎0 = 𝑎,𝑇 , 𝜋𝜃] is the

ℎ-depth 𝑄-value with respect to 𝑅, and 𝛼 is the learning rate. Fur-
thermore, we assume that 𝐿 uses a tabular representation, where
𝜃 ∈ R |S | · |A | , and a softmax policy parameterization given by
𝜋𝜃 (𝑎 |𝑠) := exp(𝜃 (𝑠,𝑎))∑

𝑏 exp(𝜃 (𝑠,𝑏)) ,∀𝑠 ∈ S, 𝑎 ∈ A. For this 𝐿, the following
proposition provides an intuitive form of the gradient of 𝐼𝐿 in Eq. (2).

Proposition 1. The gradient of the informativeness criterion in
Eq. (2) for the simplified learning algorithm 𝐿 with ℎ-depth planning
described above takes the following form:

∇𝜙 𝐼𝐿 (𝑅𝜙 | 𝑅, 𝜋𝑇 , 𝜋𝐿) ≈

𝛼 · ∇𝜙E𝜇𝜋𝐿𝑠,𝑎

[
𝜇𝜋

𝑇

𝑠 · 𝜋𝐿 (𝑎 |𝑠) ·
(
𝐴𝜋

𝑇

𝑅
(𝑠, 𝑎) −𝐴𝜋𝑇

𝑅
(𝑠, 𝜋𝐿 (𝑠))) · 𝐴𝜋𝐿

𝑅𝜙 ,ℎ
(𝑠, 𝑎)

]
,

where 𝐴𝜋
𝑇

𝑅
(𝑠, 𝜋𝐿 (𝑠)) = E𝜋𝐿 (𝑎′ |𝑠)

[
𝐴𝜋

𝑇

𝑅
(𝑠, 𝑎′)

]
, and 𝐴𝜋

𝐿

𝑅𝜙 ,ℎ
(𝑠, 𝑎) =

𝑄𝜋
𝐿

𝑅𝜙 ,ℎ
(𝑠, 𝑎) −𝑉 𝜋𝐿

𝑅𝜙 ,ℎ
(𝑠).

Proof. We discuss key proof steps here and provide a more
detailed proof in the longer version of the paper. For the simple
learning algorithm 𝐿 described above, we can write the derivative
of the informativeness criterion in Eq. (2) as follows:[
∇𝜙 𝐼𝐿 (𝑅𝜙 | 𝑅, 𝜋𝑇 , 𝜋𝐿)

]
𝜙

(𝑎)
=

[
∇𝜙𝜃𝐿new (𝜙) · ∇𝜃𝐿new (𝜙) 𝐽 (𝜋𝜃𝐿new (𝜙) ;𝑅, 𝜋

𝑇)
]
𝜙

(𝑏)≈
[
∇𝜙𝜃𝐿new (𝜙)

]
𝜙
·
[
∇𝜃 𝐽 (𝜋𝜃 ;𝑅, 𝜋𝑇)

]
𝜃𝐿
,

where the equality in (𝑎) is due to chain rule, and the approximation
in (𝑏) assumes a smoothness condition of

 [∇𝜃 𝐽 (𝜋𝜃 ;𝑅, 𝜋𝑇)]
𝜃𝐿new (𝜙)

−

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

446

[
∇𝜃 𝐽 (𝜋𝜃 ;𝑅, 𝜋𝑇)

]
𝜃𝐿

2
≤ 𝑐 ·

𝜃𝐿new (𝜙) − 𝜃𝐿

2 for some 𝑐 > 0. For
the 𝐿 described above, we can obtain intuitive forms of the terms[∇𝜙𝜃𝐿new (𝜙)]𝜙 and

[
∇𝜃 𝐽 (𝜋𝜃 ;𝑅, 𝜋𝑇)

]
𝜃𝐿
. For any 𝑠 ∈ S, 𝑎 ∈ A,

let 1𝑠,𝑎 ∈ R |S | · |A | denote a vector with 1 in the (𝑠, 𝑎)-th entry
and 0 elsewhere. By using the meta-gradient derivations presented
in [1, 32, 38], we simplify the first term as follows:[
∇𝜙𝜃𝐿new (𝜙)

]
𝜙

= 𝛼 · E
𝜇𝜋

𝐿
𝑠

[∑︁
𝑎

𝜋𝐿 (𝑎 |𝑠) · [∇𝜙𝐴𝜋𝐿

𝑅𝜙 ,ℎ
(𝑠, 𝑎)]

𝜙
· 1⊤𝑠,𝑎

]
.

Then, we simplify the second term as follows:[
∇𝜃 𝐽 (𝜋𝜃 ;𝑅, 𝜋𝑇)

]
𝜃𝐿

= E
𝜇𝜋

𝑇
𝑠

[∑︁
𝑎

𝜋𝐿 (𝑎 |𝑠) ·
(
𝐴𝜋

𝑇

𝑅
(𝑠, 𝑎) −𝐴𝜋𝑇

𝑅
(𝑠, 𝜋𝐿 (𝑠))

)
· 1𝑠,𝑎

]
.

Taking the matrix product of two terms completes the proof. □

4.2 Intuitive Formulation for Reward

Informativeness 𝐼ℎ (𝑅)
Based on Proposition 1, for the simple learning algorithm 𝐿 dis-
cussed in Section 4.1, the informativeness criterion in Eq. (2) can
be written as follows:

𝐼𝐿 (𝑅𝜙 | 𝑅, 𝜋𝑇 , 𝜋𝐿) ≈ 𝛼 · E
𝜇𝜋

𝐿
𝑠,𝑎

[
𝜇𝜋

𝑇

𝑠 · 𝜋𝐿 (𝑎 |𝑠)

· (𝐴𝜋𝑇
𝑅
(𝑠, 𝑎) −𝐴𝜋𝑇

𝑅
(𝑠, 𝜋𝐿 (𝑠))) · 𝐴𝜋𝐿

𝑅𝜙 ,ℎ
(𝑠, 𝑎)

]
+ 𝜅,

for some 𝜅 ∈ R. By dropping the constant terms 𝛼 and 𝜅 , we define
the following intuitive informativeness criterion:

𝐼ℎ (𝑅𝜙 | 𝑅, 𝜋𝑇 , 𝜋𝐿) :=

E
𝜇𝜋

𝐿
𝑠,𝑎

[
𝜇𝜋

𝑇

𝑠 · 𝜋𝐿 (𝑎 |𝑠) ·
(
𝐴𝜋

𝑇

𝑅
(𝑠, 𝑎) −𝐴𝜋𝑇

𝑅
(𝑠, 𝜋𝐿 (𝑠))) · 𝐴𝜋𝐿

𝑅𝜙 ,ℎ
(𝑠, 𝑎)

]
.

(3)

The above criterion doesn’t require the knowledge of the learning
algorithm 𝐿 and only relies on 𝜋𝐿 , 𝑅, and 𝜋𝑇 . Therefore, it serves
as a generic informativeness measure that can be used to evaluate
the usefulness of reward functions for a range of limited-capacity
learners, specifically those with different ℎ-horizon planning bud-
gets. In practice, we use the criterion 𝐼ℎ with ℎ = 1. In this case, the
criterion simplifies to the following form:

𝐼ℎ=1 (𝑅𝜙 | 𝑅, 𝜋𝑇 , 𝜋𝐿) := E
𝜇𝜋

𝐿
𝑠,𝑎

[
𝜇𝜋

𝑇

𝑠 · 𝜋𝐿 (𝑎 |𝑠)

· (𝐴𝜋𝑇
𝑅
(𝑠, 𝑎) −𝐴𝜋𝑇

𝑅
(𝑠, 𝜋𝐿 (𝑠))) · (𝑅𝜙 (𝑠, 𝑎) − 𝑅𝜙 (𝑠, 𝜋𝐿 (𝑠)))],

where 𝑅𝜙 (𝑠, 𝜋𝐿 (𝑠)) = E𝜋𝐿 (𝑏 |𝑠)
[
𝑅𝜙 (𝑠, 𝑏)

]
. Intuitively, this criterion

measures the alignment of a reward function 𝑅𝜙 with better actions
according to policy 𝜋𝑇 , and how well it boosts the reward values
for these actions in each state.

4.3 Using 𝐼ℎ (𝑅) in ExpAdaRD Framework

Next, we will use the informativeness criterion 𝐼ℎ for designing re-
ward functions to accelerate the training process of a learning agent

within the ExpAdaRD framework. Specifically, we use 𝐼ℎ in place
of 𝐼𝐿 to address the reward design problem formulated in Eq. (1):

max
𝑅𝜙 ∈R

𝐼ℎ (𝑅𝜙 | 𝑅, 𝜋𝑇 , 𝜋𝐿𝑘−1), (4)

where the set R captures the additional constraints discussed in
Section 3 (e.g., R = Rinv ∩ Rstr). In Section 5, we will implement
ExpAdaRD framework with two types of structural constraints
and design adaptive reward functions for different learners; below,
we theoretically showcase the utility of using 𝐼ℎ by analyzing the
improvement in the convergence in a simplified setting.

More concretely, we present a theoretical analysis of the reward
design problem formulated in Eq. (4) without structural constraints
and in a simplified setting to illustrate how this informativeness
criterion for adaptive reward shaping can substantially improve
the agent’s convergence speed toward the target policy. For our
theoretical analysis, we consider a finite MDP 𝑀 , with the tar-
get policy 𝜋𝑇 being an optimal policy for this MDP. We use a
tabular representation for the reward, i.e., 𝜙 ∈ R |S | · |A | . We con-
sider a constraint set R = {𝑅 : |𝑅 (𝑠, 𝑎) | ≤ 𝑅max,∀𝑠 ∈ S, 𝑎 ∈ A}.
Additionally, we use the informativeness criterion in Eq. (3) with
ℎ = 1, i.e., 𝐼ℎ=1 (𝑅𝜙 | 𝑅, 𝜋𝑇 , 𝜋𝐿). For the policy, we also use a tab-
ular representation, i.e., 𝜃 ∈ R |S | · |A | . We use a greedy (policy
iteration style) learning algorithm 𝐿 that first learns the ℎ-step

action-value function 𝑄
𝜋𝐿
𝑘−1
𝑅𝑘 ,ℎ

w.r.t. current reward 𝑅𝑘 and updates
the policy by selecting actions greedily based on the value func-

tion, i.e., 𝜋𝐿
𝑘
(𝑠) ← argmax𝑎 𝑄

𝜋𝐿
𝑘−1
𝑅𝑘 ,ℎ
(𝑠, 𝑎) with random tie-breaking.

In particular, we consider a learner with ℎ = 1, i.e., we have
𝜋𝐿
𝑘
(𝑠) ← argmax𝑎 𝑅𝑘 (𝑠, 𝑎). For the above setting, the following

theorem provides a convergence guarantee for Algorithm 1.

Theorem 1. Consider Algorithm 1 with inputs 𝜋𝑇 , 𝐿, 𝐼ℎ , and R as
described above. We define a policy 𝜋𝑇,Adv induced by the advantage
function of the target policy 𝜋𝑇 (w.r.t. 𝑅) as follows: 𝜋𝑇,Adv (𝑠) ←
argmax𝑎 𝐴𝜋

𝑇

𝑅
(𝑠, 𝑎) with random tie-breaking. Then, the learner’s

policy 𝜋𝐿
𝑘
will converge to the policy 𝜋𝑇,Adv in O(|A|) iterations.

Proof and additional details are provided in the longer version
of the paper. We note that the target policy 𝜋𝑇 does not need to
be optimal for better convergence, and the results also hold with a
sufficiently good (weak) target policy 𝜋𝑇 s.t. 𝜋𝑇,Adv is near-optimal.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate our expert-driven explicable and adap-
tive reward design framework, ExpAdaRD, on two environments:
Room (Section 5.1) and LineK (Section 5.2). Room corresponds to
a navigation task in a grid-world where the agent has to learn
a policy to quickly reach the goal location in one of four rooms,
starting from an initial location. Even though this environment has
small state and action spaces, it provides a rich problem setting
to validate different reward design techniques. In fact, variants of
Room have been used in the literature [3, 11–13, 18, 20, 21, 29, 39].
LineK corresponds to a navigation task in a one-dimensional space
where the agent has to first pick the key and then reach the goal.
The agent’s location is represented as a node in a long chain. This

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

447

environment is inspired by variants of navigation tasks in the lit-
erature where an agent needs to perform subtasks [12, 13, 31, 34].
Both the Room and LineK environments have sparse and delayed
rewards, which pose a challenge for learning optimal behavior.

5.1 Evaluation on Room

Room (Figure 1a). This environment is based on the work of [13]
that also serves as a baseline technique. The environment is repre-
sented as an MDP with S states corresponding to cells in a grid-
world with the “blue-circle” indicating the agent’s initial location.
The goal (“green-star”) is located at the top-right corner cell. Agent
can take four actions given by A := {“up”, “left”, “down”, “right”}.
An action takes the agent to the neighbouring cell represented
by the direction of the action; however, if there is a wall (“brown-
segment”), the agent stays at the current location. There are also a
few terminal walls (“thick-red-segment”) that terminate the episode,
located at the bottom-left corner cell, where “left” and “down” ac-
tions terminate the episode; at the top-right corner cell, “right”
action terminates. The agent gets a reward of 𝑅max after it has navi-
gated to the goal and then takes a “right” action (i.e., only one state-
action pair has a reward); note that this action also terminates the
episode. The reward is 0 for all other state-action pairs. Furthermore,
when an agent takes an action 𝑎 ∈ A, there is 𝑝rand = 0.05 probabil-
ity that an action 𝑎′ ∈ A \ {𝑎} will be executed. The environment-
specific parameters are as follows: 𝑅max = 10, 𝛾 = 0.95, and the
environment resets after a horizon of 𝐻 = 30 steps.

Reward structure. In this environment, we consider a configu-
ration of nine 3× 3 grids along with a single 1× 1 grid representing
the goal state, as visually depicted in Figure 1b. To effectively repre-
sent the state space, we employ a state abstraction function denoted
as𝜓 : S → {0, 1}10. For each state 𝑠 ∈ S, the 𝑖-th entry of𝜓 (𝑠) is set
to 1 if 𝑠 resides in the 𝑖-th grid, and 0 otherwise. Building upon this
state abstraction, we introduce a feature representation function,
𝑓 : S×A → {0, 1}10· |A | , defined as follows: 𝑓 (𝑠, 𝑎) (·,𝑎) = 𝜓 (𝑠), and
𝑓 (𝑠, 𝑎) (·,𝑎′) = 0,∀𝑎′ ≠ 𝑎. Here, for any vector 𝑣 ∈ {0, 1}10· |A | , we
use the notation 𝑣 (𝑖,𝑎) to refer to the (𝑖, 𝑎)-th entry of the vector. Fi-
nally, we establish the set Rstr = {𝑅𝜙 : S×A → R where 𝜙 ∈ R𝑑 },
where 𝑅𝜙 (𝑠, 𝑎) = ⟨𝜙, 𝑓 (𝑠, 𝑎)⟩. Further, we define R := Rinv ∩ Rstr
as discussed in Section 3. We note that 𝑅 ∈ R.

Evaluation setup. We conduct our experiments with a tabular
REINFORCE agent [41], and employ an optimal policy under the
underlying reward function 𝑅 as the target policy 𝜋𝑇 . Algorithm 1
provides a sketch of the overall training process and shows how the
agent’s training interleaves with the expert-driven reward design
process. Specifically, during training, the agent receives rewards
based on the designed reward function 𝑅; the performance is always
evaluated w.r.t. 𝑅 (also reported in the plots). In our experiments,
we considered two settings to systematically evaluate the utility of
adaptive reward design: (i) a single learner with a uniformly random
initial policy (where each action is taken with a probability of 0.25)
and (ii) a diverse group of learners, each with distinct initial policies.
To generate a collection of distinctive initial policies, we introduced
modifications to a uniformly random policy. These modifications
were designed to incorporate a 0.5 probability of the agent select-
ing suboptimal actions when encountering various “gate-states”

(i.e., states with openings for navigation to other rooms). In our
evaluation, we included five such unique initial policies.

Techniques evaluated. We evaluate the effectiveness of the
following reward design techniques:
(i) 𝑅Orig := 𝑅 is a default baseline without any reward design.
(ii) 𝑅Invar is obtained via solving the optimization problem in

Eq. (4) with the substitution of 𝐼ℎ by a constant. This technique
does not involve explicitly maximizing any reward informa-
tiveness during the optimization process.

(iii) 𝑅ExpRD is obtained via solving the optimization problem pro-
posed in [13]. This optimization problem is equivalent to Eq. (4),
with the substitution of 𝐼ℎ by a non-adaptive informativeness
criterion. We have employed the hyperparameters consistent
with those provided in their work.

(iv) 𝑅ExpAdaRD
𝑘

is based on our framework ExpAdaRD and obtained
via solving the optimization problem in Eq. (4). For stability of
the learning process, we update the policymore frequently than
the reward as typically considered in the literature [12, 30, 48] –
we provide additional details in the longer version of the paper.

Results. Figure 1 presents the results for both settings (i.e., a
single learner and a diverse group of learners). The reported results
are averaged over 40 runs (where each run corresponds to design-
ing rewards for a specific learner), and convergence plots show the
mean performance with standard error bars.3 As evident from the
results in Figures 1c and 1d, the rewards designed by ExpAdaRD
significantly speed up the learner’s convergence to optimal behav-
ior when compared to the rewards designed by baseline techniques.
Notably, the effectiveness of ExpAdaRD becomes more pronounced
in scenarios featuring a diverse group of learners with distinct ini-
tial policies, where adaptive reward design plays a crucial role.
Figure 3 presents a visualization of the designed reward functions
generated by different techniques at various episodes. Notably, the
rewards 𝑅Orig, 𝑅Invar, and 𝑅ExpRD are agnostic to the learner’s
policy and remain constant throughout the training process. In Fig-
ures 3d, 3e, and 3f, we illustrate the 𝑅ExpAdaRD

𝑘
rewards designed by

our technique for three learners each with its distinct initial policy
at 𝑘 = 1000, 2000, 3000, 100000, and 200000 episodes. As observed in
these plots, ExpAdaRD rapidly assigns high-magnitude numerical
values to the designed rewards and adapts these rewards w.r.t. the
learner’s current policy. Initially (see 𝑘 = 1000 episode plots), the re-
wards designed by ExpAdaRD encourage the agent to quickly reach
the goal state (“green-star”) by providing positive reward signals
for optimal actions (“up”, “right”) followed by modifying reward
signals in each episode to align with the learner’s current policy.

5.2 Evaluation on LineK

LineK (Figure 2a). This environment corresponds to a naviga-
tion task in a one-dimensional space where the agent has to first
pick the key and then reach the goal. The environment used in
our experiments is based on the work of [13] that also serves as
a baseline technique. We represent the environment as an MDP
with S states corresponding to nodes in a chain with the “gray
circle” indicating the agent’s initial location. Goal (“green-star”)
is available in the rightmost state, and the key is available at the
3We conducted the experiments on a cluster consisting of machines equipped with a
3.30 GHz Intel Xeon CPU E5-2667 v2 processor and 256 GB of RAM.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

448

(a) Room: Environment (b) Room: Abstracted features

0 5 10 15 20
Episode (x104)

0

2

4

6

E
xp

ec
te

d
re

w
ar

d

EXPADARD
EXPRD

INVAR

ORIG

(c) Room: Single learner setting

0 5 10 15 20
Episode (x104)

0

2

4

6

E
xp

ec
te

d
re

w
ar

d

EXPADARD
EXPRD

INVAR

ORIG

(d) Room: Diverse learners setting

Figure 1: Results for Room. (a) shows the environment. (b) shows the abstracted feature space used for the representation

of designed reward functions as a structural constraint. (c) shows results for the setting with a single learner. (d) shows results

for the setting with a diverse group of learners with different initial policies. ExpAdaRD designs adaptive reward functions

w.r.t. the learner’s current policies, whereas other techniques are agnostic to the learner’s policy. See Section 5.1 for details.

(a) LineK: Environment

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

(b) LineK: Tree-based features

0 1 2 3 4 5
Episode (x104)

0

2

4

E
xp

ec
te

d
re

w
ar

d

EXPADARD
EXPRD

INVAR

ORIG

(c) LineK: Single learner setting

0 1 2 3 4 5
Episode (x104)

0

2

4

E
xp

ec
te

d
re

w
ar

d

EXPADARD
EXPRD

INVAR

ORIG

(d) LineK: Diverse learners setting

Figure 2: Results for LineK. (a) shows the environment. (b) shows the tree-based feature space used for the representation of

designed reward functions as a structural constraint. (c) shows results for the setting with a single learner. (d) shows results for

the setting with a diverse group of learners with different initial policies. ExpAdaRD designs adaptive reward functions w.r.t.

the learner’s current policies, whereas other techniques are agnostic to the learner’s policy. See Section 5.2 for details.

state shown as “cyan-bolt”. The agent can take three actions given
by A := {“left”, “right”, “pick”}. “pick” action does not change the
agent’s location, however, when executed in locations with the
availability of the key, the agent acquires the key; if the agent al-
ready had a key, the action does not affect the status. A move action
of “left” or “right” takes the agent from the current location to the
neighboring node according to the direction of the action. Similar
to Room, the agent’s move action is not applied if the new location
crosses the wall, and there is 𝑝rand probability of a random action.
The agent gets a reward of 𝑅max after it has navigated to the goal lo-
cations after acquiring the key and then takes a “right” action; note
that this action also terminates the episode. The reward is 0 else-
where and there is a discount factor𝛾 . We set 𝑝rand = 0.1,𝑅max = 10,
𝛾 = 0.95, and the environment resets after a horizon of𝐻 = 30 steps.

Reward structure.We adopt a tree structured representation
of the state space, as visually depicted in Figure 2b. To formalize
this representation, we employ a state abstraction function denoted
as 𝜓 : S → {0, 1}5. For each state 𝑠 ∈ S, the 𝑖-th entry of 𝜓 (𝑠) is
set to 1 if 𝑠 maps to the 𝑖-th circled node of the tree (i.e., parent
to leaf nodes), and 0 otherwise. Then, we define the set Rstr in a
manner similar to that outlined in Section 5.1. Further, we define
R := Rinv ∩ Rstr as discussed in Section 3. We note that 𝑅 ∈ R.

Evaluation setup and techniques evaluated. Our evaluation
setup for LineK environment is exactly the same as that used for
Room environment (described in Section 5.1). In particular, all the

hyperparameters (related to the REINFORCE agent, reward design
techniques, and training process) are the same as in Section 5.1. In
this evaluation, we again have two settings to evaluate the utility
of adaptive reward design: (i) a single learner with a uniformly
random initial policy (where each action is taken with a probability
of 0.33) and (ii) a diverse group of learners, each with distinct ini-
tial policies. To generate a collection of distinctive initial policies,
we introduced modifications to a uniformly random policy. These
modifications were designed to incorporate a 0.7 probability of
the agent selecting suboptimal actions from various states. In our
evaluation, we included five such unique initial policies.

Results. Figure 2 presents the results for both settings (i.e., a
single learner and a diverse group of learners). The reported re-
sults are averaged over 30 runs, and convergence plots show the
mean performance with standard error bars. These results further
demonstrate the effectiveness and robustness of ExpAdaRD across
different settings in comparison to baselines. Analogous to Figure 3
in Section 5.1, Figure 4 presents a visualization of the designed re-
ward functions produced by different techniques at various training
episodes. These results illustrate the utility of our proposed infor-
mativeness criterion for adaptive reward design, particularly when
dealing with various structural constraints to obtain interpretable
rewards, including tree-structured reward functions.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

449

up left

down right

+

(a) Room: 𝑅Orig

up

+ + +

+
+
+

+
+
+

+
+
+

+
+
+
+
+
+

left

+
+
+
+

down right

+ + + +
+
+
+

+
+
+
+

+
+
+
+

+

(b) Room: 𝑅Invar

up

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

left

+
+
+
+

down

+ + +

+

right

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+
+
+
+
+

+
+
+
+

+
+
+
+

+

(c) Room: 𝑅ExpRD

up

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+

+
+
+

left

+
+
+

down

+

right

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+

up

+
+
+

+
+
+

+
+
+

+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+

+
+
+

left

+
+
+
+

down

+

right

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+

+
+
+

up

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+

+
+
+

left

+
+
+
+

down

+

right

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+

+
+
+

up

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+

+
+
+
+

+
+
+
+

+
+
+

left

+
+
+
+

down

+

right

+
+
+

+
+
+

+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+

up

+ + +

+
+
+

+
+
+
+

+
+
+
+

+
+
+
+
+
+

left

+
+
+
+

down

+

right

+
+
+
+

+
+
+
+

+
+
+
+

+

+
+
+

(d) Room: 𝑅ExpAdaRD for learner 1 at 𝑘 = 1000, 2000, 3000, 100000, and 200000 episodes.

up

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+

+
+
+

left

+
+
+

down

+

right

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

up

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+

+
+
+

left

+

down

+

right

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+

+
+
+
+

up

+
+
+

+
+
+

+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

left

+

down

+

right

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+

+
+
+

up

+ + +

+
+
+

+
+
+
+

+
+
+
+

+
+
+

left

+

down

+

right

+
+
+
+

+
+
+
+

+
+
+
+

+

up

+ + +

+
+
+

+
+
+
+

+
+
+
+

+
+
+

left

+

down

+

right

+
+
+
+

+
+
+
+

+
+
+
+

+

(e) Room: 𝑅ExpAdaRD for learner 2 at 𝑘 = 1000, 2000, 3000, 100000, and 200000 episodes.

up

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+

+
+
+

left

+
+
+

down

+

right

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+

up

+
+
+

+
+
+

+
+
+

+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+

+
+
+

left

+
+
+

down

+

right

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+

+
+
+

up

+
+
+

+
+
+

+
+
+

+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+

+
+
+

left

+
+
+
+

down

+

right

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+

+
+
+

up

+ + +

+
+
+

+
+
+
+

+
+
+
+

+
+
+
+
+
+

left

+

down

+

right

+
+
+
+

+
+
+
+

+
+
+
+

+

up

+ + +

+
+
+

+
+
+
+

+
+
+
+

+
+
+

left

+

down

+

right

+
+
+
+

+
+
+
+

+
+
+
+

+

(f) Room: 𝑅ExpAdaRD for learner 3 at 𝑘 = 1000, 2000, 3000, 100000, and 200000 episodes.

Figure 3: Visualization of reward functions designed by different techniques in the Room environment for all four actions

{“up”, “left”, “down”, “right”}. (a) shows original reward function𝑅Orig. (b) shows reward function𝑅Invar. (c) shows reward function

𝑅ExpRD designed by expert-drivennon-adaptive reward design technique [13]. (d, e, f) show reward functions𝑅ExpAdaRD designed

by our framework ExpAdaRD for three learners, each with its distinct initial policy, at different training episodes 𝑘 . A negative

reward is shown in Red color with the sign “-”, a positive reward is shown in Blue color with the sign “+”, and a zero reward is

shown in white. The color intensity indicates the magnitude of the reward.

6 CONCLUDING DISCUSSIONS

We studied the problem of expert-driven reward design, where
an expert/teacher seeks to provide informative and interpretable
rewards to a learning agent. We introduced a novel reward informa-
tiveness criterion that adapts w.r.t. the agent’s current policy. Based
on this informativeness criterion, we developed an expert-driven
adaptive reward design framework, ExpAdaRD. We empirically
demonstrated the utility of our framework on two navigation tasks.

Next, we discuss a few limitations of our work and outline a
future plan to address them. First, we conducted experiments on
simpler environments to systematically investigate the effectiveness
of our informativeness criterion in terms of adaptivity and structure

of designed reward functions. It would be interesting to extend the
evaluation of the reward design framework in more complex envi-
ronments (e.g., with continuous state/action spaces) by leveraging
an abstraction-based pipeline considered in [13]. Second, we consid-
ered fixed structural properties to induce interpretable reward func-
tions. It would also be interesting to investigate the usage of our in-
formativeness criterion for automatically discovering or optimizing
the structured properties (e.g., nodes in the tree structure). Third, we
empirically showed the effectiveness of our adaptive rewards, but
adaptive rewards could also lead to instability in the agent’s learning
process. It would be useful to analyze our adaptive reward design
framework in terms of an agent’s convergence speed and stability.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

450

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l-
r-

p-
lK

rK +

0 1 2 3 4 5 6 7 8 9
pK

(a) LineK: 𝑅Orig

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- − − − − − − − − − −

r- − − − − − − − − − −

p- − + − − − − − − − −

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK − − − − − − − − − −

(b) LineK: 𝑅Invar

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- − − − − − − − − − −

r- − − − − − − − − − −

p- − + − − − − − − − −

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK − − − − − − − − − −

(c) LineK: 𝑅ExpRD

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- + − + + + + + + + +

r- − − − − − − − − − −

p- − − − − − − − − − −

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK − − − − − − − − − −

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- + + + + + + + + + +

r- − − − − − − − − − −

p- − − − − − − − − − −

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK − − − − − − − − − −

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- + + + + + + + + + +

r- − − − − − − − − − −

p- − − − − − − − − − −

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK − − − − − − − − − −

(d) LineK: 𝑅ExpAdaRD for learner 1 at 𝑘 = 100, 30000, and 50000 episodes.

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- + − + + + + + + + +

r- − − − − − − − − − −

p- + + + + + + + + + +

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK + + + + + + + + + −

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- + − + + + + + + + +

r- − − − − − − − − − −

p- − − − − − − − − − −
lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK − − − − − − − − − −

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- + + + + + + + + + +

r- − − − − − − − − − −

p- − − − − − − − − − −

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK − − − − − − − − − −

(e) LineK: 𝑅ExpAdaRD for learner 2 at 𝑘 = 100, 30000, and 50000 episodes.

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- + − + + + + + + + +

r- − − − − − − − − − −

p- − + − − − − − − − −

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK − − − − − − − − − −

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- + + + + + + + + + +

r- − − − − − − − − − −

p- − − − − − − − − − −

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9

pK − − − − − − − − − −

has key

key loc

No

goal loc

Yes

goal loc

No

z2

Yes

z3

No

z4

Yes

z0

No

z1

Yes l r p l r p l r p

l r p l r p

l- + + + + + + + + + +

r- − − − − − − − − − −

p- − + − − − − − − − −

lK − − − − − − − − − −

rK + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9
pK − − − − − − − − − −

(f) LineK: 𝑅ExpAdaRD for learner 3 at 𝑘 = 100, 30000, and 50000 episodes.

Figure 4: Visualization of reward functions designed by different techniques in the LineK environment for all three actions

{“left”, “right”, “pick”}. (a) shows original reward function 𝑅Orig. (b) shows reward function 𝑅Invar. (c) shows reward function

𝑅ExpRD designed by expert-drivennon-adaptive reward design technique [13]. (d, e, f) show reward functions𝑅ExpAdaRD designed

by our framework ExpAdaRD for three learners, each with its distinct initial policy, at different training episodes 𝑘 . These plots

illustrate reward values for all combinations of triplets: agent’s location (indicated as “key loc”, “goal loc” in tree plots), agent’s

status whether it has acquired the key or not (indicated as “has key” in tree plots and letter “K” in bar plots), and three actions

(indicated as ‘l’ for “left”, ‘r’ for “right”, ‘p’ for “pick”). A negative reward is shown in Red color with the sign “-”, a positive reward

is shown in Blue color with the sign “+”, and a zero reward is shown in white. The color intensity indicates the rewardmagnitude.

ACKNOWLEDGMENTS

Funded/Co-funded by the European Union (ERC, TOPS, 101039090).
Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them.

ETHICS STATEMENT

This work presents a reward informativeness criterion that can
be utilized in designing adaptive, informative, and interpretable
rewards for a learning agent. Given the algorithmic nature of our
work applied to agents, we do not foresee direct negative societal
impacts of our work in the present form.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

451

REFERENCES

[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W.
Hoffman, David Pfau, Tom Schaul, and Nando de Freitas. 2016. Learning to Learn
by Gradient Descent by Gradient Descent. In NeurIPS. 3981–3989.

[2] Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner,
Johannes Brandstetter, and Sepp Hochreiter. 2019. RUDDER: Return Decomposi-
tion for Delayed Rewards. In NeurIPS. 13544–13555.

[3] John Asmuth, Michael L. Littman, and Robert Zinkov. 2008. Potential-based
Shaping in Model-based Reinforcement Learning. In AAAI. AAAI Press, 604–
609.

[4] Andrew G. Barto. 2013. Intrinsic Motivation and Reinforcement Learning. In
Intrinsically Motivated Learning in Natural and Artificial Systems. Springer, 17–47.

[5] Tom Bewley and Freddy Lécué. 2022. Interpretable Preference-based Reinforce-
ment Learning with Tree-Structured Reward Functions. In AAMAS. International
Foundation for Autonomous Agents and Multiagent Systems, 118–126.

[6] Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E
Taylor, and Ann Nowé. 2015. Reinforcement Learning from Demonstration
through Shaping. In IJCAI. AAAI Press, 3352–3358.

[7] Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila A McIlraith. 2017.
Decision-Making with Non-Markovian Rewards: From LTL to Automata-based
Reward Shaping. In RLDM. 279–283.

[8] Falcon Z. Dai and Matthew R. Walter. 2019. Maximum Expected Hitting Cost of
a Markov Decision Process and Informativeness of Rewards. In NeurIPS. 7677–
7685.

[9] Christian Daniel, Malte Viering, Jan Metz, Oliver Kroemer, and Jan Peters. 2014.
Active Reward Learning.. In Robotics: Science and Systems.

[10] Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, and Fabio Patrizi. 2020.
Imitation Learning over Heterogeneous Agents with Restraining Bolts. In ICAPS,
Vol. 30. AAAI Press, 517–521.

[11] Alper Demir, Erkin Çilden, and Faruk Polat. 2019. Landmark Based Reward
Shaping in Reinforcement Learning with Hidden States. In AAMAS. International
Foundation for Autonomous Agents and Multiagent Systems, 1922–1924.

[12] Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. 2022. Exploration-
Guided Reward Shaping for Reinforcement Learning under Sparse Rewards. In
NeurIPS. 5829–5842.

[13] Rati Devidze, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla.
2021. Explicable Reward Design for Reinforcement Learning Agents. In NeurIPS.
20118–20131.

[14] SamDevlin and Daniel Kudenko. 2012. Dynamic Potential-based Reward Shaping.
In AAMAS. International Foundation for Autonomous Agents and Multiagent
Systems, 433–440.

[15] Johan Ferret, Raphaël Marinier, Matthieu Geist, and Olivier Pietquin. 2020. Self-
Attentional Credit Assignment for Transfer in Reinforcement Learning. In IJCAI.
ijcai.org, 2655–2661.

[16] Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. 2019. Using Natural
Language for Reward Shaping in Reinforcement Learning. In IJCAI. ijcai.org,
2385–2391.

[17] Marek Grzes. 2017. Reward Shaping in Episodic Reinforcement Learning. In
AAMAS. ACM, 565–573.

[18] Marek Grzes and Daniel Kudenko. 2008. Plan-based Reward Shaping for Re-
inforcement Learning. In International Conference on Intelligent Systems, Vol. 2.
IEEE, 10–22.

[19] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A.
McIlraith. 2022. Reward Machines: Exploiting Reward Function Structure in
Reinforcement Learning. Journal of Artificial Intelligence Research 73 (2022),
173–208.

[20] Michael R. James and Satinder P. Singh. 2009. SarsaLandmark: An Algorithm for
Learning in POMDPs with Landmarks. In AAMAS. International Foundation for
Autonomous Agents and Multiagent Systems, 585–591.

[21] Yuqian Jiang, Suda Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, and Peter Stone.
2021. Temporal-Logic-Based Reward Shaping for Continuing Reinforcement
Learning Tasks. In AAAI. AAAI Press, 7995–8003.

[22] Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. 2019. A Composable
Specification Language for Reinforcement Learning Tasks. In NeurIPS. 13021–
13030.

[23] Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, and Adish Singla.
2020. Environment Shaping in Reinforcement Learning using State Abstraction.
CoRR abs/2006.13160 (2020).

[24] Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
2016. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstrac-
tion and Intrinsic Motivation. In NeurIPS. 3675–3683.

[25] Adam Laud and Gerald DeJong. 2003. The Influence of Reward on the Speed of
Reinforcement Learning: An Analysis of Shaping. In ICML. AAAI Press, 440–447.

[26] Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. 2019. Policy Poisoning in
Batch Reinforcement Learning and Control. In NeurIPS. 14543–14553.

[27] John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk.
2008. Programming by Choice: Urban Youth Learning Programming with Scratch.
In SIGCSE. ACM, 367–371.

[28] Maja J. Mataric. 1994. Reward Functions for Accelerated Learning. In ICML.
Morgan Kaufmann, 181–189.

[29] Amy McGovern and Andrew G. Barto. 2001. Automatic Discovery of Subgoals
in Reinforcement Learning using Diverse Density. In ICML. Morgan Kaufmann,
361–368.

[30] Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk
Topcu. 2021. Self-Supervised Online Reward Shaping in Sparse-Reward Environ-
ments. In IROS. IEEE, 2369–2375.

[31] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance Under
Reward Transformations: Theory and Application to Reward Shaping. In ICML.
Morgan Kaufmann, 278–287.

[32] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On First-Order Meta-
Learning Algorithms. CoRR abs/1803.02999 (2018).

[33] Eleanor O’Rourke, Kyla Haimovitz, Christy Ballweber, Carol S. Dweck, and
Zoran Popovic. 2014. Brain Points: A Growth Mindset Incentive Structure Boosts
Persistence in an Educational Game. In CHI. ACM, 3339–3348.

[34] Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. 2018. Modeling
Others using Oneself in Multi-Agent Reinforcement Learning. In ICML. PMLR,
4254–4263.

[35] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla.
2020. Policy Teaching via Environment Poisoning: Training-time Adversarial
Attacks against Reinforcement Learning. In ICML. PMLR, 7974–7984.

[36] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla.
2021. Policy Teaching in Reinforcement Learning via Environment Poisoning
Attacks. Journal of Machine Learning Research 22, 210 (2021), 1–45.

[37] Jette Randløv and Preben Alstrøm. 1998. Learning to Drive a Bicycle Using
Reinforcement Learning and Shaping. In ICML. Morgan Kaufmann, 463–471.

[38] Adam Santoro, Sergey Bartunov,MatthewBotvinick, DaanWierstra, and Timothy
Lillicrap. 2016. Meta-Learning with Memory-Augmented Neural Networks. In
ICML. PMLR, 1842–1850.

[39] Özgür Simsek, Alicia P. Wolfe, and Andrew G. Barto. 2005. Identifying Useful
Subgoals in Reinforcement Learning by Local Graph Partitioning. In ICML. ACM,
816–823.

[40] Jonathan Sorg, Satinder P. Singh, and Richard L. Lewis. 2010. Reward Design via
Online Gradient Ascent. In NeurIPS. 2190–2198.

[41] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press.

[42] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. 2019. Keep-
ing Your Distance: Solving Sparse Reward Tasks Using Self-Balancing Shaped
Rewards. In NeurIPS. 10376–10386.

[43] Eric Wiewiora. 2003. Potential-Based Shaping and Q-Value Initialization are
Equivalent. Journal of Artificial Intelligence Research 19 (2003), 205–208.

[44] Baicen Xiao, Qifan Lu, Bhaskar Ramasubramanian, AndrewClark, Linda Bushnell,
and Radha Poovendran. 2020. FRESH: Interactive Reward Shaping in High-
Dimensional State Spaces using Human Feedback. In AAMAS. International
Foundation for Autonomous Agents and Multiagent Systems, 1512–1520.

[45] Haoqi Zhang and David C. Parkes. 2008. Value-Based Policy Teaching with
Active Indirect Elicitation. In AAAI. AAAI Press, 208–214.

[46] Haoqi Zhang, David C. Parkes, and Yiling Chen. 2009. Policy Teaching through
Reward Function Learning. In EC. ACM, 295–304.

[47] Xuezhou Zhang, Yuzhe Ma, and Adish Singla. 2020. Task-Agnostic Exploration
in Reinforcement Learning. In NeurIPS.

[48] Zeyu Zheng, Junhyuk Oh, and Satinder Singh. 2018. On Learning Intrinsic
Rewards for Policy Gradient Methods. In NeurIPS. 4649–4659.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

452

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Expert-driven Explicable and Adaptive Reward Design
	4 Informativeness Criterion for Reward Design
	4.1 Bi-Level Formulation for Reward Informativeness IL(R)
	4.2 Intuitive Formulation for Reward Informativeness Ih(R)
	4.3 Using Ih(R) in ExpAdaRD Framework

	5 Experimental Evaluation
	5.1 Evaluation on Room
	5.2 Evaluation on LineK

	6 Concluding Discussions
	Acknowledgments
	References

