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ABSTRACT
The distortion framework in social choice theory allows quantifying
the e�ciency of (randomized) selection of an alternative based
on the preferences of a set of agents. We make two fundamental
contributions to this framework.

First, we develop a linear-programming-based algorithm for com-
puting the optimal randomized decision on a given instance, which
is simpler and faster than the state-of-the-art solutions. For prac-
titioners who may prefer to deploy a classical decision-making
rule over the aforementioned optimal rule, we develop an algo-
rithm based on non-convex quadratic programming for computing
the exact distortion of any (and the best) randomized positional
scoring rule. For a small number of alternatives, we� nd that the
exact distortion bounds are signi�cantly better than the asymp-
totic bounds established in prior literature and lead to di�erent
recommendations on which rules to use.

These results rely on a novel characterization of the instances
yielding the worst distortion, which may be of independent interest.
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1 INTRODUCTION
The area of computational social choice aims to� nd good ways
of aggregating the preferences of a set of people, or voters, into
a desirable collective decision. The notion of distortion in social
choice was introduced by Procaccia and Rosenschein [27] in 2006
to measure the ine�ciency of voting rules that only have access
to limited information about the preferences of the agents. Over
the past two decades, this literature has given rise to a plethora of
interesting results about the distortion of rules in several di�erent
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domains of interest, including single-winner and committee vot-
ing [2, 5, 11–13, 15, 24, 25], participatory budgeting [10, 21], and
matching [3, 4, 7, 14, 18].

One of the most fundamental settings that have been studied
under this framework is that of implicit utilitarian voting, in which
the preferences of the agents are expressed by normalised but oth-
erwise unrestricted cardinal values, and the voting rules only have
access to the ordinal preference rankings induced by those values.
For this setting, some of the very� rst works in the area already
identi�ed the limitations of voting rules, even those that employ
randomization in their decisions, by providing a general lower
bound of ⌦(p<) on the best achievable distortion [13], where< is
the number of alternatives. Far more recently, Ebadian et al. [17]
designed a voting rule that always achieves a distortion of $ (p<),
thus settling the asymptotic e�ciency of general voting rules. Even
more recently, Ebadian et al. [16] studied the distortion of a class of
very natural randomized voting rules, called randomized positional
scoring rules (RPSRs), which select an outcome proportionally to
its score, according to some prede�ned scoring vector. Rules in
this class display several attractive properties (such as anonymity,
neutrality, and strategyproofness [9, 20]) and in [16] are deemed
explainable, as they use randomization in a rather straightforward
manner. The best achievable asymptotic distortion by RPSRs has
been shown to be ⇥(

p
< log<) [11, 13], and the asymptotic distor-

tion bounds for several interesting RPSRs are known [16].
From the preceding paragraphs, it is evident that the worst-case,

asymptotic distortion of voting rules for implicit utilitarian voting
is pretty well understood. Still, many of the preference vectors that
we encounter in applications exhibit a certain structure, which does
not necessarily allow for the pathological examples that establish
the worst-case lower bounds to arise, raising the following question:

1. Given a vector of agents’ preferences, how can we compute the best
possible distortion on this vector? How can we� nd a voting rule that
achieves it?

Additionally, even in a worst-case regime, in many cases we should
not be satis�ed with merely asymptotic bounds, as the hidden
constants, even when small, can have a signi�cant impact on the
calculated distortion bounds. This latter fact is particularly pro-
nounced in instances with a small number of possible outcomes,
which are often encountered in practice. Indeed, elections for politi-
cal leaders often exhibit a small number of alternatives, or selecting
a candidate for an academic position usually boils down to a choice
between a few shortlisted options. Especially for those cases, we
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would like to be able to compute the exact distortion bound of a
given voting rule, captured in the following question:
2. Given a voting rule, how canwe� nd its exactworst-case distortion?

1.1 Our Contributions
In this paper, we provide algorithms that answer Questions 1 and 2
above, which are based on continuous optimization techniques. In
particular, we provide the following contributions for the distortion
of voting rules in the unit-sum normalized utilitarian setting.

For� estion 1. We design a polynomial-time algorithm which, for
any vector of agents’ (ordinal) preferences, i.e., for any preference
pro�lewith= agents and< alternatives, constructs a linear program
with $ (=<) variables and $ (=<) constraints which computes the
best possible distortion, and the voting rule that achieves this dis-
tortion. Our algorithm is conceptually and computationally simpler
than the best known solution due to [13], which also employs a
linear program with$ (=<2) variables and constraints. For the�rst
part of Question 1 in isolation, i.e., merely identifying the best possi-
ble distortion of any voting rule given a preference pro�le (but not
the rule itself), we provide a much faster algorithm, which runs in
time $ (=< log(=<)). We complement our theoretical results with
experiments which demonstrate the far superior running time of
our algorithms on both real and synthetic data.

For� estion 2. We formulate the problem of� nding the exact dis-
tortion of a given RPSR as a quadratic program. This quadratic
program is non-convex, and thus our algorithm does not run in
polynomial time. Still, it is fast enough to comfortably compute the
exact distortion of a given RPSR for up to 5 candidates, which cap-
tures a plethora of social choice scenarios of interest. Our algorithm
is the� rst to solve the exact distortion computation problem, but
in the next section, we do highlight its computational advantages
against previous techniques that could conceivably be applied to
our domain. Using this quadratic program, we compute the exact
distortion of several well-known RPSRs, as well as the best possible
distortion achieved by any rule in this class. For the latter part, we
employ an iterative technique that searches through the (continu-
ous) domain of RSPRs, aided by distortion lower bounds for rules
in this class obtained as solutions to linear programs, making use
of classic characterization results from the literature [9, 20].

All of our results are enabled by a novel characterization of the
structure of the worst-case instances for any (ordinal) voting rule,
by means of what we refer to as dichotomous utilities, which could
be of independent interest. All the appendices and missing proofs
are available in the full version. 1

1.2 Related Work and Discussion
We discuss how our results for Questions 1 and 2 improve upon
the state of the art results in the literature. For more works on the
general topic of distortion in computational social choice theory,
we defer the reader to the survey of Anshelevich et al. [6].

For� nding the preference pro�le-optimal rule and its distortion
in Question 1, Boutilier et al. [13] provided a polynomial-time al-
gorithm based on linear-programming. At a high level, their linear
1Full version: https://www.cs.toronto.edu/~nisarg/papers/distortion-computation.pdf

program� nds the smallest possible distortion value subject to a set
of constructed inequalities that ensure that this distortion is feasible
for some voting rule. In turn, these inequalities are obtained from
the dual of a di�erent linear program that checks the feasibility
of a given distortion; the use of duality here is crucial, to avoid
their resulting optimization program having quadratic constraints.
Boutilier et al. [13], as also evidenced by the phrasing of Theorem
3.4. in their work, primarily presented their algorithm as a proof
of polynomial-time solvability of the problem. That said, merely
establishing polynomial-time solvability can be achieved by a sim-
pler linear program, one with in�nitely many constraints, coupled
with an appropriate separation oracle so that it can be solved by
the ellipsoid method; see Section 3 for more details. Still, even the
algorithm of [13] turns out to not be fast enough for several ap-
plications, e.g., for computing the preference pro�le-optimal rule
on a large set of inputs, to be used as a performance benchmark
against other voting rules in experiments. Our algorithms are faster
in theory and in practice, making them much more appealing for
such applications. The main technical contribution that allows us
to devise these faster algorithms is our novel structural restriction
of dichotomous utilities as the worst-case preference pro�les.

Finally, we remark that one can interpret our algorithm as a
general social choice rule with a best-possible distortion of $ (p<).
Compared to the rule of Ebadian et al. [17], ours seems conceptually
simpler, as it is based on linear programs. In contrast, the rule in
[17] uses the concept of stable lotteries, which are computed via
applying a multiplicative weight updates algorithm to approach
the value of a certain zero-sum game, see [23] for more details.

Moving on to the exact distortion of RPSRs in Question 2, the
literature had not really provided any methods for this task prior
to our work. The most related approach is due to Filos-Ratsikas
and Miltersen [19], who studied (among other voting rules), the
exact distortion of RPSRs for three candidates, but crucially, for
a di�erent normalization of the utilities called unit-range.2 Given
our structural characterization of the worst-case utility pro�les,
their approach is in principle applicable for unit-sum as well, but it
results in non-convex quadratic programs with at least 18 variables
and constraints, even for< = 3. Our program, which is di�erent
from the one of [19], has much fewer constraints and can thus easily
handle instances with< = 5 alternatives; we provide more details
about the comparison with [19] in Appendix F.

To� nd the best RPSR and its distortion, we repeatedly apply
our quadratic program on a set of candidate RPSRs. To guide our
search, we follow another idea of [19], and obtain those candidates
as solutions to a sequence of zero-sum games, which can easily be
solved via linear programming. The zero-sum game formulation is
enabled by well-known characterizations of RPSRs due to Gibbard
[20] and Barbera [9] (see also [19]), and can also be seen as an
application of Yao’s minimax principle [29].

2 PRELIMINARIES
Let [C] := {1, 2, . . . , C} for C 2 N. For a set ( , let �(() be the set of
probability distributions over ( .

2In unit-range, the values of each agent for the alternatives lie in [0, 1] with the
maximum value being 1 and the minimum value being 0. In unit-sum, the values
of each agent for the alternatives sum to 1. The unit-sum normalization is the most
widely-used in the related literature, see [6, 8].
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Utilitarian voting. Let # be a set of = agents and � be a set of<
alternatives. We assume that each agent 8 2 # has a utility function
D8 : � ! R>0 over the alternatives. Following the literature, we
adopt the unit-sum assumption:

Õ
02� D8 (0) = 1 for each 8 2 # [8].

These utility function collectively form the utility pro�le ÆD. With
slight abuse of notation, we use D8 (?) := E0⇠? D8 (0) to denote the
(expected) utility of agent 8 under distribution ? 2 �(�). Given
a utility pro�le ÆD, the social welfare of an alternative 0 2 � is
sw(0, ÆD) :=

Õ
82# D8 (0) and that of a distribution ? 2 �(�) is

sw(?, ÆD) := Õ
82# D8 (?). We say that an alternative 0⇤ is optimal if

it has themaximum social welfare, i.e. 0⇤ (ÆD) 2 argmax02� sw(0, ÆD).
We might drop ÆD when it is clear from the context.

Elicitation and aggregation. Based on their underlying utilities, agents
submit their votes in form of a ranking over the alternatives. Let
f8 : [<] ! � denote the ranking of agent 8 2 # over the alter-
natives. We use 0 �8 1 to show that agent 8 prefers alternative 0
to alternative 1, and rank8 (0) := f�18 (0) to show the rank of alter-
native 0 in agent 8’s ranking; thus 0 �8 1 , rank8 (0) < rank8 (1).
These rankings collectively form a preference pro�le Æf . We say that
f8 is consistent with utility functionD8 if, for any pair of alternatives
0,1 2 �, 0 �8 1 implies D8 (0) > D8 (1); let C(f8 ) denote the set of
utility functions consistent with f8 . We say that utility pro�le ÆD
is consistent with Æf if D8 2 C(f8 ) for each agent 8 2 # ; let C(Æf)
denote the set of utility pro�les consistent with Æf .

Voting rules. A (randomized) voting rule 5 takes a preference pro-
�le Æf as input and outputs a distribution 5 (Æf) 2 �(�) over the
alternatives. If 5 (Æf) always has singleton support, we say 5 is de-
terministic and, with slight abuse of notation, use 5 (Æf) to denote
the alternative in the support.

Distortion. The distortion of a distribution ? 2 �(�) on a utility pro-
�le ÆD is its social welfare approximation, dist(?, ÆD) := max02� sw(0,ÆD )

sw(?,ÆD ) .

Its distortion on a preference pro�le Æf is its worst-case distortion
on any utility pro�le ÆD 2 C( Æf): dist(?, Æf) := supÆD2C( Æf ) dist(?, ÆD);
note that this supremum is attained at some ÆD 2 C( Æf) due to a
continuous function being optimized over a compact domain and,
thus, can be replaced by a maximum. The distortion of a voting rule
5 is the worst-case distortion of its output over all preference pro-
�les: dist(5 ) = supÆf dist(5 (Æf), Æf), where the worst case is taken
over all preference pro�les with< alternatives (and any number of
agents). The instance-optimal rule 5 ⇤ is the rule that, on each prefer-
ence pro�le Æf , outputs the distribution with the smallest distortion:
5 ⇤ (Æf) 2 argmin?2�(�) dist(?, Æf).

3 COMPUTING THE OPTIMAL DISTRIBUTION
In this section, we focus on computing the instance-optimal rule 5 ⇤,
i.e., computing the optimal distribution in argmin?2�(�) dist(?, Æf)
given a preference pro�le Æf . Boutilier et al. [13] prove that this can
be accomplished in polynomial time. Speci�cally, they� rst write a
nonlinear program for the problem, which involves multiplying the
probability of selecting an alternative with the utility of an agent for
the alternative, both variables of the program. Then, by considering
its dual program and combining it with the primal, they design
a complicated linear program (LP) whose optimal solution yields
the optimal distribution and its corresponding distortion. Their full

LP is provided in Appendix A. This LP has $ (=<2) variables and
$ (=<2) constraints, establishing that the optimal distribution (and
its corresponding distortion) can be computed in polynomial time.

If polynomial-time computability was the sole goal, one could
write the following straightforward LP given a preference pro�le Æf .

max V

s.t.
’
02�

?0 · sw(0, ÆD) > V ·max
02�

sw(0, ÆD), 8ÆD 2 C( Æf) (1)

’
02�

?0 = 1 (2)

?0 > 0, 80 2 �. (3)

Variable ?0 denotes the probability of selecting alternative 0 and
constraint (1) requires that dist(?, ÆD) 6 1/V under every utility
pro�le ÆD 2 C( Æf). Thus, 1/V becomes an upper bound on the distor-
tion of ? and maximizing V yields the optimal distribution ? along
with its distortion 1/V . While this LP has uncountably many con-
straints, it admits a straightforward polynomial-time separation ora-
cle. Given values of V and (?0)02� , checkingwhether constraints (2)
or (3) are violated is trivial, and� nding a violated constraint in (1)
(if one exists) amounts to solving the following< linear programs,
one for each 0⇤ 2 �:

min
’
02�

?0 ·
 ’
82#

D8,0

!
� V ·

 ’
82#

D8,0⇤

!

s.t. D8,0 > D8,1, 88 2 # ,0,1 2 � : 0 �8 1’
02�

D8,0 = 1, 88 2 #

D8,0 > 0, 88 2 # ,0 2 �.

If the optimal value for any of these LPs is less than 0, the cor-
responding utility pro�le identi�es a violated constraint in the
original LP. Thus, the original LP can be solved in polynomial time
using the ellipsoid method.

Therefore, an important contribution of Boutilier et al. [13] is
that they provide a single LP with $ (=<2) variables and $ (=<2)
constraints to be solved, which is much faster than solving the
above LP with uncountably many constraints using a separation
oracle that solves< LPs each with$ (=<) variables and constraints
in each iteration.

Our main contribution in this section is to devise a much sim-
pler LP with only $ (=<) variables and $ (=<) constraints, and
without using sophisticated techniques such as LP duality. The
bedrock of our improvement is a novel structural characterization
of the worst-case utility pro�le for a distribution ? on a preference
pro�le Æf , which may be of independent interest. We also use this
characterization in Section 4.

3.1 Worst-Case Utility Pro�les
We prove that the distortion of any distribution ? on any preference
pro�le Æf is attained at some utility pro�le ÆD 2 C( Æf) with the
following dichotomous structure.
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De�nition 1 (Dichotomous Utilities). The (unit-sum) dichotomous
utility function with respect to ranking f over � and A 2 [<] is

f,A (0) =
(
1/A if f�1 (0) 6 A ,

0 o.w.;

that is, the agent is indi�erent among her top A alternatives and
has zero utility for the remaining alternatives. We say that a utility
pro�le ÆD is dichotomous if the utility function D8 of each agent
8 2 # is dichotomous with respect to f8 and some A8 2 [<].

We are ready to prove our structural insight.

T������1. For any distribution ? 2 �(�) and preference pro�le
Æf , there exists a dichotomous utility pro�le ÆD⇤ 2 C( Æf) where ? attains
its worst distortion (i.e., dist(?, ÆD⇤) = dist(?, Æf)).

P����. Let 3 = dist(?, Æf). Then,

max
ÆD2C( Æf )

max02� sw(0, ÆD)
sw(?, ÆD) = 3 ()

max
ÆD2C( Æf )

✓
max
02�

sw(0, ÆD) � 3 · sw(?, ÆD)
◆
= 0 ()

max
02�

max
ÆD2C( Æf )

’
82# (D8 (0) � 3 · D8 (?)) = 0 ()

max
02�

’
82# max

D8 2C(f8 )
(D8 (0) � 3 · D8 (?)) = 0, (4)

where in the last transition, the maximum can be taken over each
agent separately due to the expression being linear over the agents.

It remains to show that, for any� xed alternative 0 and agent 8 ,
D8 (0) �3 ·D8 (?) is maximized at some dichotomous utility function
D⇤8 2 C(f8 ). Note that dichotomous utility functions with respect to
f8 are linearly independent and span the space C(f8 ) of unit-sum
utility functions consistent with f8 . Hence,

max
D8 2C(f8 )

(D8 (0) � 3 · D8 (?))

= max
ÆU2�<

⇣’
A 2 [<] UA · f8 ,A (0) � 3 ·

’
A 2 [<] UA · f8 ,A (?)

⌘

= max
ÆU2�<

’
A 2 [<] UA ·

�
f8 ,A (0) � 3 · f8 ,A (?)

�
,

where �< = { ÆU 2 [0, 1]< :
Õ
A 2 [<] UA = 1} is the (< � 1)-simplex.

Thanks to the� nal expression being linear in ÆU , the maximum is
attained at U⇤ where U⇤A = 1 (i.e., D⇤8 = f8 ,A ) for some A 2 [<]. ⇤

Given Theorem 1, we can replace the maximum over all D8 2
C(f8 ) in Equation (4) with a maximum over dichotomous utility
functions with respect to f8 to obtain:

dist(?, Æf) = 3 ()

max
02�

’
82#

max
A 2 [<]

1
A

✓
I [rank8 (0) 6 A ] � 3 ·

A’
✓=1

?f8 (✓ )

◆
= 0. (5)

We revisit Equation (5) later to derive our results.

3.2 A Faster Polynomial-Time Algorithm
Building on the novel characterization of worst-case utility pro�les
from Theorem 1, we design a simpler linear program for computing
the instance-optimal rule. This is the main result of this section.

T������2. Given a preference pro�le Æf , there exists a linear pro-
gram with $ (=<) variables, $ (=<) constraints, and $ (=<) size for
computing the optimal distribution ?⇤ 2 argmin?2�(�) dist(?, Æf)
and its distortion dist(?⇤, Æf).

P����. We derive the� nal linear program gradually via a num-
ber of insights and transformations. Let Æf be the given preference
pro�le. First, note that the distortion dist(?, Æf) of a distribution ?
is the minimum value 3 for which Equation (5) holds. This yields
the following optimization problem which computes the optimal
distribution ? and its corresponding distortion 3 .

min 3

s.t. X8,0 >
1
A

✓
I[rank8 (0) 6 A ] � 3 ·

’A

✓=1
?f8 (✓ )

◆

88 2 # ,0 2 �,A 2 [<]’
82# X8,0 6 0 80 2 �’
02� ?0 = 1

?0 > 0 80 2 �.
Here, X8,0 upper bounds the expression from Equation (5) corre-
sponding to a� xed 0⇤ = 0 and 8 2 # , so the constraint

Õ
82# X8,0 6

0 for all 0 2 � implements precisely Equation (5).

Linearization. However, this is not a linear program due to the
multiplication of 3 with ?0-s in the� rst constraint. To linearize
it, we introduce a new variable b?0 = 3 · ?0 for each 0 2 �. SinceÕ
02� b?0 = 3 , the above program is equivalent to

min
’

02� b?0
s.t. X8,0 >

1
A

✓
I[rank8 (0) 6 A ] �

’A

✓=1
b?f8 (✓ )

◆

88 2 # ,0 2 �,A 2 [<]’=

8=1
X8,0 6 0 80 2 [<]

b?0 > 0 80 2 [<]

This is now a linear program, whose optimal solution b? yields
both the optimal distortion

Õ
02� b?0 and the optimal distribution

given by ?0 = b?0/Õ12� b?1 for all0 2 �. While it already has$ (=<)
variables, an improvement over $ (=<2) variables of Boutilier et al.
[13], it still has $ (=<2) constraints, the same as them.

Optimizing the number of constraints. To reduce the number
of constraints to $ (=<), the key observation is the following re-
construction of the constraints that bound X8,f8 (A ) . For 8 2 # and
A 2 [<], let B8,A :=

ÕA
✓=1 b?f8 (✓ ) . Then, the� rst constraint in the

above program can be written as

X8,f8 (A ) > max
n

max
✓2 [A�1]

�1
✓
· B8,✓, max

✓2 [A ,<]
1
✓
·
�
1 � B8,✓

� o
. (6)

De�ne U8,A = max✓2 [A ] � 1
✓ · B8,✓ and V8,A = max✓2 [A ,<]

1
✓ ·

�
1 � B8,✓

�
.

Then, we can bound X8,f8 (A ) using only two constraints:

X8,f8 (A ) > U8,A�1, and X8,f8 (A ) > V8,A .

The U ’s and V’s can be set using $ (=<) constraints as in the�nal
linear program below.
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Linear program P consists of$ (=<) and$ (=<) constraints. The
third constraint type involves = variables and there are< of such
constraints. All other constraints involve at most 3 variables. Thus,
the size (number of non-zero coe�cients) of P is also $ (=<). ⇤

Linear Program P

min
’

02 [<]
b?0

s.t. X8,f8 (A ) > U8,A�1 88 2 # , A 2 [2,< � 1]
X8,f8 (A ) > V8,A 88 2 # , A 2 [<]’=

8=1
X8,0 6 0 80 2 [<]

Partial sums:

B8,1 = b?f8 (1) 88 2 #
B8,A = B8,A�1 + b?f8 (A ) 88 2 # , A 2 [2,<]

Top partial maximums:

U8,A > U8,A�1 88 2 # , A 2 [2,< � 1]

U8,A >
1
A
· ( �B8,A) 88 2 # , A 2 [< � 1]

Bottom partial maximums:

V8,A > V8,A+1 88 2 # , A 2 [< � 1]

V8,A >
1
A

�
1 � B8,A

�
88 2 # , A 2 [<]

Variable ranges:
b?0 > 0 80 2 [<]
X8,f8 (A ) ,U8,A, V8,A 2 R 88 2 # , A 2 [<]

3.3 Distortion of a Rule on a Preference Pro�le
While the LP above computes the instance-optimal rule 5 ⇤ (i.e.,
computes the optimal distribution ?⇤ on a given preference pro�le
Æf), in practice one may wish to implement a di�erent voting rule 5
due to, for example, its normative properties or the status quo. In
such cases, one may wish to know the distortion of the distribution
5 (Æf) it returns on Æf , which may not be the optimal distribution ?⇤.

To the best of our knowledge, the only approach to solve this
problem prior to our work was to use the linear program of Boutilier
et al. [13] and� xing the selection probabilities to match 5 (Æf) (in-
stead of letting them be variables). Adapting this approach to our
optimized linear program P already provides a faster algorithm, but
linear programming based algorithms are still slow. Using insights
from Theorem 1, we develop an$ (=< log(=<)) time combinatorial
algorithm for this problem which avoids solving linear programs.
The proof and the algorithm appears in the full version.

T������3. There is an algorithm to compute the distortion dist(?, Æf)
of distribution ? on preference pro�le Æf in $ (=< log(=<)) time.

The� rst step is to design a fast subroutine for checking whether
dist(?, Æf) 6 3 for a given threshold 3 .

Lemma 1. There is an algorithm that given a preference pro�le Æf ,
distribution ? , and a real number 3 checks if distortion of ? w.r.t Æf is
at most 3 in linear time$ (=<). If not, it� nds a witness utility pro�le
for which distortion of ? is more than 3 .

The key idea is to quickly compute Equation (5) as both ? and 3
are given. For each agent 8 and alternative 0, we compute the index
⌘8,0(3) such that the dichotomous utility function corresponding
to f8 and ⌘8,0(3) maximizes the inner expression in Equation (5):

⌘8,0(3) = argmax
A 2 [<]

n 1
A
·
⇣
I [rank8 (0) 6 A ] � 3 ·

’A

✓=1
?f8 (✓ )

⌘o
. (7)

This allows evaluating the left hand side of Equation (5): if it
is non-positive, the distortion is indeed at most 3 , and if it is posi-
tive, the utility pro�le where each agent 8 has the aforementioned
dichotomous utility function forms the sought witness.

Lemma 1 immediately implies that one can perform a binary
search for the desired distortion 3⇤ := dist(?, Æf) 2 [1,1] and
get Y-close in time $ (=< log(3⇤/Y)). However, we can prove that,
instead of searching for 3⇤ in a continuous range, we can selectively
focus on at most =< potential distortion values. This is because
⌘8,0(3) de�ned in Equation (7) changes at only a limited number
of “pivotal” values of 3 . However, computing these pivotal values
across all 8 2 # and 0 2 � in only $ (=<) time requires additional
ideas based on convex hulls (speci�cally, Graham’s Scan [1]). In
the full version, we discuss, in details, how to compute the set of
all pivotal values in $ (=<). At a high-level, Theorem 3 follows by
performing binary search over the pivotal values 3 , and invoking
Lemma 1 for at most$ (log=<) times, we� nd the worst-case utility
pro�le and compute its distortion in time $ (=< log(=<)).

4 DISTORTION OF RANDOMIZED
POSITIONAL SCORING RULES

In the previous section, we were concerned with computing the
distortion of a given distribution or the optimal distribution on a
given preference pro�le. However, the (overall) distortion of a rule
requires computing its worst-case distortion across all preference
pro�les — a signi�cantly more complex task, for which prior work
provides no algorithms to the best of our knowledge. Our main
contribution in this section is to devise such an algorithm for the
following well-studied family of rules, and we do so by solving a
non-convex quadratic program. Note that such programs, including
ours, are not known to be solvable in polynomial time.

Randomized Positional Scoring Rules. Given a scoring vector ÆB =
(B1, B2, . . . , B<), the positional scoring rule (PSR) assigns a score of
B 9 to an alternative each time it appears at the 9-th position in the
ranking of any agent (for each 9 ), and (deterministically) selects an
alternative with the highest total score. A randomized positional
scoring rule (RPSR) 5ÆB assigns scores to alternatives in the same
way, but selects each alternative with probability proportional to
its score. On preference pro�le Æf , this selects each alternative 0 2 �
with probability PÆB (0, Æf) := Pr[5ÆB (Æf) = 0] = 1

= |ÆB |
Õ
82# Brank8 (0) .

These rules, also called point-voting schemes [9], are known
due to their strategyproofness [20]. Ebadian et al. [16] provide
asymptotic distortion bounds for many rules in this family.

In this section, we� rst devise an algorithm for computing the
(exact) distortion of a given RPSR. Then, we iteratively use our algo-
rithm, together with an appropriately constructed linear program,
to� nd the RPSR with the smallest distortion for a given number
of alternatives<. Finally, we present the bounds achieved via our
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techniques for up to< = 5 alternatives, for both the best RPSR and
commonly used RPSRs from the literature.

4.1 Worst-Case Utility and Preference Pro�les
Let � = {01,02, . . . , 0<}. Let us de�ne three properties of a pair of
preference pro�le Æf and utility pro�le ÆD 2 C( Æf).
(P1) ÆD is dichotomous.
(P2) sw(0 9 , ÆD) > sw(0 9+1, ÆD) for all 9 2 [< � 1].
(P3) For each agent 8 2 # and alternatives 0 9 ,0 9 0 2 � with 9 < 9 0,

if D8 (0 9 ) = D8 (0 9 0 ), then 0 9 0 �8 0 9 .
Property (P1) is our insight from Theorem 1 that the worst-

case utility pro�le ÆD is dichotomous WLOG. Property (P2) uses
neutrality of RPSRs (i.e., that they do not depend on the names of
the alternatives) to further restrict the search space for ÆD. Unlike in
Section 3 where the preference pro�le Æf was given, here we seek to
identify its worst case, for which Property (P3) is our novel insight.

Let,< = {(f1,D1), . . . , (fC ,DC )} denote the set of possible pairs
of preference ranking f8 and utility function D8 2 C(f8 ) that any
agent can have in any pair of preference pro�le Æf and utility pro�le
ÆD 2 C( Æf) satisfying Properties (P1) to (P3); note that C := |,< | and
from here on, with slight abuse of notation, we will use 8 to index
a pair (agent type) in,< instead of denoting an individual agent.
The next lemma shows that the three properties above signi�cantly
reduce the search space.
Lemma 2. |,< | 6 2< � 2.

Table 4 in Appendix C shows the 23 � 2 = 6 possible pairs of
preference ranking and utility function that we need to consider for
< = 3 alternatives. Finally, we show that every RPSR achieves its
worst distortion on a pair (Æf, ÆD) satisfying Properties (P1) to (P3).
The proofs of both these lemmas are in Appendix C.1.
Lemma 3. For every randomized positional scoring rule 5ÆB , there
exists a pair (Æf, ÆD) of preference and utility pro�les satisfying Proper-
ties (P1) to (P3) at which 5ÆB attains its worst distortion.

4.2 Computing the Distortion of an RPSR
Fix any RPSR 5ÆB . For 8 2 [C], de�ne @8 to be the fraction of agents
who have preference ranking and utility function (f8 ,D8 ) 2 ,< .
Note that the 1⇥C vector @ = (@1, . . . , @C ) satis�es

Õ
82 [C ] @8 = 1 and

can capture any worst-case instance (Æf, ÆD) satisfying Properties (P1)
to (P3), for any number of agents =.

We want to understand the distortion of 5ÆB at a given @ and
then write a program to optimize over @. Let *<⇥C be a matrix
where * 9,8 = D8 (0 9 ), and %<⇥C be a matrix where % 9,8 is the score
that candidate 0 9 gets from any agent with preference ranking f8 ,
i.e. % 9,8 = Brank8 (0 9 ) . Also, de�ne ⇠C⇥C = * |% . For example, when
< = 3, matrices* and % corresponding to the set,< from Table 4
are shown in Appendix C.

From the above, we can see that if @ represents the instance
(Æf, ÆD), then sw(0 9 , ÆD) = = · @ ·* |9 and PÆB (0 9 , Æf) = @ · %|9 , where* 9

and % 9 denote the 9-th row of* and % , respectively. This means

dist(5ÆB ) =
@ ·* |1Õ

92 [<] (@ ·* |9 ) (@ · %|9 )
=

@ ·* |1
@

⇣Õ
8 *
|
9 · % 9

⌘
@|

=
@* |1
@⇠@|

.

Hence, we arrive at the following optimization program to com-
pute the distortion of the given RPSR 5ÆB .

max
@* |1
@⇠@|

s.t. @ ·* |9 6 @ ·* |1 89 2 [<]Õ
82 [C ] @8 = 1

@8 > 0 88 2 [C] .
To transform this optimization program to a formmore amenable

to solving via standard solvers, we add a variable ⇡ to capture the
inverse of the distortion, i.e., 1/dist(5ÆB ). The new objective is to
minimize ⇡ , and we add a quadratic constraint ⇡ · (@|*1) > @|⇠@
to ensure that ⇡ remains an upper bound on the inverse of the dis-
tortion. The resulting optimization program has a linear objective,
a set of linear constraints, and a single quadratic constraint.

The (inverse of the) solution to Program Q yields the distortion
dist(5ÆB ) of a given RPSR 5ÆB as well as the instance (Æf, ÆD) where the
worst distortion is attained; the latter part will be useful in our
algorithm in Section 4.3 for� nding the best RPSR.

We remark that Program Q is not convex, and thus not known
to be polynomial-time solvable, even to a given precision. Still, for
relatively small values of < (e.g., up to < = 5), standard solvers
are able to provide globally optimal solutions within reasonable
running times as we show in Section 4.4.

Quadratic Program Q
min. ⇡

s.t. ⇡
’
82 [C ]

@8 ·*1,8 >
’
82 [C ]

’
:2 [C ]

@8 · @: ·⇠8,:
’
82 [C ]

@8 ·* 9,8 6
’
82 [C ]

@8 ·*1,8 89 2 [<]

Õ
82 [C ] @8 = 1

@8 > 0 88 2 [C] .

4.3 Finding the Best Possible RPSR
In this section, we make use of our quadratic program Q to�nd
the RPSR that achieves the minimum distortion (and that distortion
itself) for a given number of alternatives <. The idea is to use
program Q repeatedly to search over the space of all RPSRS. Since
this is a vast search space and solving the non-convex program Q
takes time, we employ the technique of Filos-Ratsikas andMiltersen
[19], which uses zero-sum games (and as a result, linear programs)
to aid the search and quickly converge to the optimal solution
without exploring too many points in the search space.

Lower bounds via zero-sum games. Filos-Ratsikas and Miltersen [19,
Theorem 2] show that any RPSR for < alternatives is a convex
combination of rules �:< for : 2 [<]: rule �:< (a) selects an agent
uniformly at random and (b) select one of her : most-preferred
alternatives uniformly at random. This result of [19] is in fact almost
a direct corollary of a result of Barbera [9], which was in turn
obtained from the characterization of Gibbard [20] of truthful rules.

By applying Yao’s minimax principle [29], we can e�ectively
transform the design of the optimal RPSR into a (series of) zero-
sum game(s) G. In a game G, the pure strategies of the maximizer
are the rules �:< for: 2 [<] and the pure strategies of theminimizer
are a set of instances I (the construction of this set is explained
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in the next paragraph), where an instance is a pair of preference
and utility pro�les (Æf, ÆD) such that ÆD 2 C( Æf). When the maximizer
chooses rule � 9

< and the minimizer chooses instance (Æf, ÆD) 2 I,
the reward in the corresponding cell of the game is the inverse
of the corresponding distortion, i.e., 1/dist(� 9

< (Æf), ÆD). From the
characterization of Filos-Ratsikas and Miltersen [19], the set of
mixed strategies of the maximizer is precisely the set of RPSRs.
By computing an optimal mixed strategy for the maximizer, we
obtain an RPSR with the smallest distortion in the worst case over
all instances in I (and this distortion value is the inverse of the
value of game G). Game G can be solved by a standard formulation
of zero-sum games as linear programs.

An iterative algorithm. Throughout our algorithm, we maintain (a)
the current distortion upper bound 3D , (b) the current distortion
lower bound 3✓ , (c) a set of “bad” instances I, and (d) a candidate
RPSR 52 . Initially 3D = 1, 3✓ = 0, I = ;, and 52 is any RPSR.

In each iteration, we run the quadratic program Q on the rule 52 ,
which returns both dist(52 ) and the worst-case instance (Æf, ÆD) at
which this distortion is attained.We update3D  min(3D , dist(52 ))
and add (Æf, ÆD) toI. Then, we construct thematrix gameG described
above with the pure strategies of the maximizer being the rules
�:< and the pure strategies of the minimizer being the instances
in I. We update 3✓ to be the inverse of the value of this game G
and 52 to be the optimal mixed strategy of the maximizer in G. We
repeat this process until a stopping criterion has been met, which
is that 3D � 3✓ 6 Y for a su�ciently small Y; the choice of Y in our
experiments is described in the next section. During this process,
we keep track of the RPSR that achieves the distortion of 3D , and at
termination, output that as our estimate of the best RPSR. Note that
3D is the exact distortion of this rule, and thus, a valid upper bound
on the distortion of the best RPSR. Similarly, 3✓ is also a valid lower
bound on the distortion of any (and thus the best) RPSR.

4.4 Bounds for a Small Number of Alternatives
By deploying the techniques presented in the previous two sub-
sections, we are able to compute the exact distortion of several
well-known RPSRs and of the best RPSRs for< 2 {2, 3, 4, 5} alter-
natives.In more detail, we employ the quadratic program Q that
we develop in Section 4.2 to compute the exact distortion of the
following well-known RPSRs:

- Randomized Plurality, with scoring vector ÆB = (1, 0, . . . 0),
- Randomized Borda, with scoring vector ÆB = (< � 1, . . . , 1, 0),
- Randomized:-Approval, with scoring vector ÆB = (1, . . . , 1, 0, . . . , 0),
with : ones, for : = 2 and : = 3,

- Randomized Veto, with scoring vector ÆB = (1, 1, . . . 1, 0),
- Randomized Harmonic, with scoring vector ÆB = (1, 1/2, . . . , 1/<),
- the “Golden Rule” [13] with scoring vector ÆB = (1, 1/2, . . . , 1/<) +
(1/<, . . . , 1/<). The Golden Rule has the smallest asymptotic
distortion among all RPSRs [11].

Using the iterative algorithm described in Section 4.3, with stopping
criterion 3D � 3✓ 6 0.005, we also obtain (essentially) tight bounds
on the distortion of the best RPSR for< alternatives. To solve the
quadratic program Q we use the Gurobi Optimization Solver. We
remark that the main computational bottleneck of this technique
is solving the quadratic program; the aided search of Section 4.3

# Rule,< ! 2 3 4 5

Best Randomized LB 1.500 1.835 2.092 2.303

Best RPSR LB 1.500 1.870 2.188 2.473
Best RPSR UB 1.500 1.870 2.188 2.474

Harmonic Rule 1.556 1.987 2.354 2.682
Randomized 2-Approval 2.000 2.414 2.743 3.078

Randomized Borda 1.522 2.000 2.556 3.148
Golden Rule 1.714 2.276 2.751 3.173

Randomized Plurality 1.522 2.155 3.000 4.000
Randomized 3-Approval - 3.000 3.621 4.098

Randomized Veto 1.522 2.414 3.621 4.828

Best PSR UB 3 5.5 8.333 11.418
Table 1: The exact distortion of well-known RPSRs, and dis-
tortion bounds for the best RPSR, the best PSR, and the best
randomized rule.

terminated in at most 9 iterations in all cases. All computations
were performed using an Apple M2 CPU with 24 GB of Ram.

We complement these results with bounds on the best (deter-
ministic) PSRs to demonstrate the advantages of randomization.
To calculate these bounds, we� rst show that the (exact) distortion
of a given PSR can be computed by a linear program, which we
present in Appendix D. Here, we cannot use the zero-sum-game-
aided search from Section 4.2, so we perform a simple grid search
on the space of PSRs to� nd the best PSR; this is still fast enough
because we are now solving linear (rather than quadratic) programs
to compute the distortion of PSRs; see Appendix D for details.

To assess how close the best RPSR is to the best rule overall, we
also present lower bounds on the distortion of any randomized
voting rule. To compute these, we employ a gradient-descent style
search over the space of preference pro�les, employing our algo-
rithm in Section 3.3 to� nd the best distortion on each preference
pro�le (see Algorithm 2 in Appendix B). More details are presented
in Appendix E. While the algorithm does not return the global opti-
mum (which would be the precise distortion of the instance-optimal
rule), the optimal distortion it� nds on any preference pro�le serves
as a valid lower bound on the distortion of any rule.

Our results are summarized in Table 1. The bene�ts of using ran-
domization are evident, as the distortion of deterministic PSRs are
notably worse than those of even common RPSRs. On the other side
of the spectrum, the best RPSRs are quite close (exactly matching for
< = 2) to the best randomized rules in general. We provide the best
RSPRs achieving the displayed bounds in Table 5 in Appendix D.
Among common RPSRs, most are near-optimal for< = 2, but the
di�erences between them are more pronounced for< > 3. Inter-
estingly, with the exception of< = 2, the Randomized Harmonic
rule achieves the lowest distortion among all common RPSRs, even
though the Golden Rule has a better asymptotic distortion (and the
best asymptotic distortion among all RPSRs) [16]. This showcases
that the hidden constants in the asymptotic bounds can make a
di�erence for small values of<.

5 EXPERIMENTS
In this section, we present a comparative analysis between our
linear program P and the LP of Boutilier et al. [13] (referred to
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Figure 1: Performance of BCHLPS on Pre�ib data.
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Figure 2: Performance of P on Pre�ib data.
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Figure 3: Running time of P and BCHLPS on synthetic data (= = 1000).

< q=0.1 q=0.5 q=0.8 S.P P.L.
10 3.74 2.07 3.1 0.77 3.29
20 9.71 5.13 8.08 0.43 7.28
30 19.6 9.09 15.79 5.48 15.42
40 26.8 23.37 20.18 8.54 18.91
50 32.28 31.06 28.89 10.61 29.84

Table 2: Speed-up of P over BCHLPS.

as BCHLPS) for computing the optimal distribution (and its cor-
responding distortion) on a given preference pro�le. We test on
preference pro�les generated synthetically as well as drawn from
real-world datasets. To solve the LPs, we use Gurobi [22], with each
run utilizing 4 cores and 50GB of memory. 3

5.1 Synthetic Data
We generated instances from three statistical models: the Mallows
model with parameter q 2 {0.1, 0.2, 0.5, 0.8, 1}, the Plackett-Luce
model, and random4 Single-Peaked preferences; see [28] for a de-
scription of these models. All instances were comprised of = = 1000
agents. For< 2 {10, 20, 30, 40, 50} alternatives and each model, we
generated 10 instances and calculated the average running time
along with the standard error.

Results. Figure 3 and Table 2 provide a summary of the running
time comparison between the two LPs on synthetic data. Notably,
BCHLPS failed to terminate in 3 hours on every instance with
< = 60 under every model, except for the single-peaked model (Fig-
ure 3c), whereas P completed in less than 150 seconds on each such
instance. The speed-up (ratio of average running times) achieved
by P is detailed in Table 2. For the larger values of< 2 {30, 50},
P consistently outperformed BCHLPS across all statistical models,
achieving as much as 10x to 30x speed-up, with the performance
gap widening with < increasing. The only case where BCHLPS
performed better was small instances (< 2 {10, 20}) generated
using the Single-Peaked model. Our experiments demonstrate a
signi�cant improvement in the e�ciency for P over BCHLPS.

5.2 Pre�ib Data
We utilized the 7742 real-world preference pro�les from Pre�ib [26]
of type SOC (strict order - complete order). The largest instances had
as many as = = 14081 voters and as many as< = 1080 alternatives.
3Code: https://github.com/lati�an/Computational-Aspects-of-Distortion
4We sampled the positions of agents and alternatives iid in [0, 1] and derived prefer-
ences based on distances.

Results. The running times of BCHLPS and P on Pre�ib data are
illustrated in Figures 1 and 2, with color intensities representing
log10 of the running time. Table 3 shows various percentiles of the
running times of the two LPs across the Pre�ib instances.

Rule 50% 90% 99% 99.5% mean
BCHLPS 51.63s 653.83s 1737.71s 2582.31s 218.28s †

P 0.84s 4.6s 21.84s 257.16s 9.42s
† excluding 20 instances where BCHLPS did not� nish in an hour

Table 3: Order statistics of running times on Pre�ib

Our LP P was successfully solved in under a minute in 99% of the
instances. On average across all instances, P completed in under
10 seconds, marking a speed-up of more than 20x over BCHLPS.
Additionally, instances denoted by ⇥ on Figures 1 and 2 are the ones
where the algorithms failed to terminate in an hour. These were
20 instances for BCHLPS versus 5 instances for P; P concluded
on these 5 instances within 1.5 hours, while BCHLPS still did not
terminate on those 5 instances after 3 hours.

6 DISCUSSION AND FUTUREWORK
An interesting question is whether we can extend our results in
Section 4.4 to larger values of <. The bottleneck is the running
time of the quadratic program Q. Could there be a method that
computes the distortion of a given RPSR faster? We conjecture
that the associated computational problem is NP-hard, and there-
fore a polynomial-time algorithm should not be expected. Proving
this conjecture is an interesting avenue for future work. Finally,
could we extend our approach in Section 4.1 to voting rules be-
yond RPSRs? One candidate class of rules would be support voting
schemes, which, together with RPSRs complete the class of truthful
randomized rules on ordinal preferences [9, 20].

We studied single winner selection, where the goal is to choose
a single alternative as the winner. Some of our techniques may be
applicable to related settings such as multiwinner selection, partici-
patory budgeting, matching and assignment problems, incomplete
preferences, domain restrictions, and metric distortion problems.
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