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ABSTRACT
Logics for resource-bounded agents have been getting more and

more attention in recent years since they provide us with more re-

alistic tools for modelling and reasoning about multi-agent systems.

While many existing approaches are based on the idea of agents as

imperfect reasoners, who must spend their resources to perform

logical inference, this is not the only way to introduce resource

constraints into logical settings. In this paper we study agents as

perfect reasoners, who may purchase a new piece of information

from a trustworthy source. For this purpose we propose dynamic

epistemic logic for semi-public queries for resource-bounded agents.

In this logic (groups of) agents can perform a query (ask a question)

about whether some formula is true and receive a correct answer.

These queries are called semi-public, because the very fact of the

query is public, while the answer is private. We also assume that

every query has a cost and every agent has a budget constraint.

Finally, our framework allows us to reason about group queries, in

which agents may share resources to obtain a new piece of informa-

tion together. We demonstrate that our logic is complete, decidable

and has an efficient model checking procedure.
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1 INTRODUCTION
In our paperwe present a logic for reasoning about resource bounded

agents who might purchase new information from a reliable source

but do not necessarily have enough budget resources.

From a technical perspective, we propose a multi-agent Kripke-

style semantics, inwhich propositional formulas have (non-negative)

costs and agents have (non-negative) budgets, i.e. amounts of avail-

able resources. In order to deal with costs and budgets in our lan-

guage, we use linear inequalities initially introduced in [33] for
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reasoning about probabilities. These inequalities allow us to formu-

late statements about formulas’ costs, agents’ budgets, and their

comparisons explicitly as formulas of our language. We also use

standard epistemic primitives for individual and common knowl-

edge [34]. Combined with linear inequalities, these primitives allow

us to express statements of the form “agent 𝑖 knows that her budget

is at least 𝑘", “agent 𝑗 knows that the cost of𝐴 is lower than the cost

of 𝐵, but 𝑗 does not know the cost of 𝐴", “it is common knowledge

among group 𝐺 that the joint budget of another group 𝐷 is lower

than the cost of 𝐴", etc. Finally, we introduce a dynamic operator

in the vein of dynamic epistemic logic (DEL) [49] for (group) semi-

public queries. This operator assumes that a group of agents𝐺 may

perform the following action. Let 𝐴 be some propositional formula

and 𝜑 be a formula of our logic introduced below. We assume that

there is a reliable source of information, such that𝐺 may perform a

query to this source, ask “Is 𝐴 true?" and receive a correct answer:

either ’Yes’ or ’No’. Once this answer is received, 𝜑 holds. Such

queries are semi-public in the sense that the answer is private, i.e.

available to members of 𝐺 only, but the very fact of the query is

public, i.e. other agents from AG −𝐺 (where AG is the set of all

agents) observe the fact that 𝐺 has performed a query, but do not

observe the answer.

There is also an additional constraint in our framework: formula

𝐴 has a cost, and this cost can be different for different agents in

𝐺 . The first assumption captures a natural intuition that access to

the information is not always free, while the latter shows that this

access can be non-symmetric (or non-egalitarian) among agents.

For example, there can be premium access to a database, so the same

querymay have a lower cost for agents with this access; one labmay

have access to cheaper reagents than another, so it may perform

the same test spending less resources and so on. So, in this settings

it may be rational for agents to cooperate and optimize the amount

of resources they need to obtain a certain piece of knowledge. The

last assumption we introduce in this paper is that agents may share

resources in groups. Thus, if 𝐺 decides to perform a query 𝐴, they

identify the agent 𝑖 ∈ 𝐺 for whom the cost of this query is the

lowest and then share an equal amount of resources to perform

the query. Such group queries are expressed as an operator [?𝐴
𝐺
]𝜑

of our logic. This operator is inspired by the (dynamic) epistemic

logics of contingency [35, 48]. These logics focus on the notion of

‘knowing whether’, which clearly describes an epistemic attitude

of agents after the query [?𝐴
𝐺
]: all agents 𝑗 ∈ AG \ 𝐺 know that

all 𝑖 ∈ 𝐺 know whether 𝐴 is true. An earlier version of our logic

restricted to individual agents was proposed in [28]. The idea of

group updates in dynamic epistemic logic was proposed and studied

in, for example, [3, 5, 38, 39].
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This paper is organized as follows. In Section 2 we introduce the

language and models of our logic SPQ . In Section 3 we propose a

sound and complete axiomatisation for SPQ . In Section 4we provide

a polynomial time algorithm for solving the global model checking

problem for SPQ and demonstrate that the satisfiability problem

for SPQ is decidable. Finally, in Section 5 we overview existing

works in this field, and in Section 6 we discuss open problems and

possible directions for future work.

2 LOGIC OF SEMI-PUBLIC QUERIES
2.1 Language
At first, we need to fix a propositional language ℒ𝑃𝐿 . Let Prop
denote a countable set of propositional letters {𝑝, 𝑞, . . . }. Language
ℒ𝑃𝐿 is defined by the following grammar:

𝐴 ::= 𝑝 | ¬𝐴 | (𝐴 ∧𝐴) .
Here 𝑝 ∈ Prop, and all the usual abbreviations of propositional logic
(such as ⊤,⊥,→, and ∨) hold. Let AG = {𝑎1, . . . , 𝑎𝑘 } be a finite set
of agents. We fix a set of terms

Terms = {𝑐 (𝐴,𝑖 ) | 𝐴 ∈ ℒ𝑃𝐿, 𝑖 ∈ AG} ∪ {𝑏𝑖 | 𝑖 ∈ AG}
It contains a special term 𝑐 (𝐴,𝑖 ) for the cost of each propositional

formula 𝐴 for agent 𝑖 , and a term 𝑏𝑖 for the budget of each agent 𝑖 .

So, we assume that the same formula 𝐴 can have a different cost

for different agents. Now, we can define our language ℒSPQ .

Definition 2.1 (Language). The language ℒSPQ of Epistemic Logic
for Semi-Public Queries is defined recursively as follows

𝜑 ::= 𝑝 | (𝑧1𝑡1+· · ·+𝑧𝑛𝑡𝑛) ≥ 𝑧) | ¬𝜑 | (𝜑∧𝜑) | 𝐾𝑖𝜑 | 𝐶𝐺𝜑 | [?𝐴𝐺 ]𝜑,
where 𝑝 ∈ Prop, 𝑡1, . . . , 𝑡𝑛 ∈ Terms, 𝑧1, . . . , 𝑧𝑛, 𝑧 ∈ Z, 𝑖 ∈ AG, 𝐺 ⊆
AG, and 𝐴 ∈ ℒ𝑃𝐿 .

Here 𝐾𝑖𝜑 means “agent 𝑖 knows that 𝜑 is true", and 𝐶𝐺𝜑 means

“it is common knowledge among agents in𝐺 that 𝜑 is true". These are
two standard operators for epistemic logic [34]. Linear inequalities

of the form (𝑧1𝑡1+· · ·+𝑧𝑛𝑡𝑛) ≥ 𝑧 [33], in which only the terms 𝑐 (𝐴,𝑖 )
and 𝑏𝑖 from Terms can occur, allow us to reason about formulas’

costs and agents’ budgets explicitly. Finally, we interpret the dy-

namic operator [?𝐴
𝐺
]𝜑 as "after a group query by𝐺 whether formula

𝐴 is true, 𝜑 is true". This operator can alternatively be understood

as “if 𝐺 performs query 𝐴, they can achieve 𝜑".
The dual of 𝐾𝑖 is 𝐾̂𝑖𝜑 := ¬𝐾𝑖¬𝜑 . Abbreviation 𝐸𝐺𝜑 :=

∧
𝑖∈𝐺 𝐾𝑖𝜑

means “everybody in 𝐺 knows 𝜑". The dual for dynamic operator

is ⟨?𝐴
𝐺
⟩𝜑 := ¬[?𝐴

𝐺
]¬𝜑 . For linear inequalities we use the same

abbreviations as in [33]. Thus, wewrite 𝑡1−𝑡2 ≥ 𝑧 for 𝑡1+(−1)𝑡2 ≥ 𝑧,
𝑡1 ≥ 𝑡2 for 𝑡1−𝑡2 ≥ 0, 𝑡1 ≤ 𝑧 for −𝑡1 ≥ −𝑧, 𝑡1 < 𝑧 for ¬(𝑡1 ≥ 𝑧), and
𝑡1 = 𝑧 for (𝑡1 ≥ 𝑧) ∧ (𝑡1 ≤ 𝑧). A formula of the form 𝑡 ≥ 1

2
can be

viewed as an abbreviation for 2𝑡 ≥ 1, so we allow rational numbers

to appear in our formulas. Other Boolean connectives→,∨,↔,⊥
and ⊤ are defined in the standard way. In the rest of the paper we

slightly abuse the notation and write 𝑐𝑖 (𝐴) instead of 𝑐 (𝐴,𝑖 ) . We

denote the set of subformulas of a formula 𝜑 as Sub(𝜑) .
Thus, the static fragment of our languageℒSPQ (i.e. the fragment

without [?𝐴
𝐺
]𝜑) allows us to express statements of the form 𝑐𝑖 (𝑝 ∨

𝑞) ≥ 10 for “the cost of the query whether 𝑝 or 𝑞 is true for agent 𝑖 is
at least 10", 𝑏 𝑗 ≥ 3 for “the budget of agent 𝑗 is at least 3", 2𝑏 𝑗 = 𝑏𝑖
for "𝑖’s budget is twice as big as that of 𝑗", 𝐾𝑎 (𝑏𝑖 + 𝑏 𝑗 ) ≥ 𝑐𝑖 (𝑝 ∨ 𝑞)

for “agent 𝑎 knows that the joint budget of 𝑖 and 𝑗 is higher than the
cost of 𝑝 ∨ 𝑞 for agent 𝑖", etc. The dynamic operator can express

statements like [?(𝑝∨𝑞){𝑖, 𝑗 } ]𝐶{𝑖, 𝑗 }¬𝑝 meaning that “after a joint query
about 𝑝 ∨ 𝑞 by {𝑖, 𝑗} it is common knowledge among {𝑖, 𝑗} that 𝑝 is
false".

2.2 Semantics
Now we are ready to discuss the semantics for ℒSPQ formulas.

Models of our logic are basically Kripke-style models endowed

with Cost and Budget functions.

Definition 2.2 (Model). A model is a tuple ℳ = (𝑊, (∼𝑖 )𝑖∈AG,
Cost, Bdg, 𝑉 ), where
• 𝑊 is a non-empty set of states,
• ∼𝑖 ⊆ (𝑊 ×𝑊 ) is an equivalence relation for each 𝑖 ∈ AG,
• Cost : AG×𝑊 ×ℒ𝑃𝐿 −→ Q+∪{0} assigns the (non-negative)
cost to propositional formulas for each agent in each state,

• Bdg : AG ×𝑊 −→ Q+ ∪ {0} is the (non-negative) bugdet of
each agent at each state,

• 𝑉 : Prop −→ 2
𝑊

is a valuation of propositional variables.

Let 𝑃 (𝑤) := {𝑝 ∈ Prop | 𝑤 ∈ 𝑉 (𝑝)} be the set of all propositional
variables that are true in state 𝑤 . Moreover, let 𝑐>0 (𝑖,𝑤) := {𝐴 ∈
ℒ𝑃𝐿 | Cost𝑖 (𝑤,𝐴) > 0} be the set of all propositional formulas

with positive cost for agent 𝑖 and state𝑤 . We call a model finite, if all
of𝑊 ,

⋃
𝑤∈𝑊 𝑃 (𝑤), and⋃(𝑖,𝑤 ) ∈AG×𝑊 𝑐>0 (𝑖,𝑤) are finite. Given a

finite model ℳ we define the size of ℳ, denoted |ℳ|, as

|ℳ| := card(𝑊 ) +
∑︁
𝑖∈AG

card(∼𝑖 )+

+
∑︁

(𝑖,𝑤 ) ∈AG×𝑊
card(𝑐>0 (𝑖,𝑤)) +

∑︁
𝑤∈𝑊

card(𝑃 (𝑤))

We intentionally put as few restrictions on the Cost function as

possible to consider the most general case. Thus, our framework

allows us to model situations in which the cost of the same formula

is different for different agents and it can also be different across

different states in𝑊 for the same agent. Thus, the agent may be

unaware of the cost of some formula for herself as well as for other

agents. Another important point is how the costs of different for-

mulas must be related to each other [36]. The only two restrictions

we find important to enforce are that the cost of propositional tau-

tologies must be zero for all agents, and that the costs of similar
formulas must be the same. By similar formulas 𝐴 and 𝐵 (denoted

𝐴 ≈ 𝐵) we mean that 𝐴 ≈ 𝐵 iff 𝐴 ≡ 𝐵 or 𝐴 ≡ ¬𝐵, where 𝐴 ≡ 𝐵
denotes equivalent formulas: 𝐴 ≡ 𝐵 iff ⊢𝑃𝐿 𝐴↔ 𝐵. Formally, for all

𝑖 ∈ AG,𝑤 ∈𝑊 we require that

(C1) Cost𝑖 (𝑤,⊤) = 0,

(C2) 𝐴 ≈ 𝐵 implies Cost𝑖 (𝑤,𝐴) = Cost𝑖 (𝑤, 𝐵).
For the Bdg function we only assume that it is non-negative

for every agent. But the budget of each agent may be different

in different states of𝑊 , so in our framework agents may be un-

aware of their and others’ budgets. To better illustrate the proposed

semantics consider a simple example.

Example 2.3 (Telescope example). Three countries 𝑛,𝑚 and 𝑙 are

seeking to know a certain fact 𝑝 about the universe. If any of them

build a very expensive telescope, it will give them a correct answer.

Country 𝑛 is the richest among others having 15 abstract resources
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𝑤1

𝑝, 𝑏𝑚 = 10

𝑤3

𝑝,𝑏𝑚 = 9

𝑤2

¬𝑝,𝑏𝑚 = 10

𝑤4

¬𝑝, 𝑏𝑚 = 9

𝑙 ,𝑚
,𝑛

𝑙 ,𝑚
,𝑛

𝑙

𝑙

?
𝑝

{𝑚,𝑛}
======⇒

𝑤1

𝑝, 𝑏𝑚 = 0

𝑤2

¬𝑝, 𝑏𝑚 = 0

𝑙

ℳ ℳ?
𝑝

{𝑚,𝑛}

Figure 1: (Left)Modelℳ for Example 2.3. Themodel contains
four states𝑤1,𝑤2,𝑤3 and𝑤4, and we assume that𝑤1 is the ac-
tual one. Arrows represent epistemic equivalence classes for
agents 𝑙,𝑚 and 𝑛. Reflexive and transitive arrows are omitted
for readability. Formulas 𝑏𝑛 = 15, 𝑏𝑙 = 5, 𝑐𝑛 (𝑝) = 30, 𝑐𝑚 (𝑝) = 20

and 𝑐𝑙 (𝑝) = 30 hold in all four states, and we omit them from
the figure. (Right) Updated modelℳ?{𝑛,𝑚}𝑝 for Example 2.3.
Formulas 𝑏𝑙 = 5, 𝑐𝑛 (𝑝) = 30, 𝑐𝑚 (𝑝) = 20 and 𝑐𝑙 (𝑝) = 30 hold in
both𝑤1 and𝑤2 as before. But 𝑏𝑛 = 15 no longer holds, since
𝑛’s budget is decreased after update: 𝑏𝑛 − 𝑐𝑚 (𝑝 )

| {𝑛,𝑚} | = 5.

(𝑏𝑛 = 15). But due to some reasons, e.g. higher labour costs, it

requires the highest amount of resources 𝑐𝑛 (𝑝) = 30 to build a tele-

scope there. Country𝑚 has only 10 resources (𝑏𝑚 = 10), but it can

build a telescope for 𝑐𝑚 (𝑝) = 20, for example due to better logistics.

Country 𝑙 is the poorest country with only 𝑏𝑙 = 5 resources, while

the cost of a telescope is the same as for 𝑛, so 𝑐𝑙 (𝑝) = 30. Finally,

we assume that the costs of the telescope are known to all agents,

𝑛 and𝑚 know the budgets of each other as well as 𝑙 ’s budget. But

𝑙 is unaware of the exact budget of 𝑚: it considers both options

𝑏𝑚 = 10 and 𝑏𝑚 = 9 as possible ones.

The model of this example is depicted in Figure 1. In this example,

no single country has a sufficient budget to build the telescope, i.e.

to perform an individual query about 𝑝 . But there is still a way

for them to cooperate and build a telescope. If 𝑛 and𝑚 share their

resources, and𝑚 builds the telescope, then each of the countries𝑚

and 𝑛 can spend 10 resources to get the information about 𝑝 . This

procedure can be expressed by our dynamic operator [?𝑝{𝑛,𝑚} ].
Now we are ready to discuss the semantics of semi-public group

queries [?𝐴
𝐺
]. Recall that [?𝐴

𝐺
]𝜑 means “after a group query by 𝐺

whether a formula 𝐴 is true, 𝜑 is true”. We assume that each group

member receives the correct information about the truth of 𝐴 after

[?𝐴
𝐺
]. And we also assume that each group member spends equal

amount of resources on this query. But as we already mentioned,

the cost of 𝐴 can be different for different members of 𝐺 . So, it

is natural to assume that the lowest of these costs must be spent.

In other words, [?𝐴
𝐺
] query in a state 𝑤 can be described by the

following procedure: identify 𝑖 ∈ 𝐺 with the lowest cost of 𝐴, let

each member of 𝐺 transfer
𝐶𝑜𝑠𝑡𝑖 (𝑤,𝐴)
|𝐺 | resources to 𝑖 , then let 𝑖 ask

whether 𝐴 is true and tell the answer to all agents in 𝐺 .

More formally, let us abbreviate “the Budget Constraint of agent
𝑖 ∈ 𝐺 for the 𝐺 ’s query 𝐴" as

BC𝑖 (𝐺,𝐴) ≡
min𝑗∈𝐺 (𝑐 𝑗 (𝐴))

|𝐺 |
So, BC𝑖 (𝐺,𝐴) denotes the budget that would be sufficient for 𝑖 to

participate in a 𝐺 ’s group query whether 𝐴 is true.

We also denote the fact that “the Budget Constraint for the query
𝐴 for 𝐺 is Satisfied" as

BCS(𝐺,𝐴) ≡
∧
𝑖∈𝐺
(𝑏𝑖 ≥ BC𝑖 (𝐺,𝐴))

If BCS(𝐺,𝐴) holds, we say that the query [?𝐴
𝐺
] is realisable mean-

ing that each group member has enough resources to cooperate

according to our resource distribution rule
1
. Note that BCS(𝐺,𝐴)

is in fact a formula of SPQ:

BCS(𝐺,𝐴) ≡
∨
𝑗∈𝐺

(∧
𝑖∈𝐺

(
𝑐 𝑗 (𝐴) ≤ 𝑐𝑖 (𝐴) ∧ 𝑏𝑖 ≥

𝑐 𝑗 (𝐴)
|𝐺 |

))
Definition 2.4 (Updated Model). Given a modelℳ, a group𝐺 ⊆

AG and a formula 𝐴 ∈ ℒ𝑃𝐿 , an updated model ℳ′
is a tupleℳ′ =

(𝑊 ′, (∼′
𝑗
) 𝑗∈AG, Cost′, Bdg′, 𝑉 ′), where

• 𝑊 ′ = {𝑤 ∈𝑊 |ℳ,𝑤 ⊨ BCS(𝐺,𝐴)};
• ∼′

𝑗
= (𝑊 ′ ×𝑊 ′) ∩ ∼∗

𝑗
with

∼∗𝑗=
{
∼𝑗 if 𝑗 ∉ 𝐺,

∼𝑗
⋂(
( [𝐴]ℳ × [𝐴]ℳ)

⋃( [¬𝐴]ℳ × [¬𝐴]ℳ)) if 𝑗 ∈ 𝐺 ;

• Cost′
𝑗
(𝑤, 𝐵) = Cost𝑗 (𝑤, 𝐵), for all 𝐵 ∈ ℒ𝑃𝐿, 𝑗 ∈ AG;

• Bdg′𝑗 (𝑤) =
Bdg𝑗 (𝑤) −

min

𝑖∈𝐺
Cost𝑖 (𝑤,𝐴)
|𝐺 | , if 𝑗 ∈ 𝐺,

Bdg𝑗 (𝑤), if 𝑗 ∉ 𝐺,

• 𝑉 ′ (𝑝) = 𝑉 (𝑝) ∩𝑊 ′ for all 𝑝 ∈ Prop.
By [𝐴]ℳ we denote the set of states in𝑊 , such that each 𝑤 ∈
[𝐴]ℳ satisfies the formula 𝐴 in a sense of Definition 2.5.

Intuitively, an update [?𝐴
𝐺
] of a model ℳ firstly removes all

states of ℳ in which at least one agent in 𝐺 does not have a

sufficient amount of resources for a 𝐺 ’s query about 𝐴. This can

be justified by the fact that agents do not necessarily know others

budgets, but when they observe the fact that 𝐺 actually performs a

query 𝐴, it no longer makes sense to consider the states in which

BCS(𝐺,𝐴) does not hold as possible ones. Note also that when 𝐺

performs the semi-public query “is 𝐴 true?", it gets either ’Yes’ or
’No’ as an answer andwe consider this fact to be known by all agents.
Then, after the update, all agents in 𝐺 necessarily distinguish any

two states of ℳ that do not agree on the valuation of 𝐴. But since

the actual answer is available only to the agents from 𝐺 , epistemic

relations of other agents remain the same, only taking into account

that some states have been removed. This update does not affect

the costs of formulas and budgets of all agents outside of 𝐺 . The

budget of each 𝑖 ∈ 𝐺 decreases by the minimal cost of 𝐴 in the

group divided by the size of this group.

1
Note that linear inequalities in our language are capable enough to express alternative

resource distribution rules. For example, we can assume that according to another

rule BCS
′ (𝐺,𝐴) we pick the highest, but not the lowest cost among members of𝐺 .

This rule looks more arguable, but it is clearly expressible in SPQ . So, any expressible

BCS
′ (𝐺,𝐴) can be integrated in our framework with minimal changes.
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Returning to Example 2.3, consider the result of updating ℳ
with [?{𝑛,𝑚}𝑝] in Figure 1. After this update, both 𝑛 and 𝑚 will

know that 𝑝 is true, moreover it will be common knowledge among

them. Note that since 𝑙 is not a member of this group, she will

remain unaware of whether 𝑝 is true or not. But since the fact

that the telescope is built is public, 𝑙 will know that 𝑛 and𝑚 know

whether 𝑝 is true, denoted 𝐾𝑙 (𝐸{𝑛,𝑚}𝑝 ∨ 𝐸{𝑛,𝑚}¬𝑝). Moreover, 𝑙

will know that {𝑛,𝑚} has common knowledge whether 𝑝 is true,

denoted𝐾𝑙 (𝐶{𝑛,𝑚}𝑝∨𝐶{𝑛,𝑚}¬𝑝). This is why we call these queries
semi-public. Note also that budgets of 𝑛 and𝑚 are also decreased

by 10 according to the resource distribution rule.

We call two states 𝑥,𝑦 ∈𝑊 𝐺-reachable iff there is a sequence

of states 𝑤0, . . . ,𝑤𝑘 (where 𝑘 ≥ 1), such that 𝑤0 = 𝑥 and 𝑤𝑘 = 𝑦

and for all 0 ≤ 𝑗 ≤ 𝑘 − 1 there exists 𝑖 ∈ 𝐺 such that 𝑤 𝑗 ∼𝑖 𝑤 𝑗+1.
We denote the 𝐺-reachability relation as ∼𝐺 .

Definition 2.5 (Semantics). The truth ⊨ of a formula𝜓 ∈ ℒ(SPQ)
at a state𝑤 ∈𝑊 of a model ℳ is defined by induction:

ℳ,𝑤 ⊨ 𝑝 iff𝑤 ∈ 𝑉 (𝑝),
ℳ,𝑤 ⊨ ¬𝜑 iffℳ,𝑤 ⊭ 𝜑 ,
ℳ,𝑤 ⊨ 𝜑 ∧𝜓 iff ℳ,𝑤 ⊨ 𝜑 and ℳ,𝑤 ⊨ 𝜓 ,
ℳ,𝑤 ⊨ 𝐾𝑖𝜑 iff ∀𝑤 ′ ∈𝑊 :𝑤 ∼𝑖 𝑤 ′ ⇒ℳ,𝑤 ′ ⊨ 𝜑 ,
ℳ,𝑤 ⊨ 𝐶𝐺𝜑 iff ∀𝑤 ′ ∈𝑊 :𝑤 ∼𝐺 𝑤 ′ ⇒ℳ,𝑤 ′ ⊨ 𝜑 ,
ℳ,𝑤 ⊨ (𝑧1𝑡1 + · · · + 𝑧𝑛𝑡𝑛) ≥ 𝑧 iff (𝑧1𝑡 ′

1
+ · · · + 𝑧𝑛𝑡 ′𝑛) ≥ 𝑧, where for

1 ≤ 𝑘 ≤ 𝑛,

𝑡 ′
𝑘
=

{
Cost𝑖 (𝑤,𝐴), for 𝑡𝑘 = 𝑐𝑖 (𝐴)
Bdg𝑖 (𝑤), for 𝑡𝑘 = 𝑏𝑖 .

ℳ,𝑤 ⊨ [?𝐴
𝐺
]𝜑 iff ℳ,𝑤 ⊨ BCS(𝐺,𝐴) implies ℳ?

𝐴
𝐺 ,𝑤 ⊨ 𝜑 ,

where ℳ?
𝐴
𝐺 is an updated model in the sense of Definition 2.4.

SPQ provides us with tools for reasoning about coalition forma-

tion strategies to obtain the desirable knowledge by group queries.

As Example 2.3 demonstrates, sometimes no single agent has enough

resources to achieve certain knowledge, but this knowledge is still

achievable via cooperation. Moreover, in many situations not only

the choice of coalition for group query matters, but also the choice

of the right sequence of these queries. Thus, SPQ allows us to

reason about planning the order of queries as well.

3 A SOUND AND COMPLETE
AXIOMATISATION OF SPQ

The axiomatisation of SPQ is presented in Table 1. Axioms (I1)-(I6)

for linear inequalities were proposed in [33]. Axioms (K)-(C), (Nec𝑖 ),

(RC1) are standard axioms and inference rules for epistemic logic

with common knowledge 𝑆5𝐶 [34]. (B
+
)-(c
≈
) are axioms ensuring

all necessary properties of Bdg and Cost functions. Axioms (r𝑝 )–

(r𝐾2), (Rep), (RC2) are reduction-style axioms and rules for dynamic

operator [?𝐴
𝐺
]. In 𝑟≥ axiom,

( 𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧
) (𝐺,𝐴)

denotes

( 𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥

𝑧
)
, in which all occurrences of 𝑏𝑖 for 𝑖 ∈ 𝐺 among 𝑡1, . . . , 𝑡𝑘 are

replaced with (𝑏𝑖 −
𝑐 𝑗 (𝐴)
|𝐺 | ), where 𝑗 is the agent that occurs in

BCS(𝐺,𝐴), i.e. for whom the cost of 𝐴 is minimal:

∧
𝑘∈𝐺

𝑐 𝑗 (𝐴) ≤

𝑐𝑘 (𝑎). Soundness of (r𝑝 )–(r𝐾2) can be shown by a direct application

of the definition of semantics. For details see [27, A.1].

Theorem 3.1. The axiomatisation of SPQ is sound.

If there is a derivation of𝜑 from the axioms and rules of inference

of SPQ , we say that 𝜑 is a theorem of SPQ and write ⊢SPQ 𝜑 . We

write ⊢, when the logic we refer to is clear from the context.

Observe that the presence of reduction axioms for the dynamic

operator allows us to ‘translate away’ the dynamic operator thus

showing that SPQ without common knowledge is equally expressive
as SPQ without common knowledge and dynamic operators. The
completeness of SPQ without common knowledge follows trivially

from the completeness of SPQ without common knowledge and

dynamic operators [33].

Note that we do not have a complete reduction of SPQ to its

static fragment due to the presence of common knowledge [49, 50].

Indeed, we can show that SPQ is strictly more expressive than SPQ
without common knowledge by reusing the argument from, e.g.,

[49, Theorem 8.34] and setting all agents’ budgets to 0, and cost of

all propositional formulas to 1. So, the reduction argument does

not work for our completeness proof.

Moreover, SPQ is not compact due to the presence of common

knowledge. But even the 𝐶𝐺 -free fragment is not compact due to

the linear inequalities. Consider a set of SPQ-formulas: {𝑐𝑖 (𝐴) >
𝑛 | 𝑛 ∈ N}. It is easy to see that any finite subset of this set is

satisfiable while the set itself is not.

Theorem 3.2. SPQ is not compact.

For this reason, in the rest of this section we prove the weak com-
pleteness of SPQ . The proof is organised as follows. First, we define

a Fisher-Ladner [37] style closure 𝑐𝑙 (𝜑) for any SPQ-consistent for-

mula 𝜑 . Then we construct a finite canonical pre-model, in which

Cost andBdg functions are undefined and prove that such functions
satisfying (C1) and (C2) exist. It gives us a finite canonical model,

for which we prove the truth lemma and establish completeness.

Later, we use the bounded size of canonical model to prove that

SPQ is decidable.

Definition 3.3 (Closure). Let 𝑐𝑙 (𝜑) be the smallest set of formulas

such that

(1) 𝑐𝑙 (𝜑) contains Sub(𝜑), i.e. all subformulas of 𝜑 ;

(2) 𝑐𝑙 (𝜑) is closed under single negation: if𝜓 ∈ 𝑐𝑙 (𝜑) and𝜓 does

not start with ¬, then ¬𝜓 ∈ 𝑐𝑙 (𝜑);
(3) (𝑏𝑖 ≥ 0) ∈ 𝑐𝑙 (𝜑), for each agent 𝑖 ∈ AG;
(4) (𝑐𝑖 (𝐴) ≥ 0) ∈ 𝑐𝑙 (𝜑), for each 𝑖 ∈ AG and each 𝐴 ∈ 𝑐𝑙 (𝜑);
(5) 𝑐𝑖 (⊤) = 0 ∈ 𝑐𝑙 (𝜑),
(6) 𝑐𝑖 (𝐴) = 𝑐𝑖 (𝐵) ∈ 𝑐𝑙 (𝜑) for all 𝐴, 𝐵 ∈ 𝑐𝑙 (𝜑) s.t. 𝐴 ≈ 𝐵;
(7) if 𝐶𝐺𝜓 ∈ 𝑐𝑙 (𝜑), then 𝐸𝐺 (𝜓 ∧𝐶𝐺𝜓 ) ∈ 𝑐𝑙 (𝜑);
(8) if [?𝐴

𝐺
]𝑝 ∈ 𝑐𝑙 (𝜑), then BCS(𝐺,𝐴) → 𝑝 ∈ 𝑐𝑙 (𝜑);

(9) if [?𝐴
𝐺
]
( 𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧
)
∈ 𝑐𝑙 (𝜑), then(

BCS(𝐺,𝐴) →
( 𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧
) (𝐺,𝐴) ) ∈ 𝑐𝑙 (𝜑);

(10) if [?𝐴
𝐺
]¬𝜓 ∈ 𝑐𝑙 (𝜑), then (BCS(𝐺,𝐴) → ¬[?𝐴

𝐺
]𝜓 ) ∈ 𝑐𝑙 (𝜑);

(11) if [?𝐴
𝐺
] (𝜒 ∧𝜓 ) ∈ 𝑐𝑙 (𝜑), then [?𝐴

𝐺
]𝜒 ∧ [?𝐴

𝐺
]𝜓 ∈ 𝑐𝑙 (𝜑);

(12) if [?𝐴
𝐺
]𝐾𝑗𝜓 ∈ 𝑐𝑙 (𝜑), where 𝑗 ∉ 𝐺 , then

BCS(𝐺,𝐴) → 𝐾𝑗 [?𝐴𝐺 ]𝜓 ∈ 𝑐𝑙 (𝜑);
(13) if [?𝐴

𝐺
]𝐾𝑖𝜓 ∈ 𝑐𝑙 (𝜑), where 𝑖 ∈ 𝐺 , then BCS(𝐺,𝐴) →

→ ∧
𝐴′∈{𝐴,¬𝐴}

( (
𝐴′ → 𝐾𝑖 (𝐴′ → [?𝐴𝐺 ]𝜓 )

) )
∈ 𝑐𝑙 (𝜑);
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Axioms:
(Taut) All propositional tautologies

(I1) (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑐) ↔ (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 + 0𝑡𝑘+1 ≥ 𝑐)

(I2) (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑐) → (
𝑘∑
𝑖=1

𝑎 𝑗𝑖 𝑡 𝑗𝑖 ≥ 𝑐),

where 𝑗1, . . . , 𝑗𝑘 is a permutation of 1, . . . , 𝑘

(I3) (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑐) ∧ (
𝑘∑
𝑖=1

𝑎′
𝑖
𝑡𝑖 ≥ 𝑐′) →

→
𝑘∑
𝑖=1
(𝑎𝑖 + 𝑎′𝑖 )𝑡𝑖 ≥ (𝑐 + 𝑐

′)

(I4) (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑐) ↔ (
𝑘∑
𝑖=1

𝑑𝑎𝑖𝑡𝑖 ≥ 𝑑𝑐) for 𝑑 > 0

(I5) (𝑡 ≥ 𝑐) ∨ (𝑡 ≤ 𝑐)
(I6) (𝑡 ≥ 𝑐) → (𝑡 > 𝑑), where 𝑐 > 𝑑
(K) 𝐾𝑖 (𝜑 → 𝜓 ) → (𝐾𝑖𝜑 → 𝐾𝑖𝜓 )
(T) 𝐾𝑖𝜑 → 𝜑

(4) 𝐾𝑖𝜑 → 𝐾𝑖𝐾𝑖𝜑

(5) ¬𝐾𝑖𝜑 → 𝐾𝑖¬𝐾𝑖𝜑
(C) 𝐶𝐺𝜑 → 𝐸𝐺 (𝜑 ∧𝐶𝐺𝜑)
(B
+
) 𝑏𝑖 ≥ 0

(c
+
) 𝑐𝑖 (𝐴) ≥ 0

(c
⊤
) 𝑐𝑖 (⊤) = 0

(c
≈
) 𝑐𝑖 (𝐴) = 𝑐𝑖 (𝐵) if 𝐴 ≈ 𝐵

(r𝑝 ) [?𝐴
𝐺
]𝑝 ↔ (BCS(𝐺,𝐴) → 𝑝)

(r≥ ) [?𝐴
𝐺
]
( 𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧
)
↔

↔
(
BCS(𝐺,𝐴) →

( 𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧
) (𝐺,𝐴) )

(r¬) [?𝐴
𝐺
]¬𝜑 ↔ BCS(𝐺,𝐴) → ¬[?𝐴

𝐺
]𝜑

(r∧) [?𝐴
𝐺
] (𝜑 ∧𝜓 ) ↔ [?𝐴

𝐺
]𝜑 ∧ [?𝐴

𝐺
]𝜓

(r𝐾1) [?𝐴
𝐺
]𝐾𝑗𝜑 ↔ BCS(𝐺,𝐴) → 𝐾𝑗 [?𝐴𝐺 ]𝜑 , for 𝑗 ∉ 𝐺

(r𝐾2) [?𝐴
𝐺
]𝐾𝑖𝜑 ↔ BCS(𝐺,𝐴) →

→ ∧
𝐴′∈{𝐴,¬𝐴}

( (
𝐴′ → 𝐾𝑖 (𝐴′ → [?𝐴𝐺 ]𝜑)

) )
, for 𝑖 ∈ 𝐺

Rules:
(MP) from 𝜑 and 𝜑 → 𝜓 , infer𝜓

(Nec𝑖 ) from 𝜑 infer 𝐾𝑖𝜑

(RC1) from 𝜑 → 𝐸𝐺 (𝜑 ∧𝜓 ), infer 𝜑 → 𝐶𝐺𝜓

(Rep) from 𝜑 ↔ 𝜓 , infer

[?𝐴
𝐺
]𝜑 ↔ [?𝐴

𝐺
]𝜓 for any 𝐴 ∈ ℒ𝑃𝐿

(RC2) from 𝜒 → [?𝐴
𝐺
]𝜓 and (𝜒 ∧ BCS(𝐺,𝐴)) →

→ ∧
𝐴′∈{𝐴,¬𝐴}

(𝐴′ → 𝐸𝐻∩𝐺 (𝐴′ → 𝜒)) ∧ 𝐸𝐻\𝐺 𝜒 ,

infer 𝜒 → [?𝐴
𝐺
]𝐶𝐻𝜓

Table 1: Proof system for SPQ.

(14) if [?𝐴
𝐺
]𝐶𝐺𝜓 ∈ 𝑐𝑙 (𝜑), then {[?𝐴𝐺 ]𝐾𝑖𝐶𝐺𝜓 | 𝑖 ∈ 𝐺} ⊆ 𝑐𝑙 (𝜑).

This construction guarantees that 𝑐𝑙 (𝜑) is non-empty and finite

as well as the set of all maximal consistent subsets of 𝑐𝑙 (𝜑). Note
also that |𝑐𝑙 (𝜑) | is polynomial in |𝜑 |, where |𝜑 | = |Sub(𝜑) |.

Now we construct a finite canonical pre-model which does not

(yet) contain Cost and Bdg functions.

Definition 3.4 (Canonical pre-model). Given a SPQ-consistent

formula 𝜑 , let a canonical pre-model for 𝜑 be a tuple

ℳ𝑐𝑝 = (𝑊 𝑐 , {∼𝑐𝑖 }𝑖∈AG,𝑉
𝑐 ),where

• 𝑊 𝑐
is the set of all maximal SPQ-consistent subsets of 𝑐𝑙 (𝜑);

• 𝑥 ∼𝑐
𝑖
𝑦 iff for all formulas 𝜓 ∈ 𝑐𝑙 (𝜑), it holds that 𝐾𝑖𝜓 ∈ 𝑥

iff 𝐾𝑖𝜓 ∈ 𝑦;
• 𝑤 ∈ 𝑉 𝑐 (𝑝) iff 𝑝 ∈ 𝑤 , for each 𝑝 ∈ 𝑐𝑙 (𝜑).

Next we need to prove the existence of appropriate Cost and
Bdg functions.

Lemma 3.5. There exist Cost𝑐 and Bdg𝑐 functions, such that for

all (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧) and all𝑤 ∈𝑊 𝑐 it holds that (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧) ∈ 𝑤 iff

𝑘∑
𝑖=1

𝑎𝑖𝑡
′
𝑖
≥ 𝑧, where

𝑡 ′
𝑘
=

{
Cost𝑐

𝑖
(𝑤,𝐴), for 𝑡𝑘 = 𝑐𝑖 (𝐴)

Bdg𝑐
𝑖
(𝑤), for 𝑡𝑘 = 𝑏𝑖

Proof. Since every state𝑤 ∈𝑊 𝑐
is SPQ-consistent, the set of

all linear inequalities contained in𝑤 is satisfiable, i.e. has at least

one solution, due to (I1)-(I6) [33]. Then we can construct functions

Cost𝑐
𝑖
(𝑤,𝐴) andBdg𝑐

𝑖
(𝑤) that agreewith this solution: for formulas

𝐴 ∈ ℒ𝑃𝐿 such that 𝑐𝑖 (𝐴) occurs in 𝑐𝑙 (𝜑), we put Cost𝑐𝑖 (𝑤,𝐴) to be

the rational that corresponds to 𝑐𝑖 (𝐴) in that solution; for other

formulas 𝐵 ∈ ℒ𝑃𝐿 , if 𝐵 ≈ 𝐴 for some formula 𝐴 ∈ 𝑐𝑙 (𝜑), then we

put Cost𝑐
𝑖
(𝑤, 𝐵) := Cost𝑐

𝑖
(𝑤,𝐴). Thus we can enforce that for all

𝑤 ∈𝑊 𝑐
and all 𝐴 ∈ ℒ𝑃𝐿 such that 𝑐𝑖 (𝐴) ∈ 𝑐𝑙 (𝜑) it holds that

(1) Cost𝑐
𝑖
(𝑤,𝐴) ≥ 0 for all 𝑖 ∈ AG and all formulas 𝐴 ∈ ℒ𝑃𝐿 such

that 𝐴 occurs in 𝑐𝑙 (𝜑) by the construction of 𝑐𝑙 (𝜑) and (𝑐+) axiom,

(2) Cost𝑐
𝑖
(𝑤,⊤) = 0, by the construction of 𝑐𝑙 (𝜑) and (𝑐⊤) axiom,

(3) Cost𝑐
𝑖
(𝑤,𝐴) = Cost𝑐

𝑖
(𝑤, 𝐵) for all 𝐴, 𝐵 ∈ ℒ𝑃𝐿 such that 𝐴 ≈ 𝐵,

by (𝑐≈) axiom.

Similarly, we construct Bdg𝑐
𝑖
(𝑤) functions in accordance with

the existing solution of linear inequalities contained in 𝑤 . This

construction is well-defined, and for any𝑤 ∈𝑊 𝑐
and any 𝑖 ∈ AG,

it holds that Bdg𝑐
𝑖
(𝑤) ≥ 0 by (𝐵+) axiom and the construction of

𝑐𝑙 (𝜑). □

This finishes the construction of a finite canonical model ℳ𝑐 =

(𝑊 𝑐, (∼𝑐
𝑖
)𝑖∈AG, Cost𝑐,Bdg𝑐,𝑉 𝑐 ). As we have already demonstrated,

this model satisfies (C1) and (C2). It is also clear that for all 𝑖 ∈ AG,
∼𝑐
𝑖
is an equivalence relation on𝑊 𝑐

(for details see [40]). Moreover,

all𝑤 ∈𝑊 𝑐
are deductively closed in 𝑐𝑙 (𝜑) [49, Lemma 7.31].

Lemma 3.6 (Truth Lemma). Let ℳ𝑐 be the canonical model for
𝜑 . For all𝜓 ∈ 𝑐𝑙 (𝜑),𝑤 ∈𝑊 𝑐

: ℳ𝑐 ,𝑤 ⊨ 𝜓 iff𝜓 ∈ 𝑤 .

Proof. It is relatively straightforward to define a complexity
measure 𝑐 for formulas 𝜑,𝜓 ∈ SPQ such that if 𝜑 is one of the

antecedents of (r𝑝 )–(r𝐾2) and 𝜓 is a corresponding consequent,

then 𝑐 (𝜑) > 𝑐 (𝜓 ). For details see [49] and [27, A.1].

Induction Hypothesis (IH). For all 𝑐 (𝜓 ) < 𝑐 (𝜑) and all maxi-

mal consistent subsets𝑤 of 𝑐𝑙 (𝜑), ℳ𝑐 ,𝑤 |= 𝜓 if and only if𝜓 ∈ 𝑤 .

Cases for𝜓 = 𝑝,¬,∧ and 𝐾𝑖𝜑
′
are trivial.

Case for 𝜓 = (𝑧1𝑡1 + · · · + 𝑧𝑛𝑡𝑛) ≥ 𝑧 follows straightforwardly
from the choice of Cost𝑐 and Bdg𝑐 in Lemma 3.5.

Case𝜓 = 𝐶𝐺𝜑
′
. We follow the proof from [40].
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Right-to-left. Assume 𝐶𝐺𝜑
′ ∈ 𝑤 . We will show by induction on

𝑘 that if 𝑤 ′ is ∼𝐺 -reachable from 𝑤 in 𝑘 steps then 𝜑 ′ ∈ 𝑤 ′ and
𝐶𝐺𝜑

′ ∈ 𝑤 ′. For the case of 𝑘 = 1 it is clear that if 𝐶𝐺𝜑
′ ∈ 𝑤 ′

then 𝐸𝐺 (𝜑 ′ ∧𝐶𝐺𝜑 ′) ∈ 𝑤 by the construction of 𝑐𝑙 (𝜑) and the fact

that 𝑤 is its maximally consistent subset. Then for all 𝑦 ∈ 𝑊 𝑐

if 𝑦 is ∼𝐺 -reachable from 𝑤 in one step, then both 𝜑 ′ ∈ 𝑦 and

𝐶𝐺𝜑
′ ∈ 𝑦 since for some 𝑖 ∈ AG it holds that ∀𝑦 : 𝑤 ∼𝑖 𝑦 and

𝐸𝐺 (𝜑 ′ ∧ 𝐶𝐺𝜑 ′) ∈ 𝑤 ⇒ (𝜑 ′ ∧ 𝐶𝐺𝜑 ′) ∈ 𝑦. Now we can prove the

induction step: assume our statement holds for 𝑘 and prove that it

also holds for 𝑘 + 1. Assume that𝑤 ′ ∈𝑊 𝑐
is ∼𝐺 -reachable from𝑤

in 𝑘 + 1 steps. Then exists 𝑡 ∈𝑊 𝑐
which is ∼𝐺 -reachable from𝑤 in

𝑘 steps and𝑤 ′ is 𝐺-reachable from 𝑡 in one step. By our induction

hypothesis, 𝐶𝐺𝜑
′ ∈ 𝑡 and 𝜑 ′ ∈ 𝑡 . By our first argument it is clear

that 𝜑 ′ ∈ 𝑤 ′. Then by our main induction hypothesis𝑀,𝑤 ′ ⊨ 𝜑 for

all𝑤 ′ which are ∼𝐺 -reachable from𝑤 . Then𝑀,𝑤 ⊨ 𝐶𝐺𝜑
′
.

Left-to-right. Assume𝑀,𝑤 ⊨ 𝐶𝐺𝜑
′
. Note that every 𝑦 ∈𝑊 𝑐

con-

tains a finite set of formulas. Then we can write their conjunction in

our language: 𝜑𝑦 . Let 𝜒 =
∨

𝑦∈{𝑤 |𝑀,𝑤⊨𝐶𝐺𝜑
′ }
𝜑𝑦 . Now it is easy to see

that the following statements hold: ⊢SPQ 𝜑𝑤 → 𝜒 , ⊢SPQ 𝜒 → 𝜑 ′,
⊢SPQ 𝜒 → 𝐸𝐺 𝜒 . It follows straightforwardly that ⊢ 𝜑𝑤 → 𝐶𝐺𝜑

′
,

and hence 𝐶𝐺𝜑
′ ∈ 𝑤 . Otherwise it would hold that ¬𝐶𝐺𝜑 ′ ∈ 𝑤

which would imply inconsistency of𝑤 .

Case 𝜓 = [?𝐴
𝐺
]𝜑 ′. Subcases for 𝜓 = [?𝐴

𝐺
]𝑝 , 𝜓 = [?𝐴

𝐺
]¬𝜑 ′, 𝜓 =

[?𝐴
𝐺
]𝜑 ′ ∧ 𝜓 and [?𝐴

𝐺
]𝐾𝑖𝜑 ′ follow from the construction of 𝑐𝑙 (𝜑),

and the IH that 𝑐 ( [?𝐴
𝐺
]𝜑 ′) > 𝑐 (𝜒), where 𝜒 is a consequent of one

of the axioms (r𝑝 )-(r𝐾2).

Subcase𝜓 = [?𝐴
𝐺
]𝐶𝐻𝜑 ′.

Right-to-left. Suppose that [?𝐴
𝐺
]𝐶𝐻𝜑 ′ ∈ 𝑤 and 𝑤 ∼?

𝐴
𝐺

𝐻
𝑤 ′. By defi-

nition, 𝑤 ∼?
𝐴
𝐺

𝐻
𝑤 ′ means that there is a finite path 𝑤 ∼?

𝐴
𝐺

𝑖1
𝑤1 ∼

?
𝐴
𝐺

𝑖2

𝑤2 ∼
?
𝐴
𝐺

𝑖3
· · · ∼?

𝐴
𝐺

𝑖𝑛
𝑤𝑛 = 𝑤 ′ such that 𝑖1, . . . , 𝑖𝑛 ∈ 𝐻 . We first prove

that for𝑘 ∈ {1, ..., 𝑛} it holds that [?𝐴
𝐺
]𝐶𝐻𝜑 ′ ∈ 𝑤𝑘 and [?𝐴𝐺 ]𝜑

′ ∈ 𝑤𝑘 ,
where𝑤𝑘 = 𝑤 . For this, for each ∼𝑖𝑘 we need to distinguish cases,

where 𝑖𝑘 ∈ 𝐻 −𝐺 and 𝑖𝑘 ∈ 𝐻 ∩𝐺 .
First, let us consider the case 𝑖 ∈ 𝐻 −𝐺 for any 𝑖 ∈ {𝑖1, ..., 𝑖𝑛}.

Assume that BCS(𝐺,𝐴) ∈ 𝑤𝑘 . Then, from items (14) and (12) of Def-

inition 3.3 by MP we have that 𝐾𝑖 [?𝐴𝐺 ]𝐶𝐻𝜑
′ ∈ 𝑤 . By the construc-

tion of the canonical model and the assumption that𝑤𝑘 ∼
?
𝐴
𝐺

𝑖
𝑤𝑘+1,

the latter implies that 𝐾𝑖 [?𝐴𝐺 ]𝐶𝐻𝜑
′ ∈ 𝑤𝑘+1. Since all states of the

canonical model are deductively closed, we get [?𝐴
𝐺
]𝐶𝐻𝜑 ′ ∈ 𝑤𝑘+1.

Finally, from that the fact that𝑤𝑘+1 is deductively closed, we also

have [?𝐴
𝐺
]𝜑 ′ ∈ 𝑤𝑘+1 due to 𝐶𝐻𝜑 ′ → 𝜑 ′ and the distributivity of

[?𝐴
𝐺
]2.
Second, we consider the case 𝑖 ∈ 𝐻 ∩𝐺 . By items (14) and (13) of

Definition 3.3, we have that [?𝐺
𝐴
]𝐾𝑖𝐶𝐻𝜑 ′ ∈ 𝑤𝑘 and

∧
𝐴′∈{𝐴,¬𝐴}

( (
𝐴′ →

𝐾𝑖 (𝐴′ → [?𝐴𝐺 ]𝐶𝐻𝜑
′)
) )
∈ 𝑤𝑘 . Without loss of generality, assume

that 𝐴 ∈ 𝑤𝑘 . Then by the deductive closure of 𝑤𝑘 we obtain

𝐾𝑖 (𝐴′ → [?𝐴𝐺 ]𝐶𝐻𝜑
′)
)
∈ 𝑤𝑘 . By the construction of the canoni-

cal model and the assumption that𝑤𝑘 ∼
?
𝐴
𝐺

𝑖
𝑤𝑘+1, the latter implies

that 𝐴′ → [?𝐴
𝐺
]𝐶𝐻𝜑 ′ ∈ 𝑤𝑘+1. Moreover, assumption𝑤𝑘 ∼

?
𝐴
𝐺

𝑖
𝑤𝑘+1

2
Can be shown by a straightforward application of the definition of semantics.

implies that 𝐴 ∈ 𝑤𝑘+1. Hence, we have [?𝐴
𝐺
]𝐶𝐻𝜑 ′ ∈ 𝑤𝑘+1, and

similarly to the previous case, [?𝐴
𝐺
]𝜑 ′ ∈ 𝑤𝑘+1.

Finally, we are ready to prove our main claim here. Recall that

we assume that [?𝐴
𝐺
]𝐶𝐻𝜑 ′ ∈ 𝑤 and 𝑤 ∼?

𝐴
𝐺

𝐻
𝑤 ′. We have shown

that [?𝐴
𝐺
]𝜑 ′ ∈ 𝑤𝑘 for all 𝑤𝑘 on the path 𝑤 ∼?

𝐴
𝐺

𝐻
𝑤 ′. By IH, this is

equivalent to the fact that ℳ𝑐 ,𝑤𝑘 |= [?𝐴𝐺 ]𝜑
′
for all states 𝑤𝑘 on

the path𝑤 ∼?
𝐴
𝐺

𝐻
𝑤 ′. The latter is equivalent to ℳ𝑐 ,𝑤 |= [?𝐴

𝐺
]𝐶𝐻𝜑 ′

by the semantics.

Left-to-right. Assume thatℳ𝑐 ,𝑤 |= [?𝐴
𝐺
]𝐶𝐻𝜑 ′, and let us define

𝑆 := {𝑤 ∈ 𝑊 𝑐 | ℳ𝑐 ,𝑤 |= [?𝐴
𝐺
]𝐶𝐻𝜑 ′} and 𝜒 :=

∨{𝑋 | 𝑋 ∈ 𝑆},
where𝑋 := 𝜑1∧· · ·∧𝜑𝑚 , such that {𝜑1, . . . , 𝜑𝑚} = 𝑋 . Clearly,𝑤 ∈ 𝑆 ,
and hence, due to𝑤 being deductively closed, 𝜒 ∈ 𝑤 . Moreover, it

is straightforward to prove that 𝜒 → [?𝐴
𝐺
]𝐶𝐻𝜑 ′ ∈ 𝑤 , and hence

[?𝐴
𝐺
]𝐶𝐻𝜑 ′ ∈ 𝑤 (see [49, Chapter 7.5] for details). □

Theorem 3.7 (Completeness). For any 𝜑 ∈ ℒSPQ , if 𝜑 is valid,
then ⊢ 𝜑 .

Proof. Assume towards a contradiction that ⊬ 𝜑 . This means

that ¬𝜑 is consistent, and thus it is in one of the maximal consis-

tent sets𝑤 built from 𝑐𝑙 (¬𝜑). For such a closure we can construct

the canonical model, such that ℳ𝑐 ,𝑤 |= ¬𝜑 by Lemma 3.6, or,

equivalently, ℳ𝑐 ,𝑤 ̸ |= 𝜑 . □

As a corollary of the canonical model construction, we immedi-

ately get the small model theorem.

Theorem 3.8 (Small Model Theorem). If 𝜑 ∈ ℒSPQ is satisfi-
able, then it is satisfied in a model with at most 2 |𝑐𝑙 (𝜑 ) | states.

4 COMPLEXITY PROFILE OF SPQ
In this section we explore the complexity of the model checking

and satisfiability problems of SPQ . In particular, we first establish

that model checking SPQ can be done in polynomial time. After

that, we show that SPQ is decidable with NEXPTIME upper bound.

4.1 Model checking
Definition 4.1. Given a finite ℳ = (𝑊, (∼𝑖 )𝑖∈AG,Cost,Bdg,𝑉 )

and a formula 𝜑 ∈ ℒSPQ , the global model checking problem for

SPQ consists in finding all𝑤 ∈𝑊 such that ℳ,𝑤 ⊨ 𝜑 .

In this section, we provide a polynomial time algorithm for solv-

ing the global model checking problem for SPQ . The algorithm

requires for a given 𝜑 a list of subformulas of 𝜑 ordered so that

group queries are evaluated before the formulas within the scope

of the dynamic modalities, i.e. in [?𝐴
𝐺
]𝜓 we would like to find the

extension of𝐴 first, and only then the extension of𝜓 . In such a way

we can simulate the effects of queries before checking the formulas

that may be impacted by them.

Let some 𝜑 ∈ ℒSPQ be given. First, we create a list 𝑠𝑢𝑏 (𝜑) of
subformulas of 𝜑 that also includes modalities [?𝐴

𝐺
] occurring in

𝜑 . After that we label each𝜓 ∈ 𝑠𝑢𝑏 (𝜑) by a sequence of dynamic

modalities inside the scope of which it appears. Finally, we order

the list in the following way. For𝜓𝜎 and 𝜒𝜏 with (possibly empty)

labellings 𝜎 and 𝜏 ,𝜓𝜎 precedes 𝜒𝜏 if and only if
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• 𝜓𝜎 and 𝜒𝜏 occur in modalities [?𝐴
𝐺
], and 𝜎 < 𝜏 (i.e. 𝜎 is a

proper prefix of 𝜏), or else

• 𝜓𝜎 appears in some [?𝐴
𝐺
], and 𝜒𝜏 does not, or else

• 𝜓𝜎 is of the form [?𝐴
𝐺
], and 𝜒𝜏 is not, or else

• neither𝜓𝜎 nor 𝜒𝜏 appear in any [?𝐴
𝐺
], and 𝜏 < 𝜎 , or else

• both𝜓𝜎 and 𝜒𝜏 are of the form [?𝐴
𝐺
], and 𝜎 < 𝜏 , or else

• 𝜎 = 𝜏 , and𝜓𝜎 is a part of 𝜒𝜏 , or else

• 𝜓 appears to left of 𝜒 in 𝜑 .

As an example, let 𝜑 := [?𝑝
𝐺
] [?𝑝∨𝑞

𝐻
]𝐶𝐺𝑝 . The ordered list 𝑠𝑢𝑏 (𝜑)

would look as follows:

{𝑝, [?𝑝
𝐺
], 𝑝 [?

𝑝

𝐺
] , 𝑞 [?

𝑝

𝐺
] , (𝑝 ∨ 𝑞) [?

𝑝

𝐺
] , 𝑝 [?

𝑝

𝐺
],[?𝑝∨𝑞

𝐻
] ,

(𝐶𝐺𝑝) [?
𝑝

𝐺
],[?𝑝∨𝑞

𝐻
] , ( [?𝑝

𝐺
]𝐶𝐺𝑝) [?

𝑝∨𝑞
𝐻
] , 𝜑}.

Note that the size of 𝑠𝑢𝑏 (𝜑) is bounded by 𝒪( |𝜑 |).
Our global model checking Algorithm 1 for SPQ is based on

the labelling algorithm for epistemic logic (see, e.g., [40]). Thus we

omit all Boolean and some epistemic cases for brevity, and provide

only the case of common knowledge as an example. The technical

complexity in our algorithm is that for the case of the dynamic

modalities, we should keep track of which states and relations are

preserved after a sequence of updates. Moreover, we also create

a polynomial number of additional budget variables to store the

remaining budget of agents after each query.

Algorithm 1 An algorithm for global model checking for SPQ
1: procedure GlobalSPQ(𝑀,𝜑)

2: for all𝜓𝜎 ∈ 𝑠𝑢𝑏 (𝜑 ) do
3: for all 𝑤 ∈𝑊 do
4: case𝜓𝜎 = 𝐶𝐺 𝜒

𝜎

5: check ← true
6: for all (𝑤, 𝑣) ∈ 𝑅𝐺 do
7: if (𝑤, 𝑣) is labelled with 𝜎 then
8: if 𝑣 is not labelled with 𝜒𝜎 then
9: check ← false
10: break
11: if check then
12: label 𝑤 with𝐶𝐺 𝜒

𝜎

13: case𝜓𝜎 = [?𝐴
𝐺
]𝜎

14: for all 𝑖 ∈ AG do
15: for all (𝑣,𝑢 )𝜎 ∈∼𝑖 do
16: if ℳ, 𝑣 |= 𝐵𝐶𝑆𝜎 (𝐺,𝐴) andℳ,𝑢 |= 𝐵𝐶𝑆𝜎 (𝐺,𝐴) then
17: for all 𝑗 ∈ 𝐺 do
18: 𝐵𝑑𝑔𝑗 (𝑣)𝜎 ← 𝐵𝑑𝑔

?𝐺𝐴

𝑗
(𝑣)

19: 𝐵𝑑𝑔𝑗 (𝑢 )𝜎 ← 𝐵𝑑𝑔
?𝐺𝐴

𝑗
(𝑢 )

20: if 𝑖 ∉ 𝐺 then
21: label (𝑣,𝑢 ) with 𝜎, [?𝐴

𝐺
]

22: else
23: if 𝑣 is labelled with𝐴 iff 𝑢 is labelled with𝐴 then
24: label (𝑣,𝑢 ) with 𝜎, [?𝐴

𝐺
]

25: case𝜓𝜎 = ( [?𝐴
𝐺
]𝜒 )𝜎

26: if 𝑤 is labelled with 𝜒
𝜎,[?𝐴

𝐺
] then

27: label 𝑤 with ( [?𝐴
𝐺
]𝜒 )𝜎

28: end procedure

The algorithmmimics the definition of semantics, and its correct-

ness can be shown by induction on 𝜑 . The preparation of ordered

list 𝑠𝑢𝑏 (𝜑) takes 𝒪( |𝜑 |2) number of steps. On line 16, 𝐵𝐶𝑆𝜎 (𝐺,𝐴)
is the budget constraint for query 𝐴 for agents from 𝐺 after the

sequence of updates 𝜎 . Respective budgets of agents after updates

are calculated on lines 18 and 19. Observe, that computing 𝐵𝑑𝑔 𝑗 (𝑣)𝜎
and 𝐵𝐶𝑆𝜎 (𝐺,𝐴) requires only arithmetical computation with val-

ues of all variables known. This can be done in polynomial time.

Each computation of 𝐵𝐶𝑆𝜎 is called for 𝒪( |𝜑 | · |𝑊 | · |AG| · | ∼ |)
times. Finally, each computation of some 𝐵𝑑𝑔 𝑗 (𝑣)𝜎 is called for

𝒪( |𝜑 | · |𝑊 | · |AG|2 · | ∼ |) times. Since in the worst case, 𝐵𝐶𝑆𝜎 and

𝐵𝑑𝑔 𝑗 (𝑣)𝜎 require a polynomial number of steps, model checking

SPQ is in polynomial time.

Theorem 4.2. Model checking SPQ is in P.

4.2 Decidability
Definition 4.3. Given a formula of 𝜑 ∈ ℒSPQ , the satisfiability

problem for SPQ consists in determining whether there is a pointed

model ℳ,𝑤 such that ℳ,𝑤 |= 𝜑 .

Theorem 4.4 (Decidability). The satisfiability problem for SPQ
is decidable.

Proof. The decidability of SPQ follows from the small model

theorem (Theorem 3.8). This theorem states that a formula 𝜑 ∈
ℒSPQ is satisfiable iff it is satisfiable in a model 𝑀 with at most

2
|𝑐𝑙 (𝜑 ) |

states. Usually, like in the cases of PDL [37] or 𝑆5𝐶𝑛 [40],

there are finitely many such models, so it is sufficient to enumerate

them and check whether 𝜑 holds in any. But in our case there are

infinitely many choices of Bdg and Cost functions, so there are

infinitely many models with at most 2
|𝑐𝑙 (𝜑 ) |

states. In order to

overcome this difficulty, we apply the technique used in [24]. The

idea is to consider pre-structures 𝑀′ = (𝑊, (∼𝑖 )𝑖∈AG, 𝑃∗,𝑉 𝑐 ), in
which 𝑃∗ is a ‘pseudo’ function that emulates actual Cost and Bdg

for all subformulas of 𝜑 of the form

𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧:

𝑃∗ :𝑊 × (
𝑘∑︁
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧) −→ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}.

Then we can define a satisfiability relation ⊨′, similarly to Defini-

tion 2.5 in all cases except (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧). We say that

𝑀′,𝑤 ⊨′ (
𝑘∑︁
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧) iff 𝑃∗ (𝑤,
𝑘∑︁
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧) = 𝑡𝑟𝑢𝑒.

Since there are only finitely many such pre-structures with ≤
2
|𝑐𝑙 (𝜑 ) |

states, we can enumerate them all and check if 𝜑 holds in

any of𝑀′’s according to ⊨′. If it does, then we need to check if 𝑃∗

can be replaced with (Cost,Bdg). For this purpose we define a set
of linear inequalities 𝐼 (𝑤) for each state𝑤 ∈ 𝑀′, such that

• (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧) ∈ 𝐼 (𝑤) iff 𝑃∗ (𝑤,
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧) = 𝑡𝑟𝑢𝑒;

• (
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 < 𝑧) ∈ 𝐼 (𝑤) iff 𝑃∗ (𝑤,
𝑘∑
𝑖=1

𝑎𝑖𝑡𝑖 ≥ 𝑧) = 𝑓 𝑎𝑙𝑠𝑒;

• 𝑐𝑖 (𝐴) ≥ 0, 𝑏𝑖 ≥ 0, 𝑐𝑖 (⊤) = 0 ∈ 𝐼 (𝑤) for all 𝐴 ∈ 𝑐𝑙 (𝜑) ∩ ℒ𝑃𝐿 ,
𝑖 ∈ AG;
• 𝑐𝑖 (𝐴) = 𝑐𝑖 (𝐵) ∈ 𝐼 (𝑤) for all 𝐴 ∈ 𝑐𝑙 (𝜑) ∩ ℒ𝑃𝐿 , s.t. 𝐴 ≈ 𝐵.

It remains to find at least one solution of such system of linear

inequalities to define (Cost,Bdg). But since a problem of solving

a system of linear inequalities is well-known to be decidable in

polynomial time [41], then given a pre-model 𝑀′ we can extend

it to a normal modelℳ according to Lemma 3.5 in finitely many

steps.
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Finally, given a 𝜑 , we can enumerate finite pre-models of size at

most 2
|𝑐𝑙 (𝜑 ) |

, solve the corresponding systems of linear inequalities

to extend these pre-models to normal models, and check whether 𝜑

is true in any of them. If yes, the formula is satisfiable, if not, then

𝜑 is unsatisfiable, since each satisfiable formula has a model of size

at most 2
|𝑐𝑙 (𝜑 ) |

.

This algorithm gives us a NEXPTIME upper-bound, because each

satisfiable formula 𝜑 has a model of exponential size in |𝜑 |. So, we
can guess an exponential model ℳ′

and a state 𝑤 of the model,

such that ℳ′,𝑤 ⊨ 𝜑 , which can be checked in polynomial time by

Theorem 4.2. □

We leave finding the precise complexity bounds for future work,

noting that the satisfiability problem for SPQ is EXPTIME-hard

from the EXPTIME-completeness of 𝑆5𝐶𝑛 [40].

5 RELATEDWORK
In the literature, there are several reasons to put resource con-

straints on agents. One may want to deal with non-omniscient

agents, and thus treat resources as limitations on their reasoning

abilities [31]. Similarly, [29] explores rational but non-omniscient

agents. The logics for agents as perfect reasoners who take time to

derive consequences of their knowledge were studied in [6, 7, 12]. In

a similar vein, [16] proposed a logic for reasoning about the forma-

tion of beliefs through perception or inference in non-omniscient

resource-bounded agents.

One may also want to constrain agents’ strategic abilities by

introducting costs of actions. Extensions of various strategic logics,

like alternating-time temporal logic [13] and coalition logic [44],

for resource bounded agents were proposed and studied in [8–

11, 20, 21, 26, 43].

Our work deals with knowledge and communication in the set-

tings, where information available to agents might be constrained

by their resources. In such settings, resources would be treated as

a cost of some ‘information mining’ process for agents. A similar

proposal introduced a logical system for reasoning about budget-

constrained knowledge [42]. This approach, however, deals with

resource bounded knowledge statically, while we introduce a DEL-

style framework. DEL-style logics with inferential actions that

require spending resources were studied in [23, 45, 46]. Alterna-

tively, one can also explore agents that can reason about epistemic

formulas only up to a specific modal depth as well as about public

announcements of bounded depth [14]. Finally, logics for resource-

bounded agents have also been of interest in the epistemic planning

community [18, 19, 30].

Finally, our work is also inspired by [32, 33], where linear in-

equalities were introduced to reason about probabilities. Linear

inequalities were also used in a probabilistic DEL setting [1]. An

alternative way to encode linear inequalities was proposed in [25].

6 DISCUSSION AND FUTUREWORK
In this paper we presented a dynamic epistemic logic for Semi-

Public Queries with Budgets and Costs (SPQ) and demonstrated

that this logic is complete, decidable and has an efficient model

checking procedure. We believe that these results can find their

applications in various fields of multi-agent systems like formal

verification, automated reasoning and epistemic planning.

In order to keep the generality of our framework we have tried

to impose as few semantic restrictions as possible. Thus, we allow

agents to be unaware of the costs of some formulas for themselves

as well as for other agents, and of their and others’ budgets. The

proposed framework, however, can be straightforwardly extended

to capture alternative modelling settings. Thus, one can add ax-

ioms like (A1) (𝑏𝑖 = 𝑘) → 𝐾𝑖 (𝑏𝑖 = 𝑘) and (A2) (𝑐𝑖 (𝐴) = 𝑘) →
𝐾𝑖 (𝑐𝑖 (𝐴) = 𝑘) to impose that all agents know their budget and how

much it would cost them to mine formulas. Some existing papers on

modelling resource bounded agents, e.g. [9], assume that resource

bounds should be represented as vectors (𝑟1, . . . , 𝑟𝑘 ) of costs of ac-
tions, where each 𝑟𝑙 ∈ (𝑟1, . . . , 𝑟𝑘 ) represents a specific resource. In
this paper, we deal with a single resource to keep the presentation

simple. However, one can also implement multiple resources in our

framework. Let 𝑐𝑙
𝑖
(𝐴) denote the amount of 𝑙 ’s resource required

from agent 𝑖 to make a query about𝐴 and 𝑏𝑙
𝑖
(𝐴) denote the amount

of 𝑙 ’s resource that agent 𝑖 has. Then, the cost of 𝐴 and the bud-

get of 𝑖 may be represented as two vectors (𝑐1
𝑖
(𝐴), . . . , 𝑐𝑘

𝑖
(𝐴)) and

(𝑏1
𝑖
, . . . , 𝑏𝑘

𝑖
) respectively. Now, it is relatively straightforward to

modify the proposed framework to deal with multiple resources.

Currently, SPQ allows only propositional formulas 𝐴 to occur

under [?𝐴
𝐺
]. The extension of SPQ , where any formula 𝜑 can occur

in [?𝜑
𝐺
] is a matter of future work. Apart from that, we also plan

to extend our framework and allow quantification over queries in

the spirit of logics of quantified announcements, e.g. APAL [15],

GAL [3], CAL [5, 38], and their versions with group knowledge

[2, 4]. Another important direction for future work is to consider

more complicated communicative actions (e.g. [17, 22, 47]) in our

settings. Finally, we would also like to find tight complexity bounds

for the SPQ satisfiability problem.
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