
Reinforcement Learning in the Wild
with Maximum Likelihood-based Model Transfer

Hannes Eriksson
Zenseact

Chalmers University of Technology
Gothenburg, Sweden

hannes.eriksson@zenseact.com

Tommy Tram
Zenseact

Chalmers University of Technology
Gothenburg, Sweden

Debabrota Basu
Univ. Lille, Inria, CNRS

Centrale Lille, UMR 9189 – CRIStAL
Lille, France

Mina Alibeigi
Zenseact

Gothenburg, Sweden

Christos Dimitrakakis
University of Oslo

University of Neuchatel
Neuchatel, Switzerland

ABSTRACT
In this paper, we study the problem of transferring the available
Markov Decision Process (MDP) models to learn and plan efficiently
in an unknown but similar MDP. We refer to it as Model Transfer
Reinforcement Learning (MTRL) problem. First, we formulate MTRL
for discrete MDPs and Linear Quadratic Regulators (LQRs) with
continuous state actions. Then, we propose a generic two-stage
algorithm, MLEMTRL, to address the MTRL problem in discrete
and continuous settings. In the first stage, MLEMTRL uses a con-
strained Maximum Likelihood Estimation (MLE)-based approach to
estimate the target MDP model using a set of known MDP mod-
els. In the second stage, using the estimated target MDP model,
MLEMTRL deploys a model-based planning algorithm appropriate
for the MDP class. Theoretically, we prove worst-case regret bounds
for MLEMTRL both in realisable and non-realisable settings. We
empirically demonstrate that MLEMTRL allows faster learning in
new MDPs than learning from scratch and achieves near-optimal
performance depending on the similarity of the available MDPs
and the target MDP.

KEYWORDS
Reinforcement Learning;Transfer Learning;Maximum Likelihood
Estimation;Linear Quadratic Regulator
ACM Reference Format:
Hannes Eriksson, Tommy Tram, Debabrota Basu, Mina Alibeigi, and Chris-
tos Dimitrakakis. 2024. Reinforcement Learning in the Wild with Maximum
Likelihood-based Model Transfer. In Proc. of the 23rd International Confer-
ence on Autonomous Agents andMultiagent Systems (AAMAS 2024), Auckland,
New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Deploying autonomous agents in the real world poses a wide va-
riety of challenges. As in [11], we are often required to learn the
real-world model with limited data, and use it to plan to achieve sat-
isfactory performance in the real world. There might also be safety

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

and reproducibility constraints, which require us to track a model
of the real-world environment [36]. In light of these challenges, we
attempt to construct a framework that can aptly deal with optimal
decision making for a novel task, by leveraging external knowledge.
As the novel task is unknown, we adopt the Reinforcement Learn-
ing (RL) [38] framework to guide an agent’s learning process and
to achieve near-optimal decisions.

An RL agent interacts directly with the environment to improve
its performance. Specifically, in model-based RL, the agent tries
to learn a model of the environment and then use it to improve
performance [24]. In many applications, the depreciation in per-
formance due to sub-optimal model learning can be paramount.
For example, if the agent interacts with living things or expen-
sive equipment, decision-making with an imprecise model might
incur significant cost [30]. In such instances, boosting the model
learning by leveraging external knowledge from the existing mod-
els, such as simulators [29], physics-driven engines, etc., can be of
great value [41]. A model trained on simulated data may perform
reasonably well when deployed in a new environment, given the
novel environment is similar enough to the simulated model. Also,
RL algorithms running on different environments yield data and
models that can be used to plan in another similar enough real-
life environment. In this work, we study the problem where we
have access to multiple source models built using simulators or
data from other environments, and we want to transfer the source
models to perform efficient model-based RL in a different real-life
environment.

Example 1. Let us consider that a company is designing autonomous
driving agents for different countries in the world. The company has
designed two RL agents that have learned to drive well in USA and UK.
Now, the company wants to deploy a new RL agent in India. Though
all the RL agents are concerned with the same task, i.e. driving, the
models encompassing driver behaviors, traffic rules, signs, etc., can
differ for each. For example, UK and India have left-handed traffic,
while the USA has right-handed traffic. However, learning a new
controller specifically for every new geographic location is computa-
tionally expensive and time-consuming, as both data collection and
learning take time. Thus, the company might use the models learned
for UK and USA, to estimate the model for India, and use it further to
build a new autonomous driving agent (RL agent). Hence, being able
to transfer the source models to the target environment allows the

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

516

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

company to use existing knowledge to build an efficient agent faster
and resource efficiently.

We address this problem of model transfer from source models to a
target environment to plan efficiently. We observe that this problem
falls at the juncture of transfer learning and reinforcement learn-
ing [19, 20, 42]. [20] enlists three approaches to transfer knowledge
from the source tasks to a target task. (i) Instance transfer: data from
the source tasks is used to guide decision-making in the novel
task [41]. (ii) Representation transfer: a representation of the task,
such as learned neural network features, are transferred to perform
the new task [46]. (iii) Parameter transfer: the parameters of the RL
algorithm or policy are transferred [34]. In our paper, the source
tasks are equivalent to the source models, and the target task is
the target environment. Moreover, we adopt themodel transfer
reinforcement learning approach (MTRL), which encompasses
both (i) and (ii) (Section 4).

[18] describes three possible benefits of transfer learning. The
first is learning speed improvement, i.e. decreasing the amount
of data required to learn the solution. Secondly, asymptotic im-
provement, where the solution results in better asymptotic perfor-
mance. Lastly, jumpstart improvement, where the initial proxy
model serves as a better starting solution than that of one learning
the true model from scratch. In this work, we propose a new algo-
rithm to transfer RL that achieves both learning speed improvement
and jumpstart improvement (Section 8). However, we might not
find an asymptotic improvement in performance if compared with
the best and unbiased algorithm in the true setting. Rather, we aim
to achieve a model estimate that allows us to plan accurately in the
target MDP (Section 6).
Contributions. We aim to answer two central questions:

(1) How can we accurately construct a model using a set of source
models for an RL agent deployed in the wild?

(2) Does the constructed model allow efficient planning and yield
improvements over learning from scratch?

In this paper, we address these questions as follows:
1. A Taxonomy of MTRL: First, we formulate the problem with
the Markov Decision Processes (MDPs) setting of RL. We further
provide a taxonomy of the problem depending on a discrete or
continuous set of source models, and whether the target model is
realisable by the source models (Section 4).
2. Algorithm Design with MLE: Following that, we design a two-
stage algorithm MLEMTRL to plan in an unknown target MDP
(Section 5). In the first stage, MLEMTRL uses a Maximum Likeli-
hood Estimation (MLE) approach to estimate the target MDP using
the source MDPs. In the second stage, MLEMTRL uses the estimated
model to perform model-based planning. We instantiate MLEMTRL
for discrete state-action (tabular) MDPs and Linear Quadratic Reg-
ulators (LQRs). We also derive a generic bound on the goodness
of the policy computed using MLEMTRL (Section 6). We further
provide a meta-algorithm, called Meta-MLEMTRL, to control the
adaptation to the non-realisable setting (Section 7).
3. Performance Analysis: In Section 8, we empirically verify whether
MLEMTRL improves the performance for unknown tabular MDPs
and LQRs than learning from scratch. MLEMTRL exhibits learning
speed improvement for tabular MDPs and LQRs. For LQRs, it incurs
learning speed improvement and asymptotic improvement. We also

observe that the more similar the target and source models are, the
better the performance ofMLEMTRL, as indicated by the theoretical
analysis. An ablation study of Meta-MLEMTRL under realisable
and non-realisable settings further shows provable improvements
yielded in the asymptotic and non-realisable regimes.

Before elaborating on the contributions, we posit this work in the
existing literature (Section 2) and discuss the background knowl-
edge of MDPs and MLEs (Section 3).

2 RELATEDWORK
Our work on Model Transfer Reinforcement Learning is situated
in the field of Transfer RL (TRL) and also is closely related to the
multi-task RL and Bayesian multi-task RL literature. In this section,
we elaborate on these connections.

TRL is widely studied in Deep Reinforcement Learning. [48]
introduces different ways of transferring knowledge, such as policy
transfer, where the set of source MDPs M𝑠 has a set of expert
policies associated with them. The expert policies are used together
with a new policy for the novel task by transferring knowledge
from each policy. [34] uses this approach, where a student learner is
combined with a set of teacher networks to guide learning in multi-
task RL. [28] develops an actor-critic structure to learn ways to
transfer its knowledge to new domains. [2] invokes generalisation
across Q-functions by learning a master policy. Here, we focus on
model transfer instead of policy.

Another seminal work in TRL, by [42] distinguishes between
multi-task learning and transfer learning. Multi-task learning deals
with problems where the agent aims to learn from a distribution
over scenarios, whereas transfer learning makes no specific assump-
tions about the source and target tasks. Thus, in transfer learning,
the tasks could involve different state and action spaces and different
transition dynamics. Specifically, we focus on model-transfer [3]
approach to TRL, where the state-action spaces and also dynamics
can be different. [3] performs model transfer for a target task with
an identical transition model. Thus, the main consideration is to
transfer knowledge to tasks with the same dynamics but varying
rewards. [19] assumes a context similar to that of [3], where the
model dynamics are identical across environments. In our work,
we rather assume that the reward function is the same, but the
transition models are different. We believe this is an interesting
question as the harder part of learning an MDP is learning the tran-
sition model. These works explicate a deep connection between
the fields of multi-task learning and TRL. In general, TRL can be
viewed as an extension of multi-task RL, where multiple tasks can
either be learned simultaneously or have been learned a priori. This
flexibility allows us to learn even in settings where the state-actions
and transition dynamics are different among tasks. [33] describes a
multi-task Maximum Likelihood Estimation procedure for optimal
control of an aircraft. They identify a mixture of Gaussians, where
the mixture is over each of the tasks. Here, we adopt an MLE ap-
proach to TRL to optimise performance for the target MDP (or a
target task) rather than restricting to a mixture of Gaussians.

The Bayesian approach to multi-task RL [21, 44] tackles the
problem of learning jointly how to act in multiple environments.
[21] handles the open-world assumption, i.e. the number of tasks is
unknown. This allows them to transfer knowledge from existing

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

517

tasks to a novel task, using value function transfer. However, this is
significantly different from our setting, as we are consideringmodel-
based transfer. Further, we adopt an MLE-based framework in lieu of
the full Bayesian procedure described in their work. In Bayesian RL,
[39] also investigates a learning technique to generalise over mul-
tiple problem instances. By sampling a large number of instances,
the method is expected to learn how to generalise from the existing
tasks to a novel task. We do not assume access to such prior or
posterior distributions to sample from.

There is another related line of work, namely multi-agent trans-
fer RL [9]. For example, [22] develops a TRL framework for au-
tonomous driving using federated learning. They accomplish this
by aggregating knowledge for independent agents. This setting is
different from general transfer learning but could be incorporated
if the source tasks are learned simultaneously with the target task.
This requires cooperation among agents, which is out of the scope.

3 BACKGROUND
Here, we introduce the important concepts on which this work is
based upon. Firstly, we introduce the way we model the dynam-
ics of the tasks. Secondly, we describe the Maximum Likelihood
Estimation framework used in this work.
Markov Decision Process (MDP). We study sequential decision-
making problems that can be represented as MDPs [31]. An MDP
` = (S,A,R,T , 𝛾) consists of a discrete or continuous state space
denoted by S, a discrete or continuous action-space A, a reward
function R : S×A → Rwhich determines the quality of taking ac-
tion 𝑎 in state 𝑠 , and a transition function T : S×A → Δ(S) induc-
ing a probability distribution over the successor states 𝑠 ′ given a cur-
rent state 𝑠 and action 𝑎. Finally, in the infinite-horizon formulation,
a discount factor 𝛾 ∈ [0, 1) is assigned. The overarching objective
for the agent is to compute a decision-making policy 𝜋 : S → Δ(A)
that maximises the expected sum of future discounted rewards up
until the horizon 𝑇 : 𝑉 𝜋

` (𝑠) = E
[∑𝑇

𝑡=0 𝛾
𝑡R(𝑠𝑡 , 𝑎𝑡)

]
. 𝑉 𝜋

` (𝑠) is called
the value function of policy 𝜋 for MDP `. Let 𝑉 ∗` = 𝑉 𝜋∗

` denote the
optimal value function. The technique used to obtain the the optimal
policy 𝜋∗ = sup𝜋 𝑉 𝜋

` depends on the MDP class. The MDPs with
discrete state-action spaces are referred to as tabular MDPs. In this
paper, we also study a class of MDPs with continuous state-action
spaces, namely Linear Quadratic Regulators (LQRs) [15]. In tabular
MDPs, we employ ValueIteration [31] for model-based planning,
whereas in the LQR setting, we use RiccatiIteration [43].

The standard metric used to measure the performance of a policy
𝜋 [6] for anMDP ` is regret 𝑅(`, 𝜋). Regret is the difference between
the optimal value function and the value function of 𝜋 . In this work,
we extend the definition of regret for MTRL, where the optimality
is taken for a policy class in the target MDP.
Maximum Likelihood Estimation (MLE). One of the most pop-
ular methods of constructing point estimators is the Maximum
Likelihood Estimation [7] framework. Given a density function
𝑓 (𝑥 | \1, . . . , \𝑛) and associated i.i.d. data 𝑋1, . . . , 𝑋𝑡 , the goal of the
MLE scheme is to maximise, ℓ (\ | 𝑥) ≜ ℓ (\1, . . . , \𝑛 | 𝑥1, . . . , 𝑥𝑡) ≜
log

∏𝑡
𝑖=1 𝑓 (𝑥𝑖 | \1, . . . , \𝑛). ℓ (·) is called the log-likelihood function.

The set of parameters \ maximising ℓ (\ | 𝑥) is called the maximum
likelihood estimator of \ given the data 𝑋1, . . . , 𝑋𝑡 . MLE has many
desirable properties that we leverage in this work. For example, the

MLE satisfies consistency, i.e. under certain conditions, it achieves
optimality even for constrained MLE. An estimator being consis-
tent means that if the data 𝑋1, . . . , 𝑋𝑡 is generated by 𝑓 (· | \) and
as 𝑡 → ∞, the estimate almost surely converges to the true pa-
rameter \ . [16] shows that MLE admits the consistency property
given the following assumptions hold. The model is identifiable, i.e.
the densities at two parameter values must be different unless the
two parameter values are identical. Further, the parameter space
is compact and continuous. Finally, if the log-density is dominated,
one can establish that MLE converges to the true parameter almost
surely [25]. For problems where the likelihood is unbounded, flat,
or otherwise unstable, one may introduce a penalty term in the
objective function. This approach is called penalised maximum like-
lihood estimation [8, 27]. As we in our work are mixing over known
parameters, we do not need to add regularisation to our objective
to guarantee convergence.

In this work, we iteratively collect data and compute new point
estimates of the parameters and use them in our decision-making
procedure. To carry out MLE, a likelihood function has to be cho-
sen. In this work, we investigate two such likelihood functions in
Section 5, one for each respective model class.

4 A TAXONOMY OF MODEL TRANSFER RL
Now, we formally define the Model Transfer RL problem and derive
a taxonomy of settings encountered in MTRL.

4.1 MTRL: Problem Formulation
Let us assume that we have access to a set of source MDPsM𝑠 ≜
{`𝑖 }𝑚𝑖=1. The individual MDPs can belong to a finite or infinite but
compact set depending on the setting. For example, for tabular
MDPs with finite state-actions, this is always a finite set. Whereas
for MDPs with continuous state-actions, the transitions can be pa-
rameterised by real-valued vectors/matrices, corresponding to an
infinite but compact set. Given access toM𝑠 , we want to find an op-
timal policy for an unknown targetMDP `∗ that we encounter while
deploying RL in the wild. At each step 𝑡 , we useM𝑠 and the data
observed from the target MDP 𝐷𝑡−1 ≜ {𝑠0, 𝑎0, 𝑠1, . . . , 𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡 }
to construct an estimate of `∗, say ˆ̀𝑡 . Now, we use ˆ̀𝑡 to run a
model-based planner, such as ValueIteration or RiccatiItera-
tion, that leads to a policy 𝜋𝑡 . After completing this planning step,
we interact with the target MDP using 𝜋𝑡 that yields an action 𝑎𝑡 ,
and leads to observing 𝑠𝑡+1, 𝑟𝑡+1. We update the dataset with these
observations: 𝐷𝑡 ≜ 𝐷𝑡−1 ∪ {𝑎𝑡 , 𝑠𝑡 }. Here, we assume that all the
source and target MDPs share the same reward function R. We do
not restrict the state-action space of target and source MDPs.

Our goal is to compute a policy 𝜋𝑡 that performs as close as
possible with respect to the optimal policy 𝜋∗ for the target MDP as
the number of interactions with the target MDP 𝑡 →∞. This allows
us to define a notion of regret for MTRL: 𝑅(`∗, 𝜋𝑡) ≜ 𝑉 ∗

`∗ − 𝑉
𝜋𝑡
`∗ .

Here, 𝜋𝑡 is a function of the source modelsM𝑠 , the data collected
from target MDP 𝐷𝑡 , and the underlying MTRL algorithm. The goal
of an MTRL algorithm is to minimise 𝑅(`∗, 𝜋𝑡). For the parametric
policies 𝜋\ with \ ∈ Θ ⊂ R𝑑 , we can specialise the regret further for
this parametric family: 𝑅(`∗, 𝜋\𝑡) = 𝑉 𝜋\ ∗

`∗ −𝑉
𝜋\𝑡
`∗ . For example, for

LQRs, we by default work with linear policies. We use this notion
of regret in our theoretical and experimental analysis.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

518

Total Deviation

Realisability
Estimation

Figure 1: An illustration of the MTRL setting. The source
modelsM𝑠 are the red boxes. The green area is the convex
hull C(M𝑠) spanned by the source models. The target MDP
`∗ is displayed in blue, and the best proxymodel is contained
in the convex hull ` in yellow. Finally, the estimator of the
best proxy model ˆ̀ is shown in purple.

4.2 Three Classes of MTRL Problems
We begin by illustrating MTRL using Figure 1. In the figure, the
source MDPsM𝑠 are depicted in red. This green area is the convex
hull spanned by the source models C(M𝑠). The target MDP `∗, the
best representative within the convex hull of the source models `,
and the estimated MDP ˆ̀ are shown in blue, yellow, and purple,
respectively. If the target model is inside the convex hull, we call it
a realisable setting. whereas If the target model is outside (as in
Figure 1), then we have a non-realisable setting.

Figure 1 also shows that the total deviation of the estimated
model from the target model depends on two sources of errors: (i)
realisability, i.e. how far is the target MDP `∗ from the convex hull
of the source models C(M𝑠) available to us, and (ii) estimation, i.e.
how close is the estimatedMDP ˆ̀ to the best possible representation
` of the target MDP. In the realisable case, the realisability gap can
be reduced to zero, but not otherwise. This approach allows us to
decouple the effect of the expressibility of the source models and
the goodness of the estimator.

Now, we further elaborate on these three classes and the corre-
sponding implications of performing MLE.

I. Finite and Realisable Plausible Models. If the true model
`∗ is one of the target models, i.e. ˆ̀ ∈ M𝑠 , we have to identify
the target MDP from a finite set of plausible MDPs. Thus, the
corresponding MLE involves a finite set of parameters, i.e. the
parameters of the source MDPsM𝑠 . We compute the MLE ˆ̀ by
solving the optimisation problem:

ˆ̀ ∈ argmax
`′∈M𝑠

logP(𝐷𝑡 | ` ′), 𝐷𝑡 ∼ `∗ . (1)

This method may serve as a reasonable heuristic for the TRL prob-
lem, where the target MDP is the same as or reasonably close to
one of the source MDPs. However, this method will potentially
be sub-optimal if the target MDP is too different from the source
MDPs. Even if `∗ lies within the convex hull of the source MDPs
(the green area in Figure 1), this setting restricts the selection of a
model to one of the red boxes. Thus, this setting fails to leverage the

expressiveness of the source models as MLE allows us to accurately
estimate models which are also in C(M𝑠). Thus, we focus on the
two settings described below.

II. Infinite and Realisable Plausible Models. In this setting,
the target MDP `∗ is in the convex hull `∗ ∈ C(M𝑠) of the source
MDPs. Thus, for Class I, we extend the parameter space considered
in MLE to an infinite but compact parameter set.

Let us define the convex hull asC(M𝑠) ≜ {`1𝑤1+. . .+`𝑚𝑤𝑚 | `𝑖 ∈
M𝑠 ,𝑤𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚,

∑𝑚
𝑖=1𝑤𝑖 = 1}. Then, the corresponding

MLE problem with the corresponding likelihood function is

ˆ̀ ∈ argmax
`′∈C(M𝑠)

logP(𝐷𝑡 | ` ′), 𝐷𝑡 ∼ `∗ . (2)

Since C(M𝑠) induces a compact subset of model parametersM ′ ⊂
M, Equation (2) leads to a constrained maximum likelihood esti-
mation problem [1]. It implies that if the parameter corresponding
to the target MDP is inM ′, it can be correctly identified. In the
case where the optimum lies inside, we can use constrained MLE
to accurately identify the true parameters given enough experience
from `∗. This approach allows us to leverage the expressibility of
the source models completely. However, `∗ might lie outside or on
the boundary. Either of them may pose problems for the optimiser.

III. Infinite andNon-realisable PlausibleModels. This class
is similar to Class II with the important difference that the true
parameter `∗ is outside the convex hull of sourceMDPs C(M𝑠), and
thus, the corresponding parameter is not in the induced parameter
subsetM ′. This key difference means the true parameters cannot
be correctly identified. Instead, the objective is to identify the best
proxymodel ` ∈ M ′. The performance loss for using ` instead of `∗
is intimately related to themodel dissimilarity | |`∗−` | |1. This allows
us to describe the limitation of expressivity of the source models by
defining the realisability gap: 𝜖Realise ≜ min`∈C(M𝑠) ∥`∗−`∥1. The
realisability gap becomes important while dealing with continuous
state-action MDPs with parameterised dynamics, such as LQRs.

5 MLEMTRL: MTRL WITH MAXIMUM
LIKELIHOOD MODEL TRANSFER

Now, we present the proposed algorithm, MLEMTRL. The algo-
rithm consists of two stages, a model estimation stage, and a plan-
ning stage. After having obtained a plan, then the agent will carry
out its decision-making in the environment to acquire new expe-
riences. We sketch an overview of MLEMTRL in Algorithm 1. For
completeness, we also provide an extension to MLEMTRL called
Meta-MLEMLTRL. This extension combines the MLEMTRL esti-
matedmodel with the empirical model of the target task. This allows
us to identify the true model even in the non-realisable setting. The
details of this algorithm are available in Section 7.

5.1 Stage 1: Model Estimation
The first stage of the proposed algorithm ismodel estimation. During
this procedure, the likelihood of the data needs to be computed for
the appropriate MDP class. In the tabular setting, we use a product
of multinomial likelihoods, where the data likelihood is over the
distribution of successor states 𝑠 ′ for a given state-action pair (𝑠, 𝑎).
In the LQR setting, we use a linear-Gaussian likelihood, which is
also expressed as a product over data observed from the target
MDP.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

519

Algorithm 1 Maximum Likelihood Estimation for Model-based
Transfer Reinforcement Learning (MLEMTRL)

1: Input: weights 𝒘0, 𝑚 source MDPs M𝑠 , data 𝐷0, discount
factor 𝛾 , iterations 𝑇 .

2: for 𝑡 = 0, . . . ,𝑇 do
3: // Stage 1: Model Estimation //
4: 𝒘𝑡+1 ← Optimiser(logP(𝐷𝑡 | Σ𝑚𝑖=1𝑤𝑖`𝑖),𝒘𝑡)
5: Estimate the MDP: `𝑡+1 =

∑𝑚
𝑖=1𝑤𝑖`𝑖

6: // Stage 2: Model-based Planning //
7: Compute the policy: 𝜋𝑡+1 ∈ argmax

𝜋
𝑉 𝜋
`𝑡+1

8: // Control //
9: Observe 𝑠𝑡+1, 𝑟𝑡+1 ∼ `∗ (𝑠𝑡 , 𝑎𝑡), 𝑎𝑡 ∼ 𝜋𝑡+1 (𝑠𝑡)
10: Update the dataset 𝐷𝑡+1 = 𝐷𝑡 ∪ {𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡+1}
11: end for
12: return An estimated MDP model `𝑇 and a policy 𝜋𝑇

Likelihood for Tabular MDPs. The log-likelihood that we at-
tempt to maximise in tabular MDPs is a product over |S| × |A| of
pairs of multinomials, where 𝑝𝑖 is the probability of event 𝑖 , 𝑛𝑠,𝑎 is
the number of times the state-action pairs (𝑠, 𝑎) appear in the data
𝐷𝑡 , and 𝑥

𝑠,𝑎
𝑖

is the number of times the state-action pair (𝑠, 𝑎, 𝑠𝑖)
occurs in the data. That is,

∑ |S |
𝑖=1 𝑥

𝑠,𝑎
𝑖

= 𝑛𝑠,𝑎 . Specifically,

logP(𝐷𝑡 | 𝒑) = log

(∏
𝑠,𝑎

𝑛𝑠,𝑎!
|S |∏
𝑖=1

𝑝
𝑥
𝑠,𝑎
𝑖

𝑖

𝑥
𝑠,𝑎
𝑖

!

)
(3)

Likelihood for Linear-Gaussian MDPs. For continuous state-
action MDPs, we use a linear-Gaussian likelihood. In this context,
let 𝑑𝑠 be the dimensionality of the state-space, 𝒔 ∈ R𝑑𝑠 and 𝑑𝑎 be
the dimensionality of the action-space. Then, the mean function M
is a R𝑑𝑠 ×R𝑑𝑎+𝑑𝑠 matrix. The mean visitation count to the successor
state 𝒔 ′𝑡 when an action 𝒂𝑡 is taken at state 𝒔𝑡 is given by M(𝒂𝑡 , 𝒔𝑡).
We denote the corresponding covariance matrix of size R𝑑𝑠 × R𝑑𝑠
by S. Thus, we express the log-likelihood by

logP(𝐷𝑡 |M, S) = log
𝑡∏
𝑖=1

exp
(
− 1

2𝒗
⊤S−1𝒗

)
(2𝜋)𝑑𝑠/2 |S|1/2

,

where 𝒔 ′𝑖 −M(𝒂𝑖 , 𝒔𝑖) = 𝒗 .

Model Estimation as a Mixture of Models. As the optimisation
problem involves weighing multiple source models together, we
add a weight vector 𝒘 ∈ [0, 1]𝑚 with the usual property that 𝒘
sum to 1. This addition results in another outer product over the
likelihoods shown above. Henceforth, ` will refer to either the
parameters associated with the product-Multinomial likelihood or
the linear-Gaussian likelihood, depending on the model class.

min
𝒘

logP(𝐷𝑡 | Σ𝑚𝑖=1𝑤𝑖`𝑖), 𝐷𝑡 ∼ `∗, `𝑖 ∈ M𝑠 ,

s.t.
𝑚∑
𝑖=1

𝑤𝑖 = 1,𝑤𝑖 ≥ 0.
(4)

Because of the constraint on𝒘 , this is a constrained nonlinear
optimisation problem.We can use any optimiser algorithm, denoted
by Optimiser, for this purpose.
Optimiser. In our implementations, we use Sequential Least-Squares
Quadratic Programming (SLSQP) [17] as the Optimiser. SLSQP is

a quasi-Newton method solving a quadratic programming subprob-
lem for the Lagrangian of the objective function and the constraints.

Specifically, in Line 4 of Algorithm 1, we compute the next weight
vector 𝒘𝑡+1 by solving the optimisation problem in Eq. (4). Let
𝑓 (𝒘) = logP(𝐷𝑡 | Σ𝑚𝑖=1𝑤𝑖`𝑖). Further, let _ = {_1, . . . , _𝑚} and ^ be
Lagrange multipliers. We then define the Lagrangian L,

L(𝒘, _, ^) = 𝑓 (𝒘) − _⊤𝒘 − ^ (1 − 1⊤𝒘) . (5)

Here,𝒘𝑘 is the 𝑘-th iterate. Finally, taking the local approxima-
tion of Eq. (4), we define the optimisation problem as:

min
𝒅

1
2
𝒅⊤∇2L(𝒘, _, ^)𝒅 + ∇𝑓 (𝒘𝑘)𝒅 + 𝑓 (𝒘𝑘)

s.t. 𝒅 +𝒘𝑘 ≥ 0, 1⊤𝒘𝑘 = 1.
(6)

This minimisation problem yields the search direction 𝒅𝑘 for the
𝑘-th iteration. Applying this iteratively and using the construction
above ensures that the constraints posed in Eq. (4) are adhered to
at every step of MLEMTRL. At convergence, the 𝑘-th iterate,𝒘𝑘 is
considered as the next𝒘𝑡+1 in Line 1 of Algorithm 1.

5.2 Stage 2: Model-based Planning
When an appropriate model `𝑡 has been identified at time step
𝑡 , the next stage of the algorithm involves model-based planning
in the estimated MDP. We describe two model-based planning
techniques, ValueIteration and RiccatiIteration for tabular
MDPs and LQRs, respectively.
ValueIteration. Given the model, `𝑡 and the associated reward
function R, the optimal value function of `𝑡 can be computed
iteratively as [38]:

𝑉 ∗
`𝑡
(𝑠) = max

𝑎

∑
𝑠′
T𝑎
𝑠,𝑠′

(
R(𝑠, 𝑎) + 𝛾𝑉 ∗

`𝑡
(𝑠 ′)

)
. (7)

The fixed-point solution to Eq.7 is the optimal value function. When
the optimal value function has been obtained, one can simply select
the action maximising the action-value function. Let 𝜋𝑡+1 be the
policy selecting the maximising action for every state, then 𝜋𝑡+1 is
the policy the model-based planner will use at time step 𝑡 + 1.
RiccatiIteration. A LQR-based control system, and thus, the cor-
responding MDP, is defined by four system matrices [15]: A,B,Q,R.
The matrices A,B are associated with the transition model 𝒔𝑡+1 −
𝒔𝑡 = A𝒔𝑡 + B𝒂𝑡 . The matrices Q,R dictate the quadratic cost (or
reward) of a policy 𝜋 under an MDP ` is

𝑉 𝜋
` =

𝑇∑
𝑡=0

𝒔⊤𝑡 Q𝒔𝑡 + 𝒂⊤𝑡 R𝒂𝑡 .

Optimal policy is identified following [43] that states 𝒂𝑡 = −K𝒔𝑡 at
time 𝑡 , where K is computed using A,B,Q,R. We refer to Appendix
B for details.

6 THEORETICAL ANALYSIS OF MLEMTRL
In this section, we further justify the use of our framework by
deriving worst-case performance degradation bounds relative to
the optimal controller. The performance loss is shown to be related
to the realisability of `∗ under C(M𝑠). In Figure 1, we visualise the
model dissimilarities, where | |` − ˆ̀ | |1 is the model estimation error,
| |`∗ − ` | |1 is the realisability gap and | |`∗ − ˆ̀ | |1 the total deviation

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

520

of the estimated model. Note that by the norm on MDP, we always
refer to the 𝐿1 norm over transition matrices.

Theorem 6.1 (Performance Gap for Non-RealisableModels).
Let `∗ = (S,A,R,T ∗, 𝛾) be the true underlying MDP. Further, let
` = (S,A,R,T , 𝛾) be the maximum log-likelihood

` ∈ argmax`′∈C(M𝑠) − logP(𝐷∞ | `
′), 𝐷∞ ∼ `∗

and ˆ̀ = (S,A,R, T̂ , 𝛾) be a maximum log-likelihood estimator of
`. In addition, let 𝜋∗, 𝜋, 𝜋 be the optimal policies for the respective
MDPs. Then, if R is a bounded reward function ∀(𝑠,𝑎) 𝑟 (𝑠, 𝑎) ∈ [0, 1]
and with 𝜖Estim being the estimation error and

𝜖Realise ≜ min
`∈C(M𝑠)

∥`∗ − `∥1

the realisability gap. Then, the performance gap is given by,

| |𝑉 ∗`∗ −𝑉
𝜋
`∗ | |∞ ≤

3(𝜖Estim + 𝜖Realise)
(1 − 𝛾)2

. (8)

For the full proof, see Appendix A.1. This result is comparable to
recent results such as [47] but here with an explicit decomposition
into model estimation error and realisability gap terms.

Remark 1 (Bound on 𝐿1 Norm Difference in the Realisable
Setting). It is known [4, 32, 37] that in the realisable setting, it
is possible to bound the model estimation error term 𝜖Estim via the
following argument. Let `∗ be the true underlying MDP, and ˆ̀ be
an MLE estimate of `∗, as defined in Theorem 6.1. If R is a bounded
reward function, i.e. 𝑟 (𝑠, 𝑎) ∈ [0, 1],∀(𝑠, 𝑎), and 𝜖Estim is upper bound
on the 𝐿1 norm between T ∗ and T̂ . If 𝑛𝑠,𝑎 be the number of times
(𝑠, 𝑎) occur together, then with probability 1 − 𝑆𝐴𝛿 ,

| |T ∗ − T̂ ||1 ≤ 𝜖Estim ≤
∑
𝑠∈S

∑
𝑎∈A

√
2 log

(
(2𝑆 − 2)/𝛿)

)
𝑛𝑠,𝑎

.

From this, it can be said that the total 𝐿1 norm then scales on the
order of O(𝑆𝐴

√
𝑆 + log(1/𝛿)/

√
𝑇).

This result is specific to tabular MDPs. In tabular MDPs, the
maximum likelihood estimate coincides with the empirical mean
model. Further details are in Appendix A.2.

Remark 2 (Performance Gap in the Realisable Setting). A
trivial worst-case bound for the realisable case (Section 4.2) can be
obtained by setting 𝜖Realise = 0 because by definition of the realisable
case `∗ ∈ C(M𝑠).

7 A META-ALGORITHM FOR MLEMTRL
UNDER NON-REALISABILITY

To guarantee good performance even in the non-realisable setting,
we can proceed in two steps. First, we can add the target task to
the set of source tasks. Second, we can construct a meta-algorithm,
combining the model estimated by MLEMTRL and the empirical
estimation of the target task. In this section, we propose a meta-
algorithm based on the latter. We illustrate it in Algorithm 2.

The main change in Algorithm 2 compared to Algorithm 1 is
internally keeping track of the empirical model, and in Line 8,
computing a posterior probability distribution over the respective
models by weighting the two likelihoods together with their respec-
tive priors. The resulting algorithm then trades off its bias to the

Algorithm 2 Meta-MLEMTRL

1: Input: prior 𝑝 , weights𝒘0,𝑚 source MDPsM𝑠 , data 𝐷0, dis-
count factor 𝛾 , iterations 𝑇 .

2: for 𝑡 = 0, . . . ,𝑇 do
3: // Stage 1: Obtain Model Weights //
4: 𝒘𝑡+1 ← MLEMTRL(𝒘𝑡 ,M𝑠 ,D𝑡 , 𝛾, 1)
5: Estimate the MDP: `𝑡+1 =

∑𝑚
𝑖=1𝑤𝑖`𝑖

6: Compute log-likelihood ℓ𝑡+1MLEM = logP(D𝑡 | `𝑡+1)
7: Compute log-likelihood of empirical model ℓ𝑡+1Empirical =

logP(D𝑡 | ˆ̀𝑡+1)
8: Sample ˜̀𝑡+1 as `𝑡+1 w.p. ∝ 𝑝 exp

(
ℓ𝑡+1MLEM

)
and ˆ̀𝑡+1 w.p. ∝

(1 − 𝑝) exp
(
ℓ𝑡+1Empirical

)
.

9: // Stage 2: Model-based Planning //
10: Compute the policy: 𝜋𝑡+1 ∈ argmax

𝜋
𝑉 𝜋
˜̀𝑡+1

11: // Control //
12: Observe 𝑠𝑡+1, 𝑟𝑡+1 ∼ `∗ (𝑠𝑡 , 𝑎𝑡), 𝑎𝑡 ∼ 𝜋𝑡+1 (𝑠𝑡)
13: Update the dataset 𝐷𝑡+1 = 𝐷𝑡 ∪ {𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡+1}
14: end for
15: return An estimated MDP model ˜̀𝑇 and a policy 𝜋𝑇

prior based on the choice of prior hyperparameter 𝑝 . Since asymp-
totically the likelihood of the data under the empirical model is
greater than the likelihood of the data under the MLEM-estimated
model, as more and more data is collected the Meta-MLEMTRL
algorithm performs similarly to the optimal planning using the
empirical estimate. This is intended behaviour and allows for the al-
gorithm to asymptotically plan optimally even in the non-realisable
setting.

We experimentally study the behaviour of Meta-MLEMTRL and
its dependence on the prior parameter 𝑝 in the next section.

8 EXPERIMENTAL ANALYSIS
To benchmark the performance of MLEMTRL, we compare our-
selves to a posterior sampling method (PSRL) [26], equipped with
a combination of product-Dirichlet and product-Normal Inverse
Gamma priors for the tabular setting, and Bayesian Multivariate
Regression prior [23] for the continuous setting. In PSRL, at every
round, a new model is sampled from the prior, and it learns in the
target MDP from scratch. Finally, for model-based planning, we
use RiccatiIterations to obtain the optimal linear controller for
the sampled model. In the continuous action setting, we compare
the performance to the baseline algorithm multi-task soft-actor
critic (MT-SAC) [14, 45] and a modified MT-SAC-TRL using data
from the novel task during learning. In the tabular MDP setting,
we compare against multi-task proximal policy optimisation (MT-
PPO) [35, 45] and similarly MT-PPO-TRL.

The objectives of our empirical study are three-fold:

(1) How doesMLEMTRL impact performance in terms of learn-
ing speed, jumpstart improvement and asymptotic con-
vergence compared to our baseline?

(2) What is the performance loss of MLEMTRL in the non-
realisable setting?

(3) How does Meta-MLEMTRL perform in the non-realisable
setting?

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

521

101 103 105

Time steps

100

101
C

um
ul

at
iv

e
re

w
ar

d
Chain Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_2_1 Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_6_2 Realisable

101 103 105

Time steps

100

101

C
um

ul
at

iv
e

re
w

ar
d

Chain Non-Realisable

101 103 105

Time steps

0

100
C

um
ul

at
iv

e
re

w
ar

d
LQR_2_1 Non-Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_6_2 Non-Realisable

PSRL MT-SAC MT-SAC-TRL MT-PPO MT-PPO-TRL MLEMTRL

Figure 2: Depicted is the average cumulative reward at every time step computed over 10 novel tasks in the realisable/non-
realisable setting. The shaded regions represent the standard error of the average cumulative reward at the time step.

We conduct two kinds of experiments to verify our hypotheses.
Firstly, in the upper row of Figure 2, we consider the realisable
setting, where the novel task `∗ is part of the convex hull C(M𝑠).
In this case, we are looking to identify an improvement in some
or all of the aforementioned qualities compared to the baselines.
Further, in the bottom row of Figure 2, we investigate whether the
algorithm can generalise to the case beyond what is supported by
the theory in Section 4.2. We begin by recalling the goals of the
transfer learning problem [18].
Learning Speed Improvement: A learning speed improvement would
be indicated by the algorithm reaching its asymptotic convergence
with less data.
Asymptotic Improvement: An asymptotic improvement would mean
the algorithm converges asymptotically to a superior solution to
that one of the baseline.
Jumpstart Improvement: A jumpstart improvement can be verified
by the behaviour of the algorithm during the early learning process.
In particular, if the algorithm starts at a better solution than the
baseline, or has a simpler optimisation surface, it may more rapidly
approach better solutions with much less data.
RL Environments. We test the algorithms in a tabular MDP, i.e.
Chain [10], CartPole [5], and two LQR tasks in Deepmind Con-
trol Suite [40]: dm_LQR_2_1 and dm_LQR_6_2. Further details on
experimental setups are deferred to Appendix C.1.
(1) Impacts of Model Transfer with MLEMTRL. We begin by
evaluating the proposed algorithm in the Chain environment. The
results of the said experiment are available in the leftmost column

of Figure 2. In it, we evaluate the performance of MLEMTRL against
PSRL, MT-PPO, MT-PPO-TRL. The experiments are done by varying
the slippage parameter 𝑝 ∈ [0.00, 0.50] and the results are computed
for each different setup of Chain from scratch. In this experiment,
we can see the baseline algorithms MT-PPO and MT-PPO-TRL
perform very well. This could partially be explained by PSRL and
MLEMTRL not only having to learn the transition distribution but
also the reward function. The value function transfer in the PPO-
based baselines implicitly transfers not only the empirical transition
model but also the reward function. We can see that MLEMTRL has
improved learning speed compared to PSRL in both realisable and
non-realisable settings. An additional experiment with a known
reward function across tasks is shown in Figure 7 in Appendix.

In the centre and rightmost columns of Figure 2, we can see
the results of running the algorithms in the LQR settings with the
baseline algorithms PSRL,MT-SAC andMT-SAC-TRL. The variation
over tasks is given by the randomness over the stiffness of the joints
in the problem. In these experiments, we can see a clear advantage
of MLEMTRL compared to all baselines in terms of learning speed
improvements, and in some cases, asymptotic performance.

In Figure 2, the performance metric is the average cumulative
reward at every time step, for 105 time steps and the shaded region
represents the standard deviation, where the statistics are computed
over 10 independent tasks.
(2) Impact of Realisability Gap on Regret. Now, we further il-
lustrate the observed relation between model dissimilarity and
degradation in performance. Figure 3 depicts the regret against the

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

522

101
100

101

102

R
eg

re
t

Gaussian Process

0.00 0.25 0.50 0.75 1.00
DKL(* ||)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: A log-log plot of regret vs. KL-
divergence between the true MDP and the
best proxy model in CartPole. The thick
blue line is a Gaussian Process regression
model fitted on observed data (in purple).

101 103 105

Time steps

100

101

C
um

ul
at

iv
e

re
w

ar
d

Chain Realisable

101 103 105

Time steps

100

101

C
um

ul
at

iv
e

re
w

ar
d

Chain Non-Realisable

Meta-MLEMTRL p=0.99
Meta-MLEMTRL p=0.90

Meta-MLEMTRL p=0.10
Meta-MLEMTRL p=0.01

Figure 4: Figure depicting an ablation study of the prior parameter 𝑝 in the Meta-
MLEMTRL algorithm. The y-axis is the average cumulative reward at each time
step computed over 10 novel tasks and the shaded region represents the standard
error. When 𝑝 = 1, the algorithm reduces to MLEMTRL and when 𝑝 = 0 the algo-
rithm reduces to standard maximum likelihood model estimation.

KL-divergence of the target model to the best proxy model in the
convex set. We observe that model dissimilarity influences the per-
formance gap in MLEMTRL. This is also justified in Section 6 where
the bounds have an explicit dependency on the model difference. In
this figure, only the non-zero regret experiments are shown. This
is to have an idea of which models result in poor performance. As
its shown, it is those models that are very dissimilar. Additional
results in Figure 5 in Appendix further illustrate the dependency
on model similarity.
(3) Performance ofMeta-MLEMTRLunder Non-realisability.
In order to validate the performance of the proposed meta algo-
rithm Meta-MLEMTRL, we perform an ablation study over the
prior hyperparameter 𝑝 . In Figure 4, we illustrate the results of
running the Meta-MLEMTRL algorithm in the Chain environment
for both the realisable and non-realisable settings. The choice of
𝑝 determines how much the algorithm should be biased towards
the model estimated using MLEMTRL and in the case when 𝑝 = 1,
Meta-MLEMTRL reduces to MLEMTRL. Similarly, if 𝑝 = 0 then
the algorithm will forego the MLEMTRL-estimate for the empirical
estimate. Figure 4 shows that the performance of Meta-MLEMTRL
is stable in long-run for different values of 𝑝 . However, we identify
that higher 𝑝 values yield positive improvements in the cumula-
tive reward over 105 steps, especially in the non-realisable setting.
This indicates that the MLEMTRL-estimated model acts a good rep-
resentation, while combined with the asymptotically converging
empirical estimate obtained by Meta-MLEMTRL.

Summary of Results. In the experiments, we sought to identify
whether the proposed algorithm shows superiority in terms of
the transfer learning goals given by [18]. In the LQR-based envi-
ronments, we can see a clear superiority of MLEMTRL in terms
of learning speed compared to all baselines and in some cases,
an asymptotic improvement. In the Chain environment, the pro-
posed algorithm,MLEMTRL, outperforms PSRL in terms of learning

speed. Also, we perform an ablation study of Meta-MLEMTRL un-
der realisable and non-realisable settings, demonstrating provable
improvements in the asymptotic and non-realisable regimes.

9 DISCUSSIONS AND FUTUREWORK
In this work, we aim to answer two central questions.

(1) How can we accurately construct a model using a set of source
models for an RL agent deployed in the wild?

(2) Does the constructed model allow us to perform efficient plan-
ning and yield improvements over learning from scratch?

Our answer to the first question is by adopting theModel Transfer
Reinforcement Learning framework and weighting existing knowl-
edge together with data from the novel task. We accomplished this
by following a maximum likelihood-based approach. This has led to
a novel algorithm, MLEMTRL, consisting of a model identification
stage and a model-based planning stage. The second question is
answered by the empirical results in Section 8 and the theoretical
results in Section 6. Further, the model allows generalising to novel
tasks, given that the tasks are similar enough to the existing task(s).

Wemotivate the use of our framework in settings where an agent
is to be deployed in a new domain that is similar to existing, known,
domains. We verify the quick, near-optimal performance of the al-
gorithm in the case where the new domain is similar and we prove
worst-case performance bounds of the algorithm in both the realis-
able and non-realisable settings. As a future work, it would be inter-
esting to study the MTRL framework under Bayesian setting [39]
and to deploy it with a risk-sensitive value function [12, 13].

ACKNOWLEDGMENTS
Thisworkwas partially supported by theWallenbergAI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Al-
ice Wallenberg Foundation. D. Basu acknowledges the Inria-Kyoto
University Associate Team “RELIANT” and the ANR JCJC grant for
the REPUBLIC project (ANR22-CE23-0003-01).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

523

REFERENCES
[1] John Aitchison and SD Silvey. 1958. Maximum-likelihood estimation of param-

eters subject to restraints. The annals of mathematical Statistics 29, 3 (1958),
813–828.

[2] Isac Arnekvist, Danica Kragic, and Johannes A Stork. 2019. Vpe: Variational policy
embedding for transfer reinforcement learning. In 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 36–42.

[3] Christopher G Atkeson and Juan Carlos Santamaria. 1997. A comparison of
direct and model-based reinforcement learning. In Proceedings of international
conference on robotics and automation, Vol. 4. IEEE, 3557–3564.

[4] Peter Auer, Thomas Jaksch, and Ronald Ortner. 2008. Near-optimal regret bounds
for reinforcement learning. Advances in neural information processing systems 21
(2008).

[5] Andrew G Barto, Richard S Sutton, and Charles W Anderson. 1983. Neuron-
like adaptive elements that can solve difficult learning control problems. IEEE
transactions on systems, man, and cybernetics 5 (1983), 834–846.

[6] David E Bell. 1982. Regret in decision making under uncertainty. Operations
research 30, 5 (1982), 961–981.

[7] George Casella and Roger L Berger. 2021. Statistical inference. Cengage Learning.
[8] Gabriela Ciuperca, Andrea Ridolfi, and Jérôme Idier. 2003. Penalized maximum

likelihood estimator for normal mixtures. Scandinavian Journal of Statistics 30, 1
(2003), 45–59.

[9] Felipe Leno Da Silva and Anna Helena Reali Costa. 2019. A survey on transfer
learning for multiagent reinforcement learning systems. Journal of Artificial
Intelligence Research 64 (2019), 645–703.

[10] Richard Dearden, Nir Friedman, and Stuart Russell. 1998. Bayesian Q-learning.
Aaai/iaai 1998 (1998), 761–768.

[11] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru,
Sven Gowal, and Todd Hester. 2021. Challenges of real-world reinforcement
learning: definitions, benchmarks and analysis. Machine Learning 110, 9 (2021),
2419–2468.

[12] Hannes Eriksson, Debabrota Basu, Mina Alibeigi, and Christos Dimitrakakis. 2022.
Sentinel: taming uncertainty with ensemble based distributional reinforcement
learning. In Uncertainty in Artificial Intelligence. PMLR, 631–640.

[13] Yannis Flet-Berliac and Debabrota Basu. 2022. SAAC: Safe Reinforcement Learn-
ing as an Adversarial Game of Actor-Critics. In RLDM 2022-The Multi-disciplinary
Conference on Reinforcement Learning and Decision Making.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[15] Rudolph Emil Kalman. 1960. A new approach to linear filtering and prediction
problems. (1960).

[16] Jack Kiefer and Jacob Wolfowitz. 1956. Consistency of the maximum likelihood
estimator in the presence of infinitely many incidental parameters. The Annals
of Mathematical Statistics (1956), 887–906.

[17] Dieter Kraft. 1988. A software package for sequential quadratic programming.
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raum-
fahrt (1988).

[18] Pat Langley. 2006. Transfer of knowledge in cognitive systems. In Talk, work-
shop on Structural Knowledge Transfer for Machine Learning at the Twenty-Third
International Conference on Machine Learning.

[19] Romain Laroche and Merwan Barlier. 2017. Transfer reinforcement learning
with shared dynamics. In Thirty-First AAAI Conference on Artificial Intelligence.

[20] Alessandro Lazaric. 2012. Transfer in reinforcement learning: a framework and
a survey. In Reinforcement Learning. Springer, 143–173.

[21] Alessandro Lazaric and Mohammad Ghavamzadeh. 2010. Bayesian multi-task re-
inforcement learning. In ICML-27th International Conference on Machine Learning.
Omnipress, 599–606.

[22] Xinle Liang, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang. 2023. Federated
transfer reinforcement learning for autonomous driving. In Federated and Transfer
Learning. Springer, 357–371.

[23] Thomas Minka. 2000. Bayesian linear regression. Technical Report. Citeseer.
[24] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. 2023.

Model-based reinforcement learning: A survey. Foundations and Trends® in
Machine Learning 16, 1 (2023), 1–118.

[25] Whitney KNewey and James L Powell. 1987. Asymmetric least squares estimation
and testing. Econometrica: Journal of the Econometric Society (1987), 819–847.

[26] I.. Osband, D. Russo, and B. Van Roy. 2013. (More) efficient reinforcement learning
via posterior sampling. In Advances in Neural Information Processing Systems.
3003–3011.

[27] Reda Ouhamma, Debabrota Basu, and Odalric Maillard. 2023. Bilinear exponential
family of MDPs: frequentist regret bound with tractable exploration & planning.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 9336–9344.

[28] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. 2015. Actor-
mimic: Deep multitask and transfer reinforcement learning. arXiv preprint
arXiv:1511.06342 (2015).

[29] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. 2018.
Sim-to-real transfer of robotic control with dynamics randomization. In 2018 IEEE
international conference on robotics and automation (ICRA). IEEE, 3803–3810.

[30] Athanasios S Polydoros and Lazaros Nalpantidis. 2017. Survey of model-based
reinforcement learning: Applications on robotics. Journal of Intelligent & Robotic
Systems 86, 2 (2017), 153–173.

[31] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[32] Jian Qian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. 2020. Concentra-
tion inequalities for multinoulli random variables. arXiv preprint arXiv:2001.11595
(2020).

[33] Cédric Rommel, Joseph Frédéric Bonnans, Baptiste Gregorutti, and Pierre Marti-
non. 2017. Aircraft dynamics identification for optimal control. In 7th European
Conference on Aeronautics and Space Sciences (EUCASS 2017).

[34] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume
Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray
Kavukcuoglu, and Raia Hadsell. 2015. Policy distillation. arXiv preprint
arXiv:1511.06295 (2015).

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[36] Julian Skirzyński, Frederic Becker, and Falk Lieder. 2021. Automatic discovery of
interpretable planning strategies. Machine Learning 110, 9 (2021), 2641–2683.

[37] Alexander L Strehl and Michael L Littman. 2005. A theoretical analysis of model-
based interval estimation. In Proceedings of the 22nd international conference on
Machine learning. 856–863.

[38] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[39] Aviv Tamar, Daniel Soudry, and Ev Zisselman. 2022. Regularization Guaran-
tees Generalization in Bayesian Reinforcement Learning through Algorithmic
Stability. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36.
8423–8431.

[40] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las
Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al.
2018. Deepmind control suite. arXiv preprint arXiv:1801.00690 (2018).

[41] Matthew E Taylor, Nicholas K Jong, and Peter Stone. 2008. Transferring instances
for model-based reinforcement learning. In Joint European conference on machine
learning and knowledge discovery in databases. Springer, 488–505.

[42] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement
learning domains: A survey. Journal of Machine Learning Research 10, 7 (2009).

[43] Jan Willems. 1971. Least squares stationary optimal control and the algebraic
Riccati equation. IEEE Transactions on automatic control 16, 6 (1971), 621–634.

[44] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. 2007. Multi-task
reinforcement learning: a hierarchical bayesian approach. In Proceedings of the
24th international conference on Machine learning. 1015–1022.

[45] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea
Finn, and Sergey Levine. 2020. Meta-world: A benchmark and evaluation for
multi-task and meta reinforcement learning. In Conference on robot learning.
PMLR, 1094–1100.

[46] Amy Zhang, Harsh Satija, and Joelle Pineau. 2018. Decoupling dynamics and
reward for transfer learning. arXiv preprint arXiv:1804.10689 (2018).

[47] Amy Zhang, Shagun Sodhani, Khimya Khetarpal, and Joelle Pineau. 2020. Learn-
ing Robust State Abstractions for Hidden-Parameter Block MDPs. In International
Conference on Learning Representations.

[48] Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. 2023. Transfer learning
in deep reinforcement learning: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2023).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

524

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 A Taxonomy of Model Transfer RL
	4.1 MTRL: Problem Formulation
	4.2 Three Classes of MTRL Problems

	5 MLEMTRL: MTRL with Maximum Likelihood Model Transfer
	5.1 Stage 1: Model Estimation
	5.2 Stage 2: Model-based Planning

	6 Theoretical Analysis of MLEMTRL
	7 A Meta-Algorithm for MLEMTRL under Non-realisability
	8 Experimental Analysis
	9 Discussions and Future Work
	Acknowledgments
	References

