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ABSTRACT
Agent-based models have the potential to become instrumental
tools in real-world decision-making, equipping policy-makers with
the ability to experiment with high-fidelity representations of com-
plex systems. Such models often rely crucially on the generation
of synthetic populations with which the model is simulated, and
their behaviour can depend strongly on the population’s compo-
sition. Existing approaches to synthesising populations attempt
to model distributions over agent-level attributes on the basis of
data collected from a real-world population. Unfortunately, these
approaches are of limited utility when data is incomplete or alto-
gether absent – such as during novel, unprecedented circumstances
– so that considerable uncertainty regarding the characteristics of
the population being modelled remains, even after accounting for
any such data. What is therefore needed in these cases are tools to
simulate and plan for the possible future behaviours of the complex
system that can be generated by populations that are consistent
with this remaining uncertainty. To this end, we frame the problem
of synthesising populations in agent-based models as a problem of
scenario generation. The framework that we present is designed to
generate synthetic populations that are on the one hand consistent
with any persisting uncertainty, while on the other hand matching
closely a target, user-specified scenario that the decision-maker
would like to explore and plan for. We propose and compare two
generic approaches to generating synthetic populations that pro-
duce target scenarios, and demonstrate through simulation studies
that these approaches are able to automatically generate synthetic
populations whose behaviours match the target scenario, thereby
facilitating simulation-based planning under uncertainty.

KEYWORDS
agent-based models; scenario planning; synthetic data

ACM Reference Format:
Joel Dyer, ArnauQuera-Bofarull, Nicholas Bishop, J. Doyne Farmer, Anisoara
Calinescu, and Michael Wooldridge. 2024. Population Synthesis as Scenario
Generation for Simulation-based Planning under Uncertainty. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Agent-based models (ABMs) are computational models consisting
of a population of agents – which may, for example, represent indi-
viduals or households in a population, and/or firms in an economy
– interacting with each other and their environment to simulate the
underlying complex system in a bottom-up fashion. Such models
are a promising tool for modelling complex systems across a variety
of domains, from economics [2, 8] to epidemiology [36].

By defining the individual behaviour of each agent, one hopes
that macroscopic properties of interest will emerge naturally as
a consequence of the collective actions of agents. By modelling
the system of interest at this level of granularity, the modeller
can draw insights into the ways in which individual behaviours
and actions give rise to emergent phenomena at the macroscopic
level. For example, in epidemiology, agent-based models can help
to explain how the spread of disease is related to the actions of
individuals, allowing for the design of effective policies at the indi-
vidual level which limit infection. For this reason, ABMs are lauded
as a promising tool for performing “what-if” scenario analyses and
experimenting with policy interventions in the simulated environ-
ments they provide, permitting modellers and decision-makers to
go beyond purely predictive analyses and instead plan for various
possible future scenarios and potential outcomes by interacting
with the simulation model.

Population synthesis – the process of generating the synthetic
populations with which a given ABM may be simulated forwards –
is a key methodological component of the science of agent-based
modelling, given the central role synthetic populations play in the
specification of these models. In the ABM literature, the problem
of population synthesis has in many cases been interpreted as the
problem of finding a distribution 𝜄 (z | 𝜽 ), parameterised by pa-
rameters 𝜽 ∈ 𝚯 ⊆ R𝑑 , over agent attributes z ∈ Z ⊆ R𝑎 that –
according to some measure of congruence – matches the distribu-
tion 𝑔(z) of attributes measured in the real-world counterpart to a
given synthetic population [9, 10, 34]. Here, 𝚯 and Z denote the
𝑑- and 𝑎-dimensional spaces of values that the parameters 𝜽 and
agent-level attributes z can assume. In such cases, the parameters
𝜽 are typically estimated using a finite sample of attributes seen
in the real-world population under consideration, for example as
collected by censuses [45]. Once this distribution over attributes is
constructed, synthetic populations may be generated and used in
downstream modelling tasks by sampling the attributes of individ-
ual agents independently from 𝜄 (· | 𝜽 ) and using these samples to
initialise each agent in the simulated population.
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1.1 Limitations of existing approaches to
population synthesis

Existing approaches to population synthesis:
(1) assume that there exists a sample of individual-level at-

tributes from a real-world population to be modelled; and
(2) perform population synthesis upfront, such that the popula-

tion synthesis procedure is not informed by the behaviour
of the ABM under the generated population.

Such approaches to population synthesis suffer from important
limitations as a consequence of these two properties. Given that the
appeal of agent-based simulation derives partly from the opportu-
nity it provides modellers and decision-makers to experiment with,
explore, and plan for possible future scenarios in complex systems,
there is a need for population synthesis approaches that entail the
generation of populations that are not yet necessarily realised in
the current state of the real world, and/or for which data does not
exist or is not accessible. This would better equip modellers and
decision-makers with the prerequisite tools for planning and ex-
perimentation using ABMs, rather than limiting the experimenter
to the state of the world as it currently stands. In these cases, there
may be no samples from any real-world population through which
a distribution over agent-level attributes can be learned and from
which a suitable synthetic population may be generated. This may
also be the case even in situations where it is desirable for the syn-
thetic population to mimic a real-world population on which data
may possibly be gathered in principle, but for which data-gathering
may be difficult or impossible in practice due to e.g., expense, time
constraints, or privacy-related concerns. Existing approaches to
population synthesis for ABMs are incompatible with such situa-
tions, given the first feature of these approaches listed above. When
this is true, alternative approaches to population synthesis that
rely not on any data sampled from any real-world population, but
rather on the scenario to be planned for, would be advantageous.
However, existing approaches to population synthesis for ABMs
are once again not designed to generate specific scenarios, but are
instead designed to model the distribution of attributes in a sample
from the population.

1.2 A concrete motivating example
The COVID-19 pandemic caused severe disruption globally. As the
emergency began to unfold in late 2019 and early 2020, there was
considerable uncertainty regarding the range of factors driving
the pandemic and subsequent economic fallout, including: the de-
gree to which individuals would comply with state-imposed social
and travel restrictions; the readiness with which consumers would
panic-buy and hoard goods in limited supply; and the influence
of vaccine-scepticism on treatment uptake. Policy- and decision-
makers in all aspects of life were faced with the task of planning
for the future of their businesses, households, and countries in
the unprecedented circumstances with which they were presented
and under these conditions of considerable uncertainty. In such
cases, constructing and exploring the behaviour of simulations of
the developing situation – such as through ABMing – can enable
these decision-makers to understand the possible impacts of this
uncertainty, develop intuition, and reason about the possible future
trajectories that could materialise.

To make effective use of such simulations, the decision-maker
might desire the capability to generate specific scenarios within
the simulated environment, which would allow them to prepare
effective, scenario-specific response strategies. In ABMs and other
complex systems, the readiness with which different scenarios can
be realised or simulated may depend strongly on the composition
of the synthetic population used within the simulation. Given the
novelty of the circumstances brought forward by the COVID-19
pandemic, key parameters and characteristics of the population as
they relate to the progression of the pandemic were unknown (such
as the susceptibility of its constituent citizens to panic-buying, the
readiness with which they will conformwith social restrictions, and
the prevalence of vaccine-scepticism mentioned above). Thus, it is
crucial to develop the ability to rapidly experiment with different
settings for these population-level parameters and the scenarios
they generate in order to facilitate effective decision-making in this
and other situations characterised by uncertainty. This ability will,
however, rely on the ability to identify population-level parameters
that generate different scenarios, which motivates our contribution.

1.3 Our contribution
Based on our discussion in Subsection 1.1, existing approaches
to population synthesis for ABMs are not designed for situations
such as in the motivating example presented in Subsection 1.2. To
address those shortcomings of existing approaches to population
synthesis, we consider the problem of synthesising populations
that give rise to a desired target scenario, answering the question:

“Under the assumption that the model is accurate, what
might the population in this system need to look like in
order to realise a user-specified scenario?”

We formulate this problem mathematically and discuss several
potential approaches and solutions. Our resultant framework for
population synthesis for ABMs relies on the ability of the user to
specify a loss function determining the proximity of the model’s
behaviour to a desired target scenario, in addition to a paramet-
ric family of distributions from which agent attributes may be
generated. Finally, we provide an open-source software package1
implementing the solutions we discuss, with which we perform and
present simulation studies to illustrate our proposed framework
for joint population synthesis and scenario generation in ABMs.
We believe that our contribution will facilitate the use of ABMs
as an environment for experimentation and performing scenario
analyses, and will enable decision-makers to explore, reason about,
and plan for the possible behaviours of a complex system under
uncertainty regarding the properties of the system’s population.

2 PROBLEM STATEMENT
In this section, we formulate the problem of population synthesis for
ABMs mathematically and establish essential notation. Let x ∈ X
denote the full output time series, specifying the states of all agents
in the ABM over all time steps 𝑡 = 1, . . . ,𝑇 , where X is the space of
possible values x can assume. We assume that the ABM consumes
structural parameters𝝎 ∈ 𝛀 ⊆ R𝑤 ,𝑤 ≥ 1 and a collection of agent-
level attributes A𝑁 := (z𝑛)𝑛=1,...,𝑁 , where 𝑁 ≥ 1 is the number

1Available at https://github.com/joelnmdyer/synthpop.
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Algorithm 1: Scenario generation in an ABM through
population synthesis.
Data: Proposal distribution 𝑞
Result: Simulations {x(𝑟 ) }𝑅

𝑟=1 matching the target scenario
for 𝑟 ∈ {1, . . . , 𝑅} do

Sample (𝝎 (𝑟 ) , 𝜽 (𝑟 ) ) ∼ 𝑞(·);
Sample attributes for 𝑁 agents: A (𝑟 )

𝑛 ∼ 𝑓 (· | 𝜽 (𝑟 ) );
Forward simulate from the agent-based simulator:
x(𝑟 ) ∼ 𝑝 (· | 𝝎 (𝑟 ) ,A (𝑟 )

𝑁
)

end

of agents in the system, before performing a stochastic forward
run such that x ∼ 𝑝 (· | 𝝎,A𝑁 ), where 𝑝 (· | 𝝎,A𝑁 ) is the ABM’s
likelihood function. In addition, we assume that the collection A𝑁

is jointly generated from a distribution 𝑓 (· | 𝜽 ) with parameters
𝜽 ∈ 𝚯 ⊆ R𝑑 . Here, 𝜽 may be seen as population-level parameters,
which probabilistically determine the attributes of the individuals
comprising the synthetic population.

Our goal is to devise approaches for automatically and reliably
identifying values for 𝜽 that synthesise populations of agents that
tend to realise the simulated scenario of interest to the experimenter.
In other words, the goal is to generate parameters for an ABM that
generates a population with a desired behaviour or behaviours.
In general, we might like to simultaneously vary and identify the
corresponding values of 𝝎. The problem we consider is therefore
the problem of generating a distribution 𝑞 over the joint space
P := 𝛀 × 𝚯, in which high probability mass is assigned to regions
of P that provide the best matches to the desired scenario, while the
regions ofP that produce a comparatively poormatch to the desired
scenario are assigned a low probability mass. Having identified
such a distribution 𝑞 for this hierarchical model, a diverse range of
simulations that best match the desired scenario may be generated
from the agent-based simulator by sampling from the distribution

𝑝 (x) =
∫
𝛀×𝚯

𝑝 (x | 𝝎, 𝜽 ) 𝑞(𝝎, 𝜽 ) d𝝎 d𝜽 , (1)

where

𝑝 (x | 𝝎, 𝜽 ) =
∫
Z𝑁

𝑝 (x | 𝝎,A𝑁 ) 𝑓 (A𝑁 | 𝜽 ) dA𝑁 .

This sampling procedure is presented schematically in Figure 1
and operationally in Algorithm 1. In the special case that the agent
attribute vectors z𝑛 are all conditionally independent given 𝜽 , we
have the following factorisation:

𝑓 (A𝑁 | 𝜽 ) =
𝑁∏
𝑛=1

𝜄 (z𝑛 | 𝜽 ),

where the z𝑛
iid∼ 𝜄 (· | 𝜽 ), 𝑛 = 1, . . . , 𝑁 for some distribution 𝜄 (· | 𝜽 ).

3 METHODS
Given the problem specification constructed in Section 2, the tech-
nical challenge lies in obtaining a suitable proposal distribution 𝑞.
We discuss two such possibilities here. These approaches require
that the experimenter specifies a loss function ℓ : X → [0,∞)

Proposal distribution 𝑞(·)

Attribute distribution 𝑓 (· | 𝜽 )

ABM 𝑝 (· | 𝝎,A𝑁 )

Simulated scenario x

Population parameters 𝜽
Structural
parameters

𝝎
Agents’ attributes A𝑁

Figure 1: Schematic illustration of Algorithm 1.

(which we assume to be non-negative) that quantifies the similar-
ity between a simulated output x from the ABM and the target
scenario the experimenter would like to generate. Furthermore, in
what follows we use the notation

L(𝝎, 𝜽 ) = E𝑝 (x |𝝎,𝜽 ) [ℎ𝜖 (ℓ (x))] ,
where ℎ𝜖 is a method-dependent function parameterised by 𝜖 .

3.1 Threshold-based sampling (TBS)
In this first class of methods we consider, we propose to down-
weight candidate values for the parameters (𝝎, 𝜽 ) by letting ℎ𝜖 be
a probability kernel function with hyperparameter 𝜖 > 0, before
letting

𝑞(𝝎, 𝜽 ) ∝ L(𝝎, 𝜽 ) . (2)
For example, we may choose

ℎ𝜖 (·) ∝ I (· ≤ 𝜖) , (3)

which evaluates to 1 if ℓ ≤ 𝜖 and 0 if ℓ > 𝜖 . This corresponds to

𝑞(𝝎, 𝜽 ) ∝ P ({ℓ (x) ≤ 𝜖 | x ∼ 𝑝 (· | 𝝎, 𝜽 )}) ,
meaning that any given combination of structural and population-
level parameter, (𝝎, 𝜽 ), is down-weighted if the probability with
which it results in populations that produce a scenario that is within
an 𝜖-ball of the desired scenario is comparatively low. Other related
alternatives are available however; a simple example is the Gaussian
kernel, ℎ𝜖 (·) ∝ exp (− · /𝜖), which performs a similar but softer
action to the indicator function used previously. In either case,
a set T𝐼 := {𝝎 (𝑖 ) , 𝜽 (𝑖 ) | 𝑖 = 1, . . . , 𝐼 } of 𝐼 ≥ 1 samples can be
generated from the resultant proposal distribution 𝑞 in a Monte
Carlo fashion, for example with rejection sampling [44], Markov
chain Monte Carlo [22, 32], or sequential Monte Carlo [4, 30]. With
the samples T𝐼 , a range of forward simulations from the ABM that
closely match the scenario to be generated can be produced by
synthesising populations at the pairs (𝝎 (𝑖 ) , 𝜽 (𝑖 ) ), 𝑖 = 1, . . . , 𝐼 and
forward simulating the model, such that for all 𝑖 ,

x(𝑖 ) ∼ 𝑝 (· | 𝝎 (𝑖 ) ,A (𝑖 )
𝑁

), A (𝑖 )
𝑁

∼ 𝑓 (· | 𝜽 (𝑖 ) ) .
We note that, in general, the value of the hyperparameter 𝜖 will
determine the variance of the proposal distribution 𝑞, with smaller
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values resulting in a proposal distribution that is more concen-
trated in regions of P that synthesise populations with the spec-
ified scenario-generating tendencies. This, however, will tend to
reduce the variety in the different scenarios generated by the ABM,
amounting to a trade-off between (a) an exploration of the different
scenarios that can be generated by a synthetic population that bear
a sufficiently close resemblance to the target scenario on the one
hand, and (b) an exploitation of the regions of P that generate the
best matches to the target scenario, as specified by ℓ , on the other
hand. We note that the experimenter may choose to pick larger
values of 𝜖 when unsure about the correct specification of the loss
function to generate the target scenario in mind. Finally, we herein
term this approach threshold-based sampling, abbreviated as TBS.

3.2 Variational optimisation (VO)
A second class of methods we consider involves constructing the
proposal distribution 𝑞 by solving a variational optimisation (VO)
problem. In particular, we let ℎ𝜖 be the identity function and Q :=
{𝑞(· | 𝝓) | 𝝓 ∈ 𝚽} be a family of probability distributions indexed
by parameter 𝝓 whose values lie in some set 𝚽. We then find 𝑞 as
the solution to the optimisation problem

𝑞 = argmin
𝜙∈Φ

{
E𝝎,𝜽∼𝑞 (𝝎,𝜽 |𝝓 ) [L(𝝎, 𝜽 )] − 𝛾 · H(𝑞(· | 𝝓))

}
, (4)

where H(𝑞) = E𝝔∼𝑞
[
− log𝑞(𝝔)

]
is the (differential) entropy of 𝑞

and 𝛾 ≥ 0 is a regularisation hyperparameter. Setting 𝛾 = 0 will
permit 𝑞 to collapse into a degenerate distribution whose mass is
concentrated around the pairs (𝝎, 𝜽 ) that minimise L(𝝎, 𝜽 ). In
contrast, larger values of 𝛾 will encourage greater variance in 𝑞,
leading to greater diversity in the synthesised populations and,
consequently, the scenarios that are generated by the simulator. In
this way, 𝛾 plays a similar role to 𝜖 in TBS (see Section 3.1).

For VO, we assume that the 𝑞(· | 𝝓) ∈ Q are differentiable with
respect to 𝝓, such that they easily permit the construction of the
distribution’s score function ∇𝝓 log𝑞(𝝎, 𝜽 | 𝝓). This permits the
use of gradient-based optimisation [7] to minimise the objective
function in Equation (4) using a score-based Monte Carlo estimate

1
𝑅

𝑅∑︁
𝑟=1

{
ℓ (x(𝑟 ) ) + 𝛾 · 𝑙

(
𝝎 (𝑟 ) , 𝜽 (𝑟 ) | 𝝓

)}
· ∇𝝓𝑙

(
𝝎 (𝑟 ) , 𝜽 (𝑟 ) | 𝝓

)
of the gradient of the objective, where 𝑙 = log𝑞(𝝎, 𝜽 | 𝝓),(

x(𝑟 ) ,𝝎 (𝑟 ) , 𝜽 (𝑟 )
)
∼ 𝑝 (x | 𝝎, 𝜽 ) 𝑞(𝝎, 𝜽 | 𝝓), 𝑟 = 1, . . . , 𝑅,

and where we have used the fact that E𝝔∼𝑞 ( · |𝝓 )
[
∇𝝓 log𝑞(𝝔 | 𝝓)

]
=

0 for any 𝑞(· | 𝝓). Alternatively, when sampling from the proposal
𝑞(· | 𝝓) can be reparameterised, lower-variance estimates of the
gradient of the entropy regularisation term can alternatively be
obtained with pathwise gradients [33].

4 SIMULATION STUDIES
In this section, we present simulation studies on two agent-based
models using the approaches introduced in Section 3. While there
are many possible implementations of TBS and VO, we consider the
following specific example implementations in our experiments:

• For TBS we construct a proposal density 𝑞 as in Equation (2)
with ℎ𝜖 taken to be a Uniform kernel as in Equation (3), and

generate samples of (𝝎, 𝜽 ) pairs from this proposal using a
sequential Monte Carlo (SMC) sampling procedure. We refer
to this instantiation of TBS as TBS-SMC.

• For VO, we take 𝑞(𝝎, 𝜽 | 𝝓) to be an autoregressive nor-
malising flow [38] with trainable parameters 𝝓 optimised as
described in Subsection 3.2. In the case that components of
(𝝎, 𝜽 ) are constrained to lie within open or closed intervals,
samples from the flow are restricted to these domains with
sigmoid transformations (see [16] for further details). We
refer to this instantiation of VO as VO-NF.

Throughout, we fix a simulation budget of 105 simulations for TBS-
SMC, and train VO-NF until the simulation budget is reached, unless
convergence is achieved prior to this. Further details on TBS-SMC
and VO-NF are given in the supplement [16].

4.1 Axtell’s model of the emergence of firms
We consider a variation of the ABM of firm emergence in labour
markets proposed in Axtell [1], in which the movement of agents
between existing firms, or from existing firms to new firms, is
simulated over time. In this model, each agent 𝑛 ∈ {1, . . . , 𝑁 } in
the population of 𝑁 agents is a labourer in an economy and works
with some effort level 𝑒𝑡𝑛 ∈ [0, 1] at time 𝑡 ∈ [0, 1]. At any given
time 𝑡 , agent 𝑛 belongs to firm f𝑡𝑛 ∈ {1, . . . , 𝑁 }, where the model is
initialised with f0𝑛 = 𝑛 (i.e., there are initially 𝑁 firms, each being
singleton sets). Broadly, each agent periodically reevaluates their
situation in the labour market at some agent-specific characteristic
rate 𝜌𝑛 ∈ R≥0, which indexes a Poisson process for that agent.
At each reevaluation event (each of which occurs in continuous
time), the contemplative agent considers the trade-off – modelled
with a Cobb-Douglas function and determined by the agent-specific
parameter 𝜈𝑛 ∈ [0, 1] (see [16]) – between the utility they derive
from (i) participating in firm f𝑡𝑛 and sharing in its output, and (ii) the
disutility experienced from contributing to the firm’s productive
activities at their current effort level 𝑒𝑡𝑛 . High (resp. low) values
of 𝜈𝑛 correspond to preference for income (resp. leisure). On this
basis, the agent decides to either (i) readjust its effort levels, (ii) join
a neighbouring firm, or (iii) start a new firm. Further details on the
model are provided in the supplement [16].

The agents comprising the model have associated with them a set
of three attributes – their initial effort levels 𝑒0𝑛 , the rate at which
they reevaluate their positions 𝜌𝑛 , and their relative preference
for income and leisure 𝜈𝑛 – giving z𝑛 = (𝑒0𝑛, 𝜌𝑛, 𝜈𝑛). Additionally,
the utility an agent experiences by participating in any given firm
is parameterised by structural parameters 𝝎 = (𝑎, 𝑏, 𝛽) (see [16]),
which we also vary in the scenario generation process.

4.1.1 Can an initially hard-working population become lazy over
time? The scenarios we consider and aim to generate with this
model are scenarios in which initially hard-working populations
(characterised by high effort levels) become lazy (characterised by
low effort levels) over time. A suitable non-negative loss function ℓ

for targeting this scenario is the shifted difference in average effort
exerted by agents at the end and beginning of the simulated period,

ℓ (x) = 1
𝑁

𝑁∑︁
𝑛=1

(
𝑒1𝑛 − 𝑒0𝑛 + 1

)
, (5)
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Figure 2: Simulations of population average effort over time
generated from the marginal likelihood function (Equation
(1)) obtained from (a) TBS-SMC (red), (b) VO-NF (blue and
green), and (c) a uniform proposal over P (Uniform, orange).

in which x is the time series of all agents’ effort levels at each
reevaluation event, and the unit offset ensures the loss takes values
in the range [0, 2]. To generate such scenarios, we take 𝑓 (A𝑁 |
𝜽 ) = ∏𝑁

𝑛=1 𝜄 (z𝑛 | 𝜽 ) with

𝜄 (z𝑛 | 𝜽 ) = Beta(𝑒0𝑛 | 𝜀𝑎, 𝜀𝑏 ) · Beta(𝜈𝑛 | 𝑔𝑎, 𝑔𝑏 )
· Gamma(𝜌𝑛 | 𝜚𝑎, 𝜚𝑏 ), (6)

where 𝜽 = (𝜀𝑎, 𝜀𝑏 , 𝜚𝑎, 𝜚𝑏 , 𝑔𝑎, 𝑔𝑏 ). We allow 𝜀𝑎, 𝜀𝑏 , 𝑔𝑎, 𝑔𝑏 , and 𝜚𝑎 to
vary in the range [0, 2], and 𝜚𝑏 ∈ [0, 1]. Finally, we vary the struc-
tural parameters 𝑎, 𝑏 ∈ [0, 5], and 𝛽 ∈ [1, 5].

In Figure 2, we plot the population average effort over time for
samples obtained from the marginal likelihood constructed with
TBS-SMC, VO-NF with𝛾 = 0.1 and𝛾 = 0.01, and a uniform proposal
density over P, 𝑞(𝝎, 𝜽 ) ∝ I[(𝝎, 𝜽 ) ∈ P]. We furthermore show
in Figure 3 contour plots generated by samples from the proposal
distribution 𝑞 constructed with TBS-SMC and VO-NF, in which
the marginal distributions are shown on the diagonal and joint
bivariate distributions are shown on the lower-diagonal. Samples
from TBS-SMC’s marginal likelihood are generated with 𝜖 = 0.5.

From this, we observe that both TBS-SMC and VO-NF have been
able to identify regions of P that produce synthetic populations –
and, by extension, scenarios – that satisfactorily match the target
scenario as encoded by ℓ in Equation (5): whereas samples from
the uniform proposal over P generates populations and scenarios
corresponding to decreasing, increasing, and stagnating levels of
effort expended by the labour market participants over time, both
TBS-SMC and VO-NF have successfully identified structural and
population-level parameters that generate a diverse range of pop-
ulations and scenarios in which effort levels decrease noticeably
over time. Similar behaviour is seen between VO-NF at 𝛾 = 0.1 and
TBS-SMC at this simulation budget – for both methods, the range
of scenarios generated is reasonably broad, with different degrees
of decline observed within the sample scenarios they generate –
while VO-NF at 𝛾 = 0.01 gives simulation runs that more strictly
apply the selection criteria encoded by ℓ . This exhibits the trade-off
between (a) the diversity of synthesised populations and scenarios
and (b) the ability to identify the most extreme manifestations of
the target scenario discussed in Section 3.
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Figure 3: The proposal distributions for (a) VO-NFwith𝛾 = 0.1
(blue) and 𝛾 = 0.01 (green), and (b) TBS-SMCwith 𝜖 = 0.5 (red).

We note that this example demonstrates that TBS-SMC and VO-
NF, in conjunction with the use of common parametric distributions
to construct 𝑓 (· | 𝜽 ), can assist the modeller and decision-maker
to develop intuition with respect to the population characteristics
that give rise to the target scenario. By inspection of Figure 3, we
observe that the target scenario is best generated when the agents
in the synthesised populations tend to:

• begin with relatively large values of initial effort levels. This
is manifested as relatively high density assigned to larger
and lower values of 𝜀𝑎 and 𝜀𝑏 , respectively, which translates
to a right-skewed Beta distribution over 𝑒0𝑛 ;

• exhibit a strong preference for leisure over income. This is
manifested as relatively high density assigned to lower and
larger values of 𝑔𝑎 and 𝑔𝑏 , respectively, which translates to a
left-skewed Beta distribution over 𝜈𝑛 and, consequently, syn-
thesised populations of agents who are averse to expending
effort and who prefer leisure over income;

• reevaluate their positions in the labour market on a relatively
frequent basis. This is manifested as relatively high density
assigned to large values for 𝜚𝑎 and 𝜚𝑏 , which has the effect
of increasing the mass assigned by the Gamma distribution
to higher values for 𝜌𝑛 , permitting agents to adjust their
effort expenditure frequently enough to realise the targeted
decline in average population effort.

Taken together, these features of the synthesised population permit
the modeller and decision-maker to explain the target scenario in
terms of the population characteristics.

4.2 Binary opinion dynamics
We next consider a model of binary opinion dynamics in a popu-
lation of 𝑁 agents. At time 𝑡 = 0, 1, . . . ,𝑇 , each agent 𝑛 = 1, . . . , 𝑁
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in this population holds an opinion 𝑥𝑡𝑛 ∈ {0, 1} and is embedded in
an undirected graph G = ({1, . . . , 𝑁 }, E), where the set of agents
that neighbour 𝑛 is denoted N𝑛 = {𝑚 | (𝑛,𝑚) ∈ E}. The initial
opinion 𝑥0𝑛 of agent 𝑛 = 1, . . . , 𝑁 is drawn 𝑥0𝑛∼Bernoulli(𝑟 ), where
𝑟 ∈ (0, 1). At each time step 𝑡 ≥ 1, the opinion of agent 𝑛 updates
as 𝑥𝑡𝑛 ∼ Bernoulli(𝛼 ({𝑥𝑡−1𝑛 }𝑛=1,...,𝑁 )), where

𝛼 ({𝑥𝑡−1𝑛 }𝑛=1,...,𝑁 ) =


𝜇𝑛
|N𝑛 |

∑
𝑚∈N𝑛

𝑥𝑡−1𝑚 , 𝑥𝑡−1𝑛 = 0;

1 − 𝜈𝑛

(
1 − 1

|N𝑛 |
∑
𝑚∈N𝑛

𝑥𝑡−1𝑚

)
, 𝑥𝑡−1𝑛 = 1.

In the above, 𝜇𝑛 ∈ [0, 1] (resp. 𝜈𝑛 ∈ [0, 1]) is a parameter capturing
the readiness with which agent 𝑛 transitions from opinion 0 to
1 (resp. 1 to 0) as a result of social pressure from its neighbours
N𝑛 . Each agent is thus equipped with three attributes: their ini-
tial opinion 𝑥0𝑛 , and the parameters 𝜇𝑛 and 𝜈𝑛 that determine the
readiness with which agent 𝑛 changes, respectively, from opinion
0 to 1 and 1 to 0 as a result of social pressure from its neighbours.
This gives z𝑛 = (𝑥0𝑛, 𝜇𝑛, 𝜈𝑛) ∈ {0, 1} × [0, 1]2 as the set of attributes
that must be generated in the population synthesis procedure. We
simulate this model on graphs generated from the Barabasi-Albert
random graph model of preferential attachment [3]; further details
are provided in the supplement [16]. For this model, there are no
further structural parameters that we are required to tune.

4.2.1 What are the most complex opinion dynamics that can be
realised? In this experiment, we aim to generate scenarios in this
experiment that correspond to “complex” opinion dynamics within
the simulated population, according to some measure of complexity.
We consider such scenarios for two main reasons:

(1) In many planning contexts, planners and decision-makers
can be interested in guarding against volatility and unpre-
dictability in the environment within which they will make
decisions. Simulating such scenarios can therefore be impor-
tant for testing strategies and policies that are intended to
mitigate against the threats posed by turbulent scenarios;

(2) In many models, there exist absorbing states that lead to un-
realistic dynamics. A particularly relevant example related
to this experiment is a state of consensus achieved in opin-
ion dynamics models, in which all agents agree and share
identical opinions. Such states exist within the simulator
considered in this section: for example, the states in which
all agents share opinions 1 or 0 are absorbing states, leading
to a system state from which no further changes can take
place. The ability to automatically synthesise populations
that do not lead to such unrealistic dynamics when this is
not of interest – and instead to more realistic dynamics corre-
sponding to persistent and changing levels of disagreement
within the population – is therefore of interest to opinion
dynamics modellers in particular.

To target such scenarios with the synthesised population, we con-
sider the following composite loss function:

ℓ (x) = ℓ𝑣 (x) + ℓ𝑎 (x) .

The component

ℓ𝑣 (x) = 𝑇 −
𝑇∑︁
𝑡=1

 1
𝑁

𝑁∑︁
𝑛=1

(
𝑥𝑡𝑛 − 𝑥𝑡−1𝑛

) 

is the negative of the one-variation of the time series of the average
opinion within the population, offset by the maximum possible
value of𝑇 for the one-variation of a piecewise linear curve in [0, 1]
on the grid {0, 1, . . . ,𝑇 }. This quantity is often used, informally
speaking, to characterise the variability or volatility of a curve. The
second component is taken to be

ℓ𝑎 (x) =
𝑇∑︁
𝑡=0

(
𝑁∏
𝑛=1
I
[
𝑥𝑡𝑛 = 0

]
+

𝑁∏
𝑛=1
I
[
𝑥𝑡𝑛 = 1

] )
,

which penalises synthesised populations that lead to time points
spent in the two absorbing states discussed previously (i.e., those
consisting of all agents possessing opinion 0 or opinion 1). While
other loss functions based on, for example, the Hurst exponent [21]
or fractal dimension [5] estimated from the time series would also
be appropriate, we assume this loss function for simplicity. We take
𝑓 (A𝑁 | 𝜽 ) = ∏𝑁

𝑛=1 𝜄 (z𝑛 | 𝜽 ) with

𝜄 (z𝑛 | 𝜽 ) = Bernoulli
(
𝑥0𝑛 | 𝑟

)
· Beta (𝜇𝑛 | 𝜚𝑎, 𝜚𝑏 )

· Beta(𝜈𝑛 | 𝑔𝑎, 𝑔𝑏 ),
(7)

where 𝜽 = (𝑟, 𝜚𝑎, 𝜚𝑏 , 𝑔𝑎, 𝑔𝑏 ) ∈ [0, 1] × [0, 5]4.
In Figure 4, we show the average population opinion observed in

samples generated form themarginal likelihood function using TBS-
SMC, VO-NF, and a uniform proposal distribution, 𝑞(𝜽 ) ∝ I[𝜽 ∈ 𝚯],
while in Figure 5 we show contour plots generated by samples from
each of these proposal distributions. The proposal distribution gen-
erated by TBS-SMC corresponds to a threshold value of 𝜖 = 400.
As in Section 4.1, we observe that taking a relatively large value
of 𝛾 = 100 results in comparable behaviour between VO-NF and
TBS-SMC at this simulation budget, both of which generate higher-
variance proposal distributions in Figure 5 that translate into a
relatively broad variety of scenarios in which the synthesised pop-
ulations give rise to the complex, changeable dynamics selected by
ℓ . In contrast, the comparatively low value of 𝛾 = 1 results once
again in a lower-variance proposal distribution, and by extension
less diversity in the synthesised populations and scenarios gener-
ated. In each of these cases, however, the synthesised populations
generate scenarios that resemble the target scenario far more ac-
curately than baseline performance achieved by simply taking a
uniform proposal over 𝚯, which we observe can frequently give
rise to trivial dynamics in which the system enters the absorbing
state corresponding to complete consensus within the population.

Furthermore, as in the previous experiment, we see that TBS-
SMC and VO-NF used in conjunction with the use of common
parametric distributions to construct 𝑓 (· | 𝜽 ) facilitates intuition-
building. By inspecting the proposal distributions generated by
TBS-SMC and VO-NF with 𝛾 = 100, we see that the scenarios we
seek to generate – those exhibiting “complex” dynamics in the
averaged population opinion – are more readily generated when
agents’ opinions are relatively “sticky”: low (resp. high) values of
𝜚𝑎 and 𝑔𝑎 (resp. 𝜚𝑏 and 𝑔𝑏 ) are assigned comparatively high mass
by the proposal distributions, and the bivariate joint densities for
(𝜚𝑎, 𝜚𝑏 ) and (𝑔𝑎, 𝑔𝑏 ) show that 𝜚𝑏 > 𝜚𝑎 and 𝑔𝑏 > 𝑔𝑎 is generally
desirable. Both of these features correspond to Beta distributions
over 𝜇𝑛 and 𝜈𝑛 that are left-skewed, corresponding to a synthesised
population comprised by more stubborn and less malleable agents.
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Figure 4: Simulations of the average opinion over time gen-
erated from the marginal likelihood function (Equation (1))
using TBS-SMC (red, dot-dashed), VO-NF (blue solid, green
dotted), and a Uniform distribution over 𝚯 (orange dashed).

Finally, this experiment highlights the potentially desirable be-
haviour induced by choosing a far-from-minimal value for 𝜖 or 𝛾
in cases where the loss function ℓ does not perfectly reflect the
scenarios of interest to the experimenter. By visual inspection of
Figure 4, the sample scenarios generated by VO-NF at 𝛾 = 1 – cor-
responding to a smaller entropy regularisation term in Equation
(4), and thus a narrower proposal 𝑞 on regions of 𝚯 that minimise
ℓ – appear less complex than those generated by VO-NF at 𝛾 = 100:
the former sample paths concentrate slightly more strongly around,
and fluctuate less significantly from, an average population opinion
of approximately 0.5 (i.e., far from the top and bottom boundaries
of the 𝑦-axis), while the latter sample paths are less constrained
to this region. This suggests that while the choice of ℓ we employ
in this experiment does contain information on the “complexity”
of the time series, it is misspecified to some degree. In such cases,
and as demonstrated by this experiment, it may therefore be desir-
able to use larger values of 𝛾 or 𝜖 in the VO and TBS approaches
we consider, since this can ensure the variety of populations and
scenarios is sufficiently diverse, resulting in a higher probability of
covering the scenarios of interest and that ℓ imperfectly specifies.

5 RELATEDWORK
A closely related body of work revolves around the use of the Patient
Rule Induction Method (PRIM, see [19, 26]) for scenario discovery
and exploratory modelling in simulation models. PRIM identifies
rectangular regions in the input space in which the (average) output
of the modelled system is an outlier with respect to some baseline
behaviour, and has been used in a variety of settings for scenario
discovery in simulation models of complex systems. PRIM is related
to the TBS approach we consider: in both cases, samples are gener-
ated across the parameter space, a subset of which is given further
consideration if they generate simulations that produce output that
falls beyond some (implicitly or explicitly defined) threshold value.
Our work differs from the PRIM methodology in two main respects,
by (i) seeking to develop the relationship between scenario gen-
eration and population synthesis in ABMs, and (ii) proposing and
considering multiple approaches that do not restrict the space of
solutions to the space of rectangles on the input space, instead
permitting distributions of arbitrary shape and complexity.
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Figure 5: The proposal distribution for (a) VO-NF with 𝛾 = 100
(blue), and 𝛾 = 1 (green), and (b) TBS-SMC with 𝜖 = 400 (red).

A related problem to that considered in the current work is in-
verse design in materials science [23, 29, 31], in which a space of
possible materials is searched for a material exhibiting a prescribed
set of desired behaviours and properties. A number of techniques
have been considered to address this problem, including the use of
various methods inspired by or drawn from the probabilistic ma-
chine learning and generative modelling literature [31]. Our work
applies similar ideas in the context of targeted scenario generation
in ABMs through appropriately synthesised populations.

Beyond this, there exists a variety of work on constructing real-
istic synthetic populations for ABMs from data collected on real-
world populations [9, 10, 34, 35]. The primary focus of this body of
work is to construct synthetic populations that match the distribu-
tion of attributes observed in a sample from the real world, for exam-
ple through iterative proportional fitting [see e.g., 11, 18, 39, 41] or
deep generative modelling [9]. One of the main technical challenges
here is to account for the under-specified nature of the collected
data: such (often census) data is typically only partially revealed
to researchers by only specifying certain pairwise relationships
between attributes, rather than all relationships between all vari-
ables. Furthermore, discreteness is typically introduced artificially
through the binning of continuous variables. Our work differs from
this body of work, however, in that our approach is designed with
the intention of performing exploratory modelling, scenario discov-
ery, and simulation-based planning [see, e.g., 27] with, for example,
a (partially) calibrated ABM for which uncertainty regarding the
population composition remains.

The general problem of synthesising populations can naturally
be related to the problem of synthetic data generation [24, 43]. Our
work additionally develops this body of research: in Jordon et al.
[Section 3.2, 24], the authors discuss the potential of synthetic data
to be employed in what-if scenario generation settings in causal
modelling, which aligns closely with the content of our work. In
particular, we consider in this work how synthetic data for an
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artificial population may be generated “in-the-loop” according to
the scenario to be generated within the simulated environment.

Finally, the techniques proposed in Section 3 are closely related
to simulation-based techniques used in the literature on approx-
imate inference [12, 14, 15, 42]. This relationship is a secondary
benefit of our approach to synthesising populations: framing the
problem of scenario generation and synthesising populations in
ABMs as inference on population-level parameters relates the liter-
ature on synthesising populations for ABMs on the one hand, and
approximate inference methods for implicit probabilistic models
on the other, enabling each of these components of ABMing theory
and practice to benefit from the problems and advances seen in
the other. In particular, Equation (1) may be seen as a variational
program as described in [40], while the methods described in Sec-
tions 3.1 and 3.2 can be seen as, respectively, approximate Bayesian
computation [4] and (generalised) variational inference [17, 25] for
population level parameters in which (a) the loss function ℓ em-
ployed within the scenario generation procedure is not restricted
to some measure of incongruence between the model behaviour
and some observed data, and (b) the employed prior density over
P is uniform (and potentially improper, when P is unbounded).

6 DISCUSSION
In this paper, we propose and evaluate two broad approaches to
population synthesis in agent-based models with the goal of gener-
ating and exploring scenarios of interest to an experimenter. This
will facilitate the use of agent-based simulators to plan for possible
future behaviours of a complex system under uncertainty about the
characteristics of the population comprising the system. We demon-
strate with simulations that our approaches can accurately identify
and generate a diverse range of synthetic populations and, conse-
quently, scenarios of interest through their simulated behaviours.

The approaches we present rely on the experimenter’s ability to
select an appropriate loss function through which suitable popula-
tions and scenarios are generated. What constitutes an appropriate
loss functions will in general depend on both the specific model
under consideration and the targeted scenario. It is therefore chal-
lenging to provide overarching guidance on its design, and we
note that this may be a factor which makes the application of our
proposed approaches nontrivial in practice.

Our approaches furthermore rely on the identification of a suit-
able attribute distribution 𝑓 (· | 𝜽 ). In many cases, this will simply
be a modelling choice and entirely for the modeller to choose. There
nonetheless exists multiple possible strategies that can be taken
to construct 𝑓 . The strategy adopted in our simulation studies is
to construct 𝑓 as a factorised distribution consisting of standard
distributions over each agent attribute. Each factor is then tailored
to the specific domain of the corresponding attribute, e.g., the use
of Beta distributions for attributes lying in the unit range. However,
our approaches are not restricted to the use of simple parametric or
factorised distributions alone: greater expressivity can be achieved
(possibly at the expense of interpretability, however) using, e.g.,
mixture models [6], or other explicit or implicit generative models
(e.g., normalising flows [37], GANs [20], or deep graph models [28]).

The question of which of the two approaches discussed in this
article, threshold-based sampling or variational optimisation, may

be most useful to the practitioner arises naturally. We generally
observed VO-NF to converge within a few thousand simulations
across different values of 𝛾 , whereas many more simulations were
required to construct the TBS proposal distribution. This suggests
that VO may generally be preferable. However, since 𝛾 indirectly
controls the variance of the marginal likelihood and generated
values for ℓ by directly controlling the entropy of the proposal, it
can be harder to calibrate 𝛾 to the desired degree of congruence
between the simulated scenarios and the target scenario. In con-
trast, 𝜖 is likely to be more comprehensible to the experimenter –
if the experimenter has sufficient intuition to designate an appro-
priate loss function ℓ for the scenarios they wish to target, it seems
reasonable to expect that this intuition will extend to identifying
minimally desirable distances 𝜖 from it – meaning that the “right”
amount of diversity in the synthesised populations and scenarios
may be achieved more easily with TBS. For this reason, TBS may
therefore be more easily applied than VO, despite the larger sim-
ulation burden we observed when constructing a single proposal
distribution. Surrogate models and alternative (e.g., quasi-Monte
Carlo [13]) samplers can also be employed to reduce the computa-
tional burden. Further work will nonetheless be required to more
comprehensively explore the relative merits of TBS and VO.

Although our discussion has refrained from incorporating prior
beliefs, each of the approaches we consider can be immediately
incorporated into a Bayesian framework by applying pointwise
weightings to the proposal distribution using a further distribution
𝜋 : P → R≥0. For example, this might be a prior distribution used
to encode the decision-maker’s a priori beliefs about (un)likely val-
ues for (𝝎, 𝜽 ), or a posterior distribution obtained by performing
Bayesian inference on (𝝎, 𝜽 ) using any data that is available. In
such cases, the approaches discussed in Sections 3.1 and 3.2 are
closely related to approximate Bayesian computation (ABC, [4]) and
(generalised) variational Bayesian inference (GVI, [17, 25]). How-
ever, despite this similarity, our motivation deviates significantly
from the typical use-cases for ABC and GVI: ABC and GVI are typ-
ically employed when the experimenter is concerned with drawing
inferences about parameter values upon observing a dataset from
a real-world system being modelled by the simulation model; the
problem that we consider however differs in the sense that data is
not used to draw inferences about parameter values, but instead
parameter values are proposed to generate desired model behaviour
without relying on the presence of data and with the purpose of
planning for scenarios that are of interest to the experimenter.
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