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ABSTRACT
We study elections where voters are faced with the challenge of

expressing preferences over an extreme number of issues under

consideration. This is largely motivated by emerging blockchain

governance systems, which include voters with different weights

and a massive number of community generated proposals. In such

scenarios, it is natural to expect that voters will have incomplete

preferences, as they may only be able to evaluate or be confident

about a very small proportion of the alternatives. As a result, the

election outcome may be significantly affected, leading to subopti-

mal decisions. Our central inquiry revolves around whether dele-

gation of ballots to proxies possessing greater expertise or a more

comprehensive understanding of the voters’ preferences can lead to

outcomes with higher legitimacy and enhanced voters’ satisfaction

in elections where voters submit incomplete preferences. To explore

this, we introduce a model where potential proxies advertise their

ballots over multiple issues, and each voter either delegates to a

seemingly attractive proxy or casts a ballot directly. We identify

necessary and sufficient conditions that could lead to a socially

better outcome by leveraging the participation of proxies. We ac-

company our theoretical findings with experiments on instances

derived from real datasets. Our results enhance the understanding

of the power of delegation towards improving election outcomes.
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1 INTRODUCTION
Broadly speaking, an election refers to a voting system in which

a set of participants express their preferences over a set of possi-

ble issues or outcomes, and those are aggregated into a collective

decision, typically with a socially desirable objective in mind. Be-

sides their “traditional” applications such as parliamentary elections

or referenda, elections often underpin the livelihood of modern

systems such as blockchain governance [11, 24] or participatory

budgeting [4, 9]. Quite often, voters are called to vote on an ex-

tremely high number of issues, rendering the accurate expression

of their preferences extremely challenging. For instance, the Car-

dano blockchain uses Project Catalyst (https://projectcatalyst.io)

to allocate treasury funds to community projects, and routinely

receives more than a thousand of proposals per funding round.

Another application comes from platforms of civic participation,

where the users express support on opinions or proposals [18]. An

unfortunate consequence of these election scenarios is that the

voters inevitably have a confident opinion only for a small number

of issues (henceforth proposals), as investing enough time and effort

to inform themselves on such a sheer volume of proposals is clearly

prohibitive. In turn, the “direct voting” outcome, even under the

best intentions, is likely to be ineffective in capturing the desires of

the society.

A well-documented possible remedy to this situation is to allow

for proxy voting [12], a system in which the voters may delegate

their votes to proxies. The idea is that those proxies have the time

and resources to study the different proposals carefully, and vote

on behalf of the voters they represent. This in fact captures voting

applications more broadly, where the reason for delegationmight be

a reluctance to express an opinion, lack of specialized knowledge, or

even limited interest. When those proxies are part of an electorate

together with other voters and proxies, the resulting system is

known as liquid democracy [10, 21]. Liquid democracy has been

scrutinized, with arguments presented in its favor [6, 17, 31] and

against it [10, 21]. At the same time, it is being employed in real-

world situations [29], including settings similar to the one studied

in the current work, like the Project Catalyst mentioned before.

A takeaway message from the ongoing debate around delegative

voting is that such processes might indeed be useful under the right

circumstances. Extending this line of thought and motivated by

the scenarios presented above, in this work we aim to identify the
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potential and limitations of proxy voting with regard to achieving

socially desirable outcomes in settings with incomplete votes, under

the classical Approval Voting rule. More precisely, we aim to charac-

terize what can be theoretically made possible through delegation,

and what remains impossible, even under idealized conditions.

1.1 Setting and Contribution
We focus on elections in which the aim is to choose one proposal

to be implemented from a range of multiple candidate proposals.

We introduce a model of proxy voting, where voters have intrinsic

approval preferences over all proposals, which are only partially

revealed or known to the voters themselves. A set of delegation

representatives (dReps) can then advertise ballots over the proposals

and the voters in turn may either delegate to a proxy, if there is suf-

ficient agreement (i.e., over a certain agreement threshold between

dRep’s advertised ballot and the voter’s revealed preferences), or

vote directly. The outcome of the election is the proposal with the

highest approval score, assembled by the score from the ballots of

the dReps (representing voters who delegated their vote) and the

voters that vote directly. The core question we pose follows:

“Is it possible for the dReps to advertise their preferences

appropriately such that the outcome of the election has an

approval score that is a good approximation of the best

possible approval score; which would be achievable if all

voters had full knowledge of their preferences?”

We study the question under a “Best-Case Scenario” that involves the

following assumptions, and, shortly, we will elaborate on why this

scenario is meaningful for deriving results in the general setting.

(1) The dReps are fully informed about the preferences of the voters,

i.e., they know exactly the vector of intrinsic preferences for

each voter.

(2) The dReps themselves do not have actual preferences and their

only goal is to achieve the best possible approximation of the

optimal approval score. To do so they can coordinate with each

other and advertise their types accordingly.

(3) When several proposals are tied for the winning position, ties

are broken in favor of those with the highest intrinsic score.

One should not of course expect all of these assumptions to apply in

practice: we would expect the dReps to be only partially informed

about voters’ preferences (e.g., via some probabilistic model) and

to exhibit some sort of rational behavior (e.g., needing to be ap-

propriately incentivized to advertise ballots that are aligned with

socially desirable outcomes). Still, studying the “best-case scenario”

is already instructive for results in all other regimes. In particular:

- Our negative results (inapproximability bounds) immediately carry

over to other settings as well, regardless of the choice of the

dReps’ information model, their rationality model, or the choice

of the tie-breaking rule. In other words, we show that certain

objectives are impossible, evenwhen a set of fully-informed dReps

coordinate to achieve the best outcome, hence they are certainly

impossible for any other meaningful setting.

- Our positive results (approximation guarantees) establish the lim-

its of the aforementioned impossibilities: if something is not

deemed impossible by our bounds, it should be the starting point

of investigations for an information and rationality model chosen

for the application at hand. Clearly, if our upper bounds estab-

lish that a certain number of dReps suffices to achieve a certain

approximation in the “best-case scenario”, one should expect a

slightly larger number of dReps to be needed in practice.

Our Results.We firstly present a strong impossibility, namely that

for any agreement threshold higher than 50%, the best achievable

approximation ratio is linear in the number of voters. On the posi-

tive side, we show that for an appropriate coherence notion of the

instance, which captures the commonalities of the set of proposals

that sets of voters are informed about, meaningful approximations

are possible. For the natural case of an agreement threshold of 50%,

we show that a single dRep is capable of achieving an approximation

factor of 3, whereas only 2 dReps are sufficient to elect the optimal

proposal. Most significantly, we present general theoretical upper

and lower bounds on the possible approximations, depending on

the agreement threshold, the number of dReps, and the coherence

of the instance. We complement our theoretical results with a set

of experiments using the MovieLens dataset [19], to measure the

effects of proxy voting on realistic incomplete preferences.

1.2 Related Work
We first comment on some works that are closer in spirit to ours.

Meir et al. [28] propose a model with a similar objective, but focus-

ing on the analysis of sortition, i.e., the approximation of the welfare

achieved by selecting a random small-size committee. In a related

direction, Cohensius et al. [12] analyze particular delegation mech-

anisms, under elections with samples of voters located randomly in

a metric space, according to some distribution. Our approach does

not consider any randomization, neither for the voting rule nor

for the preferences. Finally, Pivato and Soh [30] also consider the

performance of proxy voting, focusing on understanding when the

proxy-elected outcome coincides with the outcome of direct voting.

Again, the model of Pivato and Soh [30] is randomized, where the

voters delegate based on the probability of agreement to a proxy,

and not based on a deterministic distance function. Moreover, no

analysis of approximation guarantees is undertaken in the work of

Pivato and Soh [30]. Our work can be seen as one that contributes

to the corpus of findings in favor of proxy voting [6, 17, 31], albeit

in a markedly different manner.

There is significant work within the field of computational social

choice on elections with incomplete votes. One stream has focused

on the identification of possible and necessary winners by exploring

potential completions of incomplete profiles; see the work of Lang

[26] for an overview. Recent work has concentrated on the compu-

tational complexity of winner determination under various voting

rules within the framework of incomplete information [5, 20, 34].

Another direction has studied the complexity of centralized inter-

ventions to reduce uncertainty [1] (e.g., by educating a selected

set of voters or computing delegations via a centralized algorithm).

Furthermore, there has been an exploration of the effect of mini-

mizing the amount of information communicated [3, 22] as well as

of the interplay between voters’ limited energy and social welfare

[32]. Considerable attention has been devoted to the exploration

of efficient extensions of incomplete profiles to complete ones that

satisfy desirable properties [14, 25, 33]. A conceptually related area

focuses on distortion in voting, investigating the implications of
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applying rules to preferences that are less refined than the voters’

intrinsic preferences [2]. Beyond voting scenarios, similar solution

concepts have been explored in domains such as fair division [7],

hedonic games [23], and non-cooperative games [8].

2 FRAMEWORK AND DEFINITIONS
In the current section we formally describe the main attributes of

the election setting we study.

Proposals and Voters. Let 𝐶 = {1, 2, . . . ,𝑚} be a set of candidate
proposals for a single-winner election, where, evidently, for each

proposal there are exactly two options: to be elected or not. Let

also 𝑁 = {1, 2, . . . , 𝑛} be a set of voters responsible for determining

the elected proposal. Each voter 𝑖 ∈ 𝑁 is associated with approval

preferences 𝑣𝑖 ∈ {0, 1}𝑚 over the set of proposals; we refer those as

true or intrinsic preferences. Here, 1 and 0 are interpreted as “accept”

(or “support”) and “reject” (or “oppose”) a proposal, respectively.

Crucial to our model is the fact that voters do not actually know

their entire intrinsic preference vector, but only a subset of it; this

could be due to the fact that they have put additional effort into

researching only certain proposals to verify if they indeed support

them or not, but not necessarily all of them. Formally, we will say

that each voter 𝑖 has revealed preferences 𝑣̂𝑖 ∈ {0, 1,⊥}𝑚 , where ⊥
denotes that the voter does not have an opinion on the correspond-

ing proposal. As such, we have the following relations between

𝑣𝑖 and 𝑣̂𝑖 : (𝑣̂𝑖 ( 𝑗) = 𝑣𝑖 ( 𝑗)) ∨ (𝑣̂𝑖 ( 𝑗) = ⊥) ,∀𝑗 ∈ 𝐶. The collection of

proposals for which a voter 𝑖 has developed an opinion is referred

to as their revealed set, denoted by 𝑅𝑖 := { 𝑗 ∈ 𝐶 : 𝑣̂𝑖 ( 𝑗) = 𝑣𝑖 ( 𝑗)}.
Let𝑚𝑖 := |𝑅𝑖 |. Each voter 𝑖 also has an integer weight 𝑤𝑖 ; in our

work, it is without loss of generality to assume that𝑤𝑖 = 1 for all

𝑖 ∈ 𝑁 , as we can simply make𝑤𝑖 copies of voter 𝑖 (with the same

preferences), and all of our results go through verbatim.

dReps.A delegation representative (dRep) is a “special” voter capable

of attracting voters to delegate their votes to her, who participates in

the election with the combined weight of those voters. Consistently

with the “best-case scenario” motivation (see Section 1.1), we view

dReps as unweighted agents, devoid of personal preferences over

the proposals, responsible solely for facilitating the election of a

proposal with substantial voter support. For any proposal 𝑗 ∈ 𝐶 ,

every dRep has an advertised, “intended” vote (or type), 𝑡 ( 𝑗) ∈ {0, 1},
which is visible by the voters. We assume here that dReps present

votes for all proposals.
1
We will sometimes abuse the notation

and refer by 𝑡 both to the type vector of a dRep as well as to the

dRep itself. The distance between a voter 𝑖 and a dRep of type 𝑡 is

calculated using the Hamming distance function and is dependent

on the revealed preferences of 𝑖 and the advertised type of 𝑡 in

proposals that are revealed to 𝑖 . Formally, let 𝑡 |𝑖 be the projection
of the type 𝑡 to the proposals that belong to 𝑅𝑖 ; then we define the

distance between a voter 𝑖 and a dRep 𝑡 as 𝑑 (𝑖, 𝑡) := 𝐻 (𝑣̂𝑖 , 𝑡 |𝑖 ).

Agreement Threshold. For a voter to delegate their vote, they

have to agree with the dRep in a certain number of proposals. This is

captured by a threshold bound, any agreement above which results

in delegation. To make this formal, we will assume that voter 𝑖

delegates their vote to a dRep when their distance to the dRep’s

1
We could also allow dReps to abstain in some proposals, and this would not make

any difference in our setting.

type, taking into account only the voter’s revealed preferences, is at

most ⌊𝑚𝑖−𝑘𝑖
2

⌋, where 𝑘𝑖 is a parameter quantifying the reluctance of

voter 𝑖 to entrust their voting power to a proxy. Obviously 𝑘𝑖 ≤ 𝑚𝑖 ,

for every 𝑖 , and wewill mainly focus on scenarios in which all voters

have the same parameter, thus 𝑘 = 𝑘𝑖 , for every voter 𝑖 . For example,

when 𝑘 = 0, a voter delegates their vote if they agree with the dRep

in at least half of the proposals in their revealed set; we will refer to

this case as majority agreement (see also [13, 16] for a use of a very

similar threshold in a difference context). Given a dRep of type 𝑡 , we

say that 𝑡 attracts a set of voters𝐴(𝑡) := {𝑖 ∈ 𝑁 : 𝑑 (𝑖, 𝑡) ≤ ⌊𝑚𝑖−𝑘𝑖
2

⌋}.
Additionally we define 𝐴(𝐷), for a set of dReps 𝐷 as

𝐴(𝐷) := {𝑖 ∈ 𝑁 : ∃ 𝑡 ∈ 𝐷 s.t. 𝑑 (𝑖, 𝑡) ≤ ⌊𝑚𝑖 − 𝑘𝑖

2

⌋}.

If a voter is attracted by multiple dReps, we assume they delegate

to any of them arbitrarily; this choice makes our positive results

stronger, whereas, notably, our negative results work for any choice

(e.g., even for the more intuitive choice of the closest, in terms of

Hamming distance, accepted dRep).

Preference Profiles. Let 𝑉 = (𝑣𝑖 )𝑖∈𝑁 and 𝑉 = (𝑣̂𝑖 )𝑖∈𝑁 . We call

intrinsic preference profile 𝑃 = (𝑁,𝐶,𝑉 ) a voting profile that con-

tains the intrinsic preferences of the voters in 𝑁 on proposals

from 𝐶 . Similarly, we call revealed preference profile 𝑃 = (𝑁,𝐶,𝑉 )
the voting profile that contains their revealed preferences. Finally,

𝑃𝐷 = (𝑁,𝐶,𝑉 ∪ 𝐷) refers to the preference profile on proposals

from𝐶 , that contains the revealed preferences of the voters in 𝑁 as

well as the advertised types of the dReps in 𝐷 .

Approval Voting Winners. The winner of the election is the pro-

posal with the highest (weighted) approval score. Formally, let 𝑠𝑐 ( 𝑗)
denote the score of a proposal 𝑗 ∈ 𝐶 in the profile 𝑃 , i.e., the total

weight of the voters 𝑖 ∈ 𝑁 such that 𝑣𝑖 ( 𝑗) = 1. A proposal 𝑗 ∈ 𝐶

is the winning proposal in the profile 𝑃 if 𝑠𝑐 ( 𝑗) ≥ 𝑠𝑐 ( 𝑗 ′),∀𝑗 ′ ∈ 𝐶 .

Similarly, we define 𝑠𝑐 ( 𝑗) and 𝑠𝑐𝐷 ( 𝑗) to be the score of a proposal

𝑗 ∈ 𝐶 in the profile 𝑃 and 𝑃𝐷 , respectively. Note that 𝑠𝑐 ( 𝑗) repre-
sents the score that proposal 𝑗 would attain if all voters were to

vote directly and 𝑠𝑐𝐷 ( 𝑗) comprises the scores of the dReps (whose

weight is the total weight of the voters they have attracted) and the

scores of the voters that have not delegated their votes to any dRep,

i.e., that are voting directly. Let win(𝑃) := argmax{𝑠𝑐 ( 𝑗), 𝑗 ∈ 𝐶}
and opt(𝑃) := 𝑠𝑐 (win(𝑃)). The same notions can be extended to

profiles 𝑃 and 𝑃𝐷 .

Tie-breaking for the Winner: Given a profile 𝑃 , we assume that

argmax{𝑠𝑐 ( 𝑗), 𝑗 ∈ 𝐶} returns a single winning proposal rather

than a set, according to a tie-breaking rule. Consistently with our

discussion on the “best-case scenario” (see Section 1.1), we assume

that the tie-breaking is always in favor of the proposal with the

maximum intrinsic score. In the full version, we briefly explore

alternative tie-breaking rules, noting a significant strengthening of

our negative findings.

Our goal is to select a set of 𝜆 dReps that will collectively (by par-

ticipating in the election and representing voters according to the

submitted thresholds) ensure that a proposal of high intrinsic ap-

proval score will be elected, as formally presented in the definition

of the proxy selection problem, that follows.
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proxy selection(𝑃, 𝑃, 𝑘, 𝜆)
Input:An intrinsic voting profile 𝑃 and a revealed voting profile

𝑃 on a set𝐶 of𝑚 proposals and a set 𝑁 of 𝑛 weighted voters; the

voters’ true (resp. revealed) preferences𝑉 (resp.𝑉 ); a parameter

𝑘 , so that a voter 𝑖 is attracted by a dRep with type 𝑡 if 𝑑 (𝑖, 𝑡) ≤
⌊𝑚𝑖−𝑘

2
⌋; an upper bound 𝜆 on the number of dReps.

Output: Specify type vectors for all dReps in 𝐷 , with |𝐷 | ≤ 𝜆,

such that win(𝑃) = win(𝑃𝐷 ).

The performance of a suggested set of dReps is measured in

terms of how well the intrinsic score of the winning proposal under

their presence approximates the highest intrinsic approval score.

Definition 2.1. Let 𝜌 ≥ 1. We say that a set of dReps 𝐷 achieves

a 𝜌-approximation if for every intrinsic and revealed preference

profiles 𝑃 and 𝑃 , it holds that 𝑠𝑐 (win(𝑃𝐷 )) ≥ 1

𝜌 𝑠𝑐 (win(𝑃)).

One might be inclined to believe that attracting a sufficiently

large set of voters is enough to achieve an analogous approximation

ratio guarantee. The following proposition establishes that this is

not the case, demonstrating that the attraction part is only one

component towards solving proxy selection. Therefore, achieving

good approximations requires further insights. Additionally, its

proof serves as a smooth warm-up to the studied framework.

Proposition 2.2. It is possible for a single dRep to attract half of the

voters without achieving a 2-approximation.

Proof. Consider an instance of majority agreement on four pro-

posals. Voters’ intrinsic preferences are presented in the table below,

where the revealed preferences are given in white background.

𝐼1 𝐼2 𝐼3 𝐼4

voter 1 1 1 0 0

voter 2 1 0 1 1

voter 3 1 0 1 1

It is evident that win(𝑃) = 𝐼1, and opt(𝑃) = 3. At the same time

the dRep that votes in favor of all proposals attracts voter 2 and

voter 3. This means that 𝑠𝑐𝐷 (𝐼1) = |𝐴(𝐷) | = 2, while 𝑠𝑐𝐷 (𝐼2) =

3, since both the dRep and voter 1 vote in favor of 𝐼2. However,

𝑠𝑐 (𝐼2) = 1 = 1

3
opt(𝑃), yielding an approximation ratio of 3. □

Coherent Voters’ Sets and Instances.We conclude the section

with the definition of an important notion for our work, that of a

coherent set of voters, i.e., sets of voters with the same revealed sets.

Several of our positive results will be parameterized by properties

of those sets, such as the size of the largest coherent set.

Definition 2.3. A set of voters 𝑁 ′ ⊆ 𝑁 is called coherent if 𝑅𝑖 =

𝑅𝑖′,∀𝑖, 𝑖 ′ ∈ 𝑁 ′
. An instance of proxy selection is called coherent

if 𝑁 is coherent.

We remark that given an instance of proxy selection, it is com-

putationally easy to verify if it is coherent, or to find the largest

coherent set of voters.

3 THEORETICAL FINDINGS
We start our investigation with the case of a single dRep (𝜆 = 1).

Our main result here is rather negative, namely that no matter how

the dRep chooses their vote, the approximation ratio falls short of

being deemed adequate, confined by a linear dependence on the

number of voters.

Theorem 3.1. For a single dRep and any 𝑘 > 0, the approximation

ratio of proxy selection is Ω(𝑛).

Proof. Consider an instance with an odd number of 𝑚 > 3

proposals and 𝑛 =𝑚 − 1 voters, where 𝑘𝑖 > 0,∀𝑖 ∈ [𝑛], such that:

- For every voter 𝑖 ∈ [𝑛], their preferences with respect to proposal
𝑚 are as follows: 𝑣𝑖 (𝑚) = 1 and 𝑣̂𝑖 (𝑚) = ⊥.

- The remaining𝑚 − 1 proposals are partitioned in
𝑚−1
2

pairs, say

{1, 2}, {3, 4}, . . . , {𝑚−2,𝑚−1} and for each one of these 𝑚−1
2

pairs

of proposals, say { 𝑗, 𝑗 + 1}, there are two distinct voters, namely

voters 𝑗 and 𝑗 + 1, where voter 𝑗 votes in favor of both proposals

𝑗 and 𝑗 + 1 whereas voter 𝑗 + 1 votes in favor of proposal 𝑗 but

against proposal 𝑗 +1; for every other proposal 𝑗 ′, the preferences
of these voters are 𝑣𝑖 ( 𝑗 ′) = 0 and 𝑣̂𝑖 ( 𝑗 ′) = ⊥, where 𝑖 ∈ { 𝑗, 𝑗 + 1}.
Say that 𝑃 and 𝑃 are the intrinsic and revealed profiles of the

created instance, respectively. Clearly, win(𝑃) =𝑚 and opt(𝑃) = 𝑛.

We claim that a single dRep, called 𝑡 , regardless of their advertised

type, will contribute to electing a proposal 𝑖 that satisfies 𝑠𝑐 (𝑖) ≤ 2,

leading to an inapproximability of
𝑛
2
. Towards this, first notice

that 𝑡 cannot attract both voters of any pair. This is easy to see,

as a distance of max{0, ⌊𝑚𝑖−𝑘𝑖
2

⌋} for 𝑚𝑖 = 2 and 𝑘𝑖 ≥ 1 means

agreement on both revealed proposals. As a result, for any such

pair of voters, 𝑡 will either attract zero or one voter(s), given that

any two voters do not share the same preferences with respect to

both their revealed proposals.

Consider first the scenario where 𝐴({𝑡}) = ∅. In this case, since

𝑠𝑐𝐷 (𝑚) = 0 < 𝑠𝑐𝐷 ( 𝑗) for any proposal 𝑗 ≠ 𝑚, it holds that there

exists a proposal 𝑗 ′ such that win(𝑃𝐷 ) = 𝑗 ′ for which 𝑠𝑐 ( 𝑗 ′) = 2,

or in other words, the direct voting will lead to the election of an

outcome that is being accepted by exactly two voters. On the other

hand, if 𝑡 attracts at least one voter, say 𝑖 where 𝑖 is odd (resp. 𝑖

is even), then 𝑡 must have voted in favor of at least one proposal

apart from proposal𝑚, namely for proposal 𝑖 (resp. for proposal

𝑖 − 1), or else 𝑖 would not fully agree with 𝑡 . But then, voter 𝑖 + 1

(resp. 𝑖 − 1), who is not attracted by 𝑡 , is also voting in favor of

proposal 𝑖 (resp. for proposal 𝑖 − 1). This results to a proposal 𝑖 such

that 𝑠𝑐𝐷 (𝑖) = 𝑠𝑐𝐷 (𝑚) + 1. Therefore, the winning proposal is not

𝑚 but a proposal 𝑖 for which 𝑠𝑐 (𝑖) ≤ 2. □

For the case of a single dRep, Theorem 3.1 should be interpreted

as a very strong impossibility result since it holds even in the

“best-case scenario” (see the discussion in Section 1.1). A natural

follow-up question is whether some meaningful domain restriction

can circumvent this impossibility. For this, we will appeal to the

notion of coherent sets of voters, defined in Section 2, and we will

show a bounded approximation guarantee that degrades smoothly

as the size of the largest coherent set grows and as the agreement

threshold decreases.
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Theorem 3.2. For a single dRep, proxy selection admits an ap-

proximation ratio ofmin

{
𝑛,

3𝑛 (𝑘+2)
2 |𝑆 |

}
, where 𝑆 is the largest coherent

set of voters in the instance.

An immediate, but noteworthy, corollary of Theorem 3.2 con-

cerns coherent instances and majority agreement.

Corollary 3.3. For a single dRep, the approximation ratio for coher-

ent instances and majority agreement becomes 3.

Certainly, for majority agreement and coherent instances, the

impossibility result of Theorem 3.1 does not apply. In that case, one

might wonder what the best achievable approximation ratio is. To

partially answer this question we offer the following result.

Theorem 3.4. Let 𝜀 > 0. For a single dRep, proxy selection does

not admit a (1.6 − 𝜀) approximation, even for coherent instances and

majority agreement.

Proof. Consider an instance in which 𝑁 = {𝑣1, 𝑣2, . . . , 𝑣8} and
𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}. Suppose that 𝑣𝑖 (𝑐1) = 1 and that 𝑣𝑖 (𝑐1) = ⊥,
for every voter 𝑖 ∈ 𝑁 . Furthermore, there is exactly one voter

whose preferences with respect to proposals 𝑐2, 𝑐3, 𝑐4 belongs in

{110, 101, 011, 100, 010, 001} and two voters that are voting for {111}.
Note that in the current proof, for simplicity, we abuse the nota-

tion and use strings instead of ordered tuples to indicate voters’

preferences. In this instance, opt(𝑃) = 𝑠𝑐 (𝑐1) = 8 and 𝑠𝑐 ( 𝑗) =

5,∀𝑗 ∈ 𝐶 \ {𝑐1}. Therefore, direct voting cannot result in an approx-

imation factor that is better than 1.6. We will prove that for any

possible choice 𝑡 of advertised ballot of a dRep, and if 𝐷 = {𝑡}, then
𝑠𝑐 (win(𝑃𝐷 )) ≤ 5, which again results to the claimed factor.

• If 𝑡 = 111, then 𝐴(𝐷) equals the set of voters whose preferences
belong in {111, 110, 101, 011}. Therefore |𝐴(𝐷) | = 5 and hence

𝑠𝑐𝐷 (𝑐1) = 5. However 𝑐2 is both approved by the dRep and by a

voter that doesn’t belong to𝐴(𝐷), consider, e.g., the voter who is
voting for 100, which leads to 𝑠𝑐𝐷 (𝑐2) = 6 and hence to a winning

proposal win(𝑃𝐷 ) such that 𝑠𝑐𝐷 (𝐼 ′) ≥ 6. Hence, win(𝑃𝐷 ) ≠ 𝑐1,

and, consequently, 𝑠𝑐 (win(𝑃𝐷 )) = 5.

• If 𝑡 ∈ {110, 101, 011}, then 𝐴(𝐷) equals the set of voters whose
preferences belong in {111, 110, 100, 010}. Therefore |𝐴(𝐷) | = 5

and hence 𝑠𝑐𝐷 (𝑐1) = 5. Using the same rationale to before, one

can observe that, again, 𝑠𝑐 (win(𝑃𝐷 )) = 5.

• If 𝑡 ∈ {100, 010, 001}, then 𝐴(𝐷) equals the set of voters whose
preferences belong in {100, 110, 101}. Therefore |𝐴(𝐷) | = 3 and

hence 𝑠𝑐𝐷 (𝑐1) = 3. However 𝑐2 is both approved by the dRep

and by the voter whose preference vector is 111, who does not

belong to 𝐴(𝐷), which leads to 𝑠𝑐 (win(𝑃𝐷 )) = 5.

• If 𝑡 = 000, then |𝐴(𝐷) | = 3, but 𝑠𝑐𝐷 (𝑐2) = 4, which again leads

to a winning proposal of 𝑠𝑐 (win(𝑃𝐷 )) = 5. □

To understand the power of coherence towards achieving good

approximations, it is instructive to explore the limitations of the

best possible dReps also on coherent instances. To this end, we

provide a couple of results: the first generalizes Theorem 3.1 to be

parameterized by the size of the largest coherent set, and the second

shows robustness to coherent instances, as long as the agreement

thresholds are sufficiently high. The core message of those results

is that coherent sets are not a panacea, and can result in meaningful

approximations only under further conditions.

Theorem 3.5. Let 𝜀 > 0. For a single dRep and any 𝑘 > 0, proxy

selection does not admit an

(
𝑛
|𝑆 | − 𝜀

)
-approximation, where 𝑆 is the

largest coherent set of voters in the instance.

Theorem 3.6. Let 𝜀 > 0. For a single dRep and 𝑘 =𝑚 − 2𝑐 (𝑚), with
𝑐 (𝑚) ∈ 𝑜 (𝑚), the approximation ratio of proxy selection is Ω(𝑛),
even for coherent instances.

We conclude our discussion for the case of one dRep with a

complementary result of a computational nature: a theorem that

establishes that finding a dRep to attract voters in a way that ulti-

mately elects the optimal proposal is computationally hard. Conse-

quently, proxy selection turns out to be challenging both from the

standpoint of information theory and computational complexity.

Theorem 3.7. The decision variant of proxy selection is NP-hard,

even for majority agreement and a single dRep.

Proof Sketch. We will establish NP-hardness for the decision

version of proxy selection, where for some given integer param-

eter 𝑟 , we want to answer if there exists an advertised type for a

dRep, so that the intrinsic score of the elected outcome is at least 𝑟 .

We will present here the formal construction and we refer to the

full version for an illustrative exposition of voters’ ballots as well

as for the proof of correctness. We will reduce from the NP-hard

problem minimax approval voting (mav) [15, 27]. In mav, we

are given an instance 𝐼 of𝑚 binary proposals and 𝑛 ballots where

𝑣𝑖 ∈ {0, 1}𝑚, 𝑖 ∈ [𝑛] and we are asked for a vector 𝑣 for which

it holds that max𝑖∈[𝑛] 𝐻 (𝑣𝑖 , 𝑣) ≤ 𝜃 , where 𝐻 is the Hamming dis-

tance between two vectors of the same size. The NP-hardness has

been established for instances with𝑚 being even, and 𝜃 =𝑚/2. We

create an instance 𝐼 ′ of proxy selection as follows:

• We have 𝑚′ = 𝑚 + 3 binary candidate proposals: {𝑐1, . . . , 𝑐𝑚,

𝑐𝑚+1, 𝑐𝑚+2, 𝑐𝑚+3}, i.e., three additional proposals from 𝐼 .

• We have 𝑛 voters corresponding to the voters of 𝐼 , and an addi-

tional number of 𝑛 + 1 dummy voters.

• For every voter 𝑖 ∈ [𝑛], belonging to the group of the first𝑛 voters,
their preferences for the first𝑚 proposals in 𝐼 ′ are just as they
are in 𝐼 , and they are all revealed, so that𝑚𝑖 =𝑚. The remaining

three proposals are not visible for these voters and their intrinsic

preferences are that 𝑣𝑖 (𝑐𝑚+1) = 1, 𝑣𝑖 (𝑐𝑚+2) = 𝑣𝑖 (𝑐𝑚+3) = 0.

• For the dummy voters, none of them approve the first𝑚 propos-

als, which are also not revealed to them. As for the last three

proposals, there are exactly two dummy voters, who will be re-

ferred to as the special dummy voters, who approve all three

proposals, and all three are revealed to them. All the remaining

𝑛 − 1 dummy voters approve only the proposals 𝑐𝑚+2 and 𝑐𝑚+3,
which are revealed to them, whereas 𝑐𝑚+1 is disapproved, and
also not revealed to them.

• We set 𝑟 = 𝑛 + 2 and 𝜆 = 1, i.e. we have only one dRep available.

Hence we are looking for an advertised type of the dRep, so that

the instrinsic score of the elected outcome is at least 𝑛 + 2.

Note that the only proposal that has an intrinsic score of 𝑛 + 2 is

the proposal 𝑐𝑚+1, while all the others have lower scores. But 𝑐𝑚+1
cannot be elected via only direct voting, since it is not revealed to

the first 𝑛 voters. Hence, the question is whether there exists an

advertised type for the dRep that can make 𝑐𝑚+1 elected. □
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Importantly, we note that all of the approximation guarantees

in our paper can be obtained in time polynomial in the input size.

3.1 Multiple dReps
Having examined the limitations of what a single dRep can achieve,

we turn our attention to the case of multiple dReps as this is not cap-

tured by the impossibility of Theorem 3.1. Is it possible to achieve

much better approximations by using sufficiently many dReps?

A simple but reinforcing observation is that for majority agree-

ment, 2 dReps suffice to elect the optimal proposal; and this holds

without the requirement of coherence.

Theorem 3.8. When 𝜆 = 2, proxy selection for majority agreement

can be optimally solved.

But what about instances in which voters are more discerning,

indicated by larger values of 𝑘? Whether good approximations with

multiple delegation representatives are achievable in general is still

to be determined. We begin with the case of coherent instances

and we provide the following theorem, which suitably generalizes

Theorem 3.8, under the assumption of coherence.

Theorem 3.9. When 𝜆 = min{𝑛, 2𝑘+1}, proxy selection for coher-

ent instances and any 𝑘 ≥ 0 can be optimally solved.

Proof. We first show that we need no more than 𝑛 dReps. Let

𝑁 ′ = {𝑖 ∈ 𝑁 : 𝑣𝑖 (win(𝑃)) = 1}. If we set 𝐷 to consist of one dRep

𝑡𝑖 for every voter 𝑖 ∈ 𝑁 ′
such that 𝑡𝑖 ( 𝑗) = 𝑣𝑖 ( 𝑗),∀𝑗 ∈ 𝐼 , then 𝐷

will attract all voters from 𝑁 ′
and possibly other voters outside

𝑁 ′
too. Since all dReps in 𝐷 are voting in favor of win(𝑃), it holds

that 𝑠𝑐𝐷 (win(𝑃)) = 𝐴(𝐷) ≥ |𝑁 ′ |. Suppose that win(𝑃𝐷 ) ≠ win(𝑃).
Therefore, it should also hold that 𝑠𝑐𝐷 (win(𝑃𝐷 )) > 𝑠𝑐𝐷 (win(𝑃)) ≥
|𝑁 ′ |. However, by the definition of 𝑁 ′

, 𝑠𝑐 (win(𝑃)) = |𝑁 ′ | and, by
the construction of 𝐷 , 𝑠𝑐 (win(𝑃𝐷 )) ≥ 𝑠𝑐𝐷 (win(𝑃𝐷 )). Thus,

𝑠𝑐 (win(𝑃𝐷 )) = 𝑠𝑐𝐷 (win(𝑃𝐷 )) > |𝑁 ′ | = 𝑠𝑐 (win(𝑃)),

which contradicts the optimality of win(𝑃). Therefore, with |𝑁 ′ |
dReps, which are at most 𝑛, we can retrieve the optimal solution.

We will now proceed with proving that whenever 2
𝑘+1 < 𝑛, we

can use a (different) set of dReps 𝐷 , where |𝐷 | ≤ 2
𝑘+1

, to elect the

optimal proposal. Let 𝑅 be the set of commonly revealed proposals

to the voters of the given instance. It is without loss of generality

here to assume that win(𝑃) ∉ 𝑅, or otherwise, the direct voting

would result in the election of win(𝑃). To create the set 𝐷 , we fix an

arbitrary set 𝑆𝑘 ⊆ 𝑅, of 𝑘 proposals, and for every possible binary

vector on 𝑆𝑘 , i.e., for every 𝜎 ∈ 2
𝑆𝑘
, we add to 𝐷 exactly two dReps,

namely 𝑡𝜎,0 and 𝑡𝜎,1, advertising the following, with respect to a

proposal 𝑗 ∈ 𝐶:

𝑡𝜎,0 ( 𝑗) =


𝜎 ( 𝑗), if 𝑗 ∈ 𝑆𝑘 ,

1, if 𝑗 = win(𝑃) ,
0, otherwise.

𝑡𝜎,1 ( 𝑗) =
{
𝜎 ( 𝑗), if 𝑗 ∈ 𝑆𝑘 ,

1, otherwise.

To prove the statement, it is sufficient, to show that 𝐴(𝐷) = 𝑁 , i.e.,

that 𝐷 can attract all voters from 𝑁 . We fix an arbitrary voter 𝑖 ∈ 𝑁 .

Definitely, there is a vector, say 𝜎 ′
, that defines a pair of dReps in

𝐷 , say 𝑡𝜎′,0 and 𝑡𝜎′,1 (henceforth denoted by 𝑡1 and 𝑡2), such that 𝑖

totally agrees in all proposals of 𝑆𝑘 both with 𝑡1 and 𝑡2. Formally, if

for a given vector 𝑥 and a set of proposals 𝑌 , we denote by 𝑥 |𝑌 the

projection of 𝑥 to the proposals in 𝑌 , the following holds:

max{𝐻 (𝑣̂𝑖 |𝑆𝑘 , 𝑡1|𝑆𝑘 ), 𝐻 (𝑣̂𝑖 |𝑆𝑘 , 𝑡2|𝑆𝑘 )} = 0 (1)

Let 𝑅′
𝑖
:= 𝑅𝑖 \ 𝑆𝑘 = 𝑅 \ 𝑆𝑘 and for 𝑧 ∈ {0, 1} we define

𝑅′
𝑖 (𝑧) := |{ 𝑗 ∈ 𝑅′

𝑖 : 𝑣̂𝑖 = 𝑧}|.

Then, either 𝑅′
𝑖
(0) ≥ 𝑅′

𝑖
(1), or 𝑅′

𝑖
(1) > 𝑅′

𝑖
(0). Therefore,

min{𝐻 (𝑣̂𝑖 |𝑅′
𝑖
, 𝑡1 |𝑅′

𝑖
), 𝐻 (𝑣̂𝑖 |𝑅′

𝑖
, 𝑡2 |𝑅′

𝑖
)} ≤

⌊ |𝑅′
𝑖
|

2

⌋
. (2)

Combining Equations (1) and (2), we have that voter 𝑖 agrees either

with 𝑡1 or with 𝑡2, in at least

𝑘 +
⌈ |𝑅′

𝑖
|

2

⌉
= 𝑘 +

⌈
𝑚𝑖 − 𝑘

2

⌉
=

⌈
𝑚𝑖 + 𝑘

2

⌉
proposals. Consequently, every voter will delegate to a dRep from

𝐷 and the optimal proposal will be elected. □

Theorem 3.9 provides a bound on the sufficient number of dReps

required to make sure that the optimal proposal is elected and

raises a question regarding positive results (both optimal and ap-

proximate) for not-necessarily-coherent instances. In Theorem 3.12

below we provide a generalized and more refined version of this

result, that relates the achievable approximation with the required

number of dReps and the parameters of the instance, but does not

need to assume that the instances are coherent.

3.2 Positive Results Beyond Coherent Instances
Based on the results presented earlier in this section, coherence

stands out as very useful towards achieving meaningful approxima-

tion guarantees. At what follows, we define a more refined notion,

namely a quantified version of it, which provides further insights

into the structure of instances and how these affect the achievable

approximations. In particular, we use the notion of (𝑥, 𝛿)-coherent
sets for sets of voters that have a common set of proposals of size 𝑥

in their revealed sets, as well as at most 𝛿 additional proposals.

Definition 3.10. A set of voters 𝑁 ′ ⊆ 𝑁 is called (𝑥, 𝛿)-coherent
if there exists a set 𝑋 ⊆ 𝐶 such that for every 𝑖 ∈ 𝑁 the following

hold: 𝑋 ⊆ 𝑅𝑖 , |𝑋 | ≥ 𝑥 , and |𝑅𝑖 \ 𝑋 | ≤ 𝛿 .

Using Definition 3.10, we generalize the result of Theorem 3.2,

with an additional loss in the factor that is dependent on the type

of (𝑥, 𝛿)-coherent sets that an instance admits.

Theorem 3.11. For a single dRep and for any 𝛿 >0, proxy selection

admits an approximation ratio of min

{
𝑛,

3𝑛 (𝑘+𝛿+2)
2 |𝑆 |

}
, where 𝑆 is the

largest (𝑘 + 𝛿, 𝛿)-coherent set in the instance.

While our positive result for the case of multiple dReps (Theo-

rem 3.9) is notable, it comes with the drawback that it holds only

under the assumption of coherent instances. Our main positive

result that follows is a relaxation of Theorem 3.9, that does not

require any structural assumptions, and relates the approximation

with the number of dReps, the threshold bound and the structure

of the instance in terms of approximate coherence.
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Theorem 3.12. When 𝜆 = min

{
𝑛, 𝜁 2𝑘+1

}
, proxy selection admits

an approximation ratio of
𝛾

3𝜁
, where 𝛾 is the minimum number of

(𝑘,𝑚 − 𝑘)-coherent sets that can form a partition of 𝑁 , and 𝜁 ≤ 𝛾

with 𝜁 ∈ N.

An interesting corollary of Theorem 3.12 is the following: When

aiming for an optimal solution with 2
𝑘+1

dReps, it’s not a necessity

for instances to be coherent; rather, the key factor is the existence

of a set of 𝑘 proposals commonly revealed to all voters.

Concluding our discussion on not-necessarily-coherent instances,

we present a theorem for the natural case of majority agreement

(𝑘 = 0), that extends Corollary 3.3 by establishing a connection

between the achievable approximation and the structure of the

revealed sets, without the requirement of coherence.

Theorem 3.13. For a single dRep, proxy selection for majority

agreement admits an approximation ratio ofmin

{
𝑛, 3𝛼

𝛽

}
, where 𝛼 :=

| ∪𝑖∈𝑁 𝑅𝑖 | and 𝛽 := min{|𝑅𝑖 |, 𝑖 ∈ 𝑁 }.

4 EXPERIMENTS
We complement our theoretical results with experiments on the

performance of voting with proxies on realistic data sets where

voters exhibit incomplete preferences. We highlight the effect that

the number of dReps, revealed set sizes and thresholds have on the

total number of voters who delegate instead of voting directly, as

well as the approximation compared to the optimal outcome.

The first hurdle to overcome is that, by definition, it is not pos-

sible to find datasets containing both revealed and intrinsic pref-

erences, since voters only submit the first of the two. We use the

MovieLens dataset [19] to circumvent this issue, as there is enough

contextual information to calculate plausible intrinsic preferences

given the revealed ones. This set contains the reviews (with scores

ranging from 0.5 to 5.0) given by 162.541 users to 62.423 movies.

Of course, not every user has reviewed every movie. Each movie is

characterized by a set of genres and also has a relevance score for

1.084 different tags, provided by the users. Using this information

we calculate a plausible intrinsic user-specific “rating” Rat𝑖 for any
non-reviewed movie 𝑖:

Rat𝑖 =

∑
𝑗 ∈R Rat𝑗 · sim(𝑖, 𝑗)∑

𝑗 ∈R sim(𝑖, 𝑗) ,

where sim is a similarity metric (taking into account tag and genre

relevance) and R is the set of movies reviewed by the user, hence

Rat𝑗 is the rating that user gave to movie 𝑗 . These movie ratings are

between 0.5 and 5.0, and are then converted to approval preferences

by comparing them with the average rating given by that user.

To calculate sim(·, ·) we use two vectors per movie 𝑖:

- the tag vector: tag𝑖 ∈ [0, 1]1084,
- the genre vector: genre𝑖 ∈ {0, 1}20,
and the actual similarity is given by

sim(𝑖, 𝑗) = 1.2∥tag𝑖−tag𝑗 ∥ ·
(
0.5 +

genre𝑖 · genre𝑗
∥genre𝑖 ∥ · ∥genre𝑗 ∥

)
.

In addition, we take a random sample of users and movies such that

each user has reviewed at least 5% of the movies and no movie has

been reviewed by more than 10% of the users. Specifically, we begin

by sampling a large subset of 13000 users and 150 movies, and filter

out the users that have reviewed fewer than 5% of those movies, as

well as the movies that have been reviewed by more than 10% of

the users. This makes the effect of delegation (and using multiple

dReps in particular) more pronounced, as there are few completely

uninformed users that would readily delegate and no clear pick for

a best movie. To allow for meaningful comparisons, we add a movie

that has not been reviewed by any user, but is approved by all in

their intrinsic ratings. Note that if we generate the preferences for

all movies as described earlier, it turns out that in the produced

instances, voting directly (without using any dReps) results in good

approximations. We would like to explore what happens in the

most interesting cases, of which the one with a proposal with full

intrinsic support is the most challenging.

Since finding the optimal set of dReps is computationally in-

tractable in the worst case (see Theorem 3.7), we use a greedy

heuristic to approximate it. Specifically, we can build the type of

a dRep 𝑡 incrementally, proposal by proposal, setting 𝑡 ( 𝑗) = 1 or

𝑡 ( 𝑗) = 0 depending on which attracts the most voters, assuming

that the voters’ revealed sets only include proposals up to proposal

𝑗 . We can repeat this procedure to create multiple dReps, removing

the users that have already delegated at the end of every iteration.

We first measure the fraction of users that opted to delegate, as

a function of the number of dReps and either their 𝑘𝑖 (for fixed𝑚𝑖 )

(Figure 1, left) or their𝑚𝑖 (Figure 1, right). In the first case each

𝑘𝑖 ranges from 0 up to 0.4𝑚𝑖 , indicating users increasing levels of

user agreement required before delegating. In the second, each𝑚𝑖

ranges from 0 to 0.8𝑚, capturing increasingly detailed revealed

user preferences (while keeping 𝑘𝑖 = 0.2𝑚𝑖 ). To obtain these𝑚𝑖s

we start from the calculated intrinsic preferences (of size𝑚) and we

then “hide” some coordinates, uniformly at random, yielding the

sparser revealed preferences. Our results show that it is easier to

attract delegation from voters with smaller revealed sets (leading

to smaller coherent sets) or with lower 𝑘𝑖 . It turns out, that this

also does indeed translate to better approximations of the optimal

approval score (see Figure 2; created similarly to Figure 1). These

results suggest that, interestingly, the case of coherent instances

studied in many of our theoretical results seems to be the most

challenging in practice.

Notice that while the graphs in Figures 1 and 2 are qualitatively

similar, there are certain important differences. Specifically, the

clearly diminishing returns structure observed when the only ob-

jective is to attract delegation in Figure 1 is not present in Figure 2.

This is because while it gets progressively more difficult to “cluster”

voters, the quality of the outcomes increases in ever bigger jumps:

at the very top, the difference between the best and second-best

proposals (movies) will be greater than the second-best and third-

best and so on, until their quality plateaus. This is also why the

“jumps” in the approximation are steeper in some regions: a certain

number of dReps does not have any effect (because even though

they attract delegation, they cannot change the winner), but then

suddenly this changes.

Each run is repeated 20 times for a more accurate empirical mean

and standard deviation. All experiments ran on a 2021 M1 Pro Mac-

Book with 16 gigabytes of memory and 10 high-performance cores.

The code (available at www.plazos.me/code/DelegatedVoting/) is

parallelized and requires a few hours to complete, including some

initial preprocessing of the data.
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Figure 1: The fraction of voters that chose to delegate as a function of the total number of dReps.
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Figure 2: The quality of the approximation as a function of the total number of dReps.

5 DIRECTIONS FOR FUTUREWORK
The upper and lower bounds presented in our work are not always

tight, and future work could focus on sharpening these bounds. Per-

haps more interesting is the migration from the “best-case scenario”

that we study in this work. This would most probably entail the

following two components:

- An information model for the dReps. It would be reasonable to

assume that each dRep is correctly-informed about each voter

𝑖’s approval preference of each proposal 𝑗 with some probability

𝑝𝑖 𝑗 , or that they are (perfectly or imperfectly) informed about a

randomly-chosen set of proposals for each voter.

- A rationality model for the dReps. Delegate representatives might

not have any incentives to coordinate towards the socially desir-

able outcome, and they would need to be properly incentivized to

do that, e.g., via the form of payments. They could even have their

own preferences regarding the proposals under consideration.

One could think of many other examples or refinements of the

above, and the appropriate choice of information/rationality model

for the dRepswould depend on the application at hand. Tie-breaking

rules that do not necessarily favor the optimal proposal also worth

studying. Regardless of these choices however, the results of the

“best-case scenario” should be the starting point of any investiga-

tion into those settings. Besides those extensions, other directions

that we see as promising routes for further research on the topic

include different distance metrics, different voting rules, the multi-

winner setting, elections on interdependent proposals, as well as a

partial delegation setting where voters can opt to delegate only on

proposals for which they have no opinion.
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