
High-Level, Collaborative Task Planning Grammar and Execution
for Heterogeneous Agents

Amy Fang

Cornell University

Ithaca, NY, USA

axf4@cornell.edu

Hadas Kress-Gazit

Cornell University

Ithaca, NY, USA

hadaskg@cornell.edu

ABSTRACT
We propose a new multi-agent task grammar to encode collab-

orative tasks for a team of heterogeneous agents that can have

overlapping capabilities. The grammar allows users to specify the

relationship between agents and parts of the task without provid-

ing explicit assignments or constraints on the number of agents

required. We develop a method to automatically find a team of

agents and synthesize correct-by-construction control with syn-

chronization policies to satisfy the task. We demonstrate the scala-

bility of our approach through simulation and compare our method

to existing task grammars that encode multi-agent tasks.

KEYWORDS
Formal methods, multi-agent coordination, task planning, robotics

ACM Reference Format:
Amy Fang and Hadas Kress-Gazit. 2024. High-Level, Collaborative Task

Planning Grammar and Execution for Heterogeneous Agents. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Agents working together to achieve common goals have a variety

of applications, such as warehouse automation or disaster response.

Multi-agent tasks have been defined in different ways in the sched-

uling and planning literature. For example, in multi-agent task

allocation [8, 9, 12] and coalition formation [14, 22], each task is

a single goal with an associated utility. Individual agents or agent

teams then automatically assign themselves to a task based on some

optimization metric. Swarm approaches [18, 21] consider emergent

behavior of an agent collective as the task, for example, aggregation

or shape formation.

Recently, formal methods, such as temporal logics for task speci-

fications and correct-by-construction synthesis, have been used to

solve different types of multi-agent planning tasks [2, 17, 20]. Tasks

written in temporal logic, such as Linear Temporal Logic (LTL),

allow users to capture complex tasks with temporal constraints.

Existing work has extended LTL [15, 16] and Signal Temporal Logic

[13] to encode tasks that require multiple agents.

In this paper, we consider tasks that a team of heterogeneous

agents are required to collaboratively satisfy. For instance, consider

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

a precision agriculture scenario in which a farm contains agents

with different on-board sensors to monitor crop health. The user

may want to take a moisture measurement in one region, and then

take a soil sample of a different region. Depending on the agents’

sensors and sensing range, the agents may decide to collaborate to

satisfy the task. For example, one agent may perform the entire task

on its own if it has both a moisture sensor and an arm mechanism

to pick up a soil sample and can move between the two regions.

However, another possible solution is for two agents to team up so

that one takes a moisture measurement and the other picks up the

soil. Existing task grammars [13, 15, 16] capture tasks such as the

above by providing explicit constraints on the types or number of

agents for each part of the task, i.e. the task must explicitly encode

whether it should be one agent, two agents, or either of these

options. In this paper, we create a task grammar and associated

control synthesis that removes the need to a priori decide on the

number of agents necessary to accomplish a task, allowing users to

focus solely on the actions required to achieve the task (e.g. “take a

moisture measurement and then pick up a soil sample, irrespective

of which or how many agents perform which actions").

Our task grammar has several unique aspects. First, this gram-

mar enables the interleaving of agent actions, alleviating the need

for explicit task decomposition in order to assign agents to parts

of the task. Second, rather than providing explicit constraints on

the types or number of agents for each part of the task, the task

encodes, using the concept of bindings (inspired by [15]), the overall
relationship between agent assignments and team behavior; we

can require certain parts of the task to be satisfied by the same

agent without assigning the exact agent or type of agent a priori.
Lastly, the grammar allows users to make the distinction between

the requirements “for all agents” and “at least one agent”. Given

these types of tasks, agents autonomously determine, based on their

capabilities, which parts of the task they can and should do for the

team to satisfy the task.

Tasks may require collaboration between different agents. Simi-

lar to [3, 11, 19], to ensure the actions are performed in the correct

order, our framework takes the corresponding synchronization con-

straints into account while synthesizing agent behavior; agents

must wait to execute the actions together. In our approach, execu-

tion of the synchronous behavior for each agent is decentralized;

agents carry out their plan and communicate with one another

when synchronization is necessary.

Depending on the task and the available agents, there might be

different teams (i.e., subsets of the agent set) that can carry out the

task; our algorithm for assigning a team and synthesizing behavior

for the agents finds the largest team of agents that satisfies the task.

This means that the team may have redundancies, i.e. agents can

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

544

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

be removed while still ensuring the overall task is satisfied. This is

beneficial both for robustness and optimality; the user can choose

a subset of the team (provided that all the required bindings are

still assigned) to optimize different metrics, such as cost or overall

number of agents.

Related work: One way to encode tasks is to first decompose

them into independent sub-tasks and then allocate them to the

agents. For example, [7, 17] address finite-horizon tasks for multi-

agent teams. The authors first automatically decompose a global

automaton representing the task into independent sub-tasks. To

synthesize control policies, the authors build product automata for

each heterogeneous agent. Each automaton is then sequentially

linked using switch transitions to reduce state-space explosion

in synthesizing parallel plans. In our prior work [6], we address

infinite-horizon tasks that have already been decomposed into sub-

tasks. Given a new task, we proposed a decentralized framework

for agents to automatically update their behavior based on a new

task and their existing tasks, allowing agents to interleave the tasks.

The works discussed above make the critical assumption that

tasks are independent, i.e. agents do not collaborate with one an-

other. One approach to including collaborative actions is to explic-

itly encode the agent assignments in the tasks. To synthesize agent

control for these types of tasks, in [19], the authors construct a

reduced product automaton in which the agents only synchronize

when cooperative actions are required. The work in [10] proposes a

sampling-based method that approximates the product automaton

of the team by building trees incrementally while maintaining prob-

abilistic completeness. In this paper, we consider the more general

setting in which agents may need to collaborate with each other,

but are not given explicit task assignments a priori.
Rather than providing predetermined task assignments, another

approach for defining collaborative tasks is to capture information

about the number and type of agents needed for parts of the speci-

fication. For example, [16] imposes constraints on the number of

agents necessary in regions using counting LTL. [13] uses Capa-

bility Temporal Logic to encode both the number and capabilities

necessary in certain abstracted locations in the environment and

then formulates the problem as a MILP to find an optimal team-

ing strategy. The authors of [15] introduce the concept of induced

propositions, where each atomic proposition not only encodes in-

formation about the number, type of agents, and target regions,

but also has a connector that binds the truth of certain atomic

propositions together. To synthesize behavior for the agents, they

propose a hierarchical approach that first constructs the automaton

representing the task and then decomposes the task into possible

sub-tasks. The temporal order of these sub-tasks is captured using

partially ordered sets and are used in the task allocation problem,

which is formulated as a MILP.

Inspired by [15] and the concept of induced propositions, we

create a task grammar that includes information about how the

atomic propositions are related to one another, which represents the

overall relationship between agents and task requirements. Unlike

[15], which considers navigation tasks in which the same set of

agents of a certain type may need to visit different regions, we

generalize these tasks to any type of abstract action an agent may

be able to perform. In addition, a key assumption we relax is that we

do not require each agent to be only categorized as one type. As a

result, agents can have overlapping capabilities. To our knowledge,

no other grammars have been proposed for these generalized types

of multi-agent collaborative tasks.

Contributions: We propose a task description and control syn-

thesis framework for heterogeneous agents to satisfy collaborative

tasks. Specifically, we present a new, LTL-based task grammar for

the formulation of collaborative tasks, and provide a framework to

form a team of agents and synthesize control and synchronization

policies to guarantee the team satisfies the task. We demonstrate

our approach in simulated precision agriculture scenarios.

2 PRELIMINARIES
2.1 Linear Temporal Logic
LTL formulas are defined over a set of atomic propositions 𝐴𝑃 ,

where 𝜋 ∈ 𝐴𝑃 are Boolean variables [5]. We abstract agent actions

as atomic propositions. For example,𝑈𝑉 captures an agent taking

UV measurement.

Syntax: An LTL formula is defined as:

𝜑 ::= 𝜋 | ¬𝜑 | 𝜑 ∨ 𝜑 | ⃝ 𝜑 | 𝜑 U 𝜑

where ¬ (“not") and ∨ (“or") are Boolean operators, and ⃝ (“next")

andU (“until") are temporal operators. From these operators, we

can define: conjunction 𝜑 ∧ 𝜑 , implication 𝜑 ⇒ 𝜑 , eventually

^𝜑 = True U 𝜑 , and always □𝜑 = ¬^¬𝜑 .
Semantics: The semantics of an LTL formula 𝜑 are defined over

an infinite trace 𝜎 = 𝜎 (0)𝜎 (1)𝜎 (2) ..., where 𝜎 (𝑖) is the set of true
𝐴𝑃 at position 𝑖 . We denote that 𝜎 satisfies LTL formula 𝜑 as 𝜎 |= 𝜑 .

Intuitively, ^𝜑 is satisfied if there exists a 𝜎 (𝑖) in which 𝜑 is

true. □𝜑 is satisfied if 𝜑 is true at every position in 𝜎 . To satisfy

𝜑1 U 𝜑2, 𝜑1 must remain true until 𝜑2 becomes true. See [5] for

the full semantics.

2.2 Büchi Automata
An LTL formula 𝜑 can be translated into a Nondeterministic Büchi

Automaton that accepts infinite traces if and only if they satisfy

𝜑 . A Büchi automaton is a tuple B = (𝑍, 𝑧0, ΣB , 𝛿B , 𝐹), where 𝑍 is

the set of states, 𝑧0 ∈ 𝑍 is the initial state, ΣB is the input alphabet,

𝛿B : 𝑍 × ΣB × 𝑍 is the transition relation, and 𝐹 ⊆ 𝑍 is a set of

accepting states. An infinite run of B over a word𝑤 = 𝑤1𝑤2𝑤3 ...,

𝑤𝑖 ∈ ΣB is an infinite sequence of states 𝑧 = 𝑧0𝑧1𝑧2 ... such that

(𝑧𝑖−1,𝑤𝑖 , 𝑧𝑖) ∈ 𝛿B . A run is accepting if and only if Inf(𝑧) ∩ 𝐹 ≠ ∅,
where Inf(𝑧) is the set of states that appear in 𝑧 infinitely often [1].

2.3 Agent Model
Following [6], we create an abstract model for each agent based on

its set of capabilities. A capability is a weighted transition system

𝜆 = (𝑆, 𝑠0, 𝐴𝑃,Δ, 𝐿,𝑊), where 𝑆 is a finite set of states, 𝑠0 ∈ 𝑆 is the

initial state, 𝐴𝑃 is the set of atomic propositions, Δ ⊆ 𝑆 × 𝑆 is a

transition relation where for all 𝑠 ∈ 𝑆 , ∃𝑠′ ∈ 𝑆 such that (𝑠, 𝑠′) ∈ Δ,
𝐿 : 𝑆 → 2

𝐴𝑃
is the labeling function such that 𝐿(𝑠) is the set of

propositions that are true in state 𝑠 , and𝑊 : Δ → R≥0 is the

cost function assigning a weight to each transition. Since we are

considering a group of heterogeneous agents, agent 𝑗 has its own

set of 𝑘 capabilities Λ 𝑗 = {𝜆1, ..., 𝜆𝑘 }.
An agent model 𝐴 𝑗 is the product of its capabilities: 𝐴 𝑗 = 𝜆1 ×

... × 𝜆𝑘 such that 𝐴 𝑗 = (𝑆, 𝑠0, 𝐴𝑃 𝑗 , 𝛾, 𝐿,𝑊), where 𝑆 = 𝑆1 × ... × 𝑆𝑘

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

545

Figure 1: Agent partial model: (a) 𝜆area (b) 𝜆arm (c) 𝐴𝑔𝑟𝑒𝑒𝑛

is the set of states, 𝑠0 ∈ 𝑆 is the initial state, 𝐴𝑃 𝑗 =
⋃𝑘

𝑖=1𝐴𝑃𝑖 is

the set of propositions, 𝛾 ⊆ 𝑆 × 𝑆 is the transition relation such

that (𝑠, 𝑠′) ∈ 𝛾 , where 𝑠 = (𝑠1, ..., 𝑠𝑘), 𝑠′ = (𝑠′
1
, ..., 𝑠′

𝑘
), if and only

if for all 𝑖 = {1, ..., 𝑘}, (𝑠𝑖 , 𝑠′𝑖) ∈ Δ𝑖 , 𝐿 : 𝑆 → 2
𝐴𝑃 𝑗

is the labeling

function where 𝐿(𝑠) = ⋃𝑘
𝑖=1 𝐿𝑖 (𝑠𝑖), and𝑊 : 𝛾 → R≥0 is the cost

function that combines the costs of the capabilities. Fig. 1c depicts

a snippet of an agent model where we treat the cost as additive. Fig.

1a represents the agent’s sensing area 𝜆𝑎𝑟𝑒𝑎 ; the agent can orient its

sensors to take measurements in different regions of a partitioned

workspace (in this case, regions A and B). Fig. 1b represents the

agent’s robot manipulator, which can pick up and drop off soil

samples, as well as pull weeds.

3 TASK GRAMMAR - LTL𝜓

We define the task grammar LTL
𝜓
that includes atomic propositions

that abstract agent action, logical and temporal operators, as in LTL,

and bindings that connect actions to specific agents; any action

labeled with the same binding must be satisfied by the same agent(s)

(the actual value of the binding is not important). We define a task

recursively over LTL and binding formulas.

𝜓 := 𝜌 | 𝜓1 ∨𝜓2 | 𝜓1 ∧𝜓2 (1)

𝜑 := 𝜋 | ¬𝜑 | 𝜑 ∨ 𝜑 | ⃝ 𝜑 | 𝜑 U 𝜑 (2)

𝜑𝜓 := 𝜑𝜓 | ¬(𝜑𝜓) |𝜑𝜓1

1
∧𝜑𝜓2

2
|𝜑𝜓1

1
∨𝜑𝜓2

2
| ⃝𝜑𝜓 | 𝜑𝜓1

1
U𝜑𝜓2

2
| □𝜑𝜓 (3)

where𝜓 , the binding formula, is a Boolean formula excluding nega-

tion over 𝜌 ∈ 𝐴𝑃𝜓 , and 𝜑 is an LTL formula. An LTL
𝜓
formula

consists of conjunction, disjunction, and temporal operators; we

define eventually as ^𝜑𝜓 = True U 𝜑𝜓 . An example of an LTL
𝜓

formula is shown in Eq. 4.

Semantics: The semantics of an LTL
𝜓
formula 𝜑𝜓 are defined

over 𝜎 and 𝑅; 𝜎 = 𝜎1𝜎2 ...𝜎𝑛 is the team trace where 𝜎 𝑗 is agent 𝑗 ’s

trace, and ∀𝑖, 𝜎 (𝑖) = 𝜎1 (𝑖)𝜎2 (𝑖) ...𝜎𝑛 (𝑖). 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛} is the set
of binding assignments, where 𝑟 𝑗 ∈ 𝑅 is the set of 𝐴𝑃𝜓 that are

assigned to agent 𝑗 . Once a team is established, 𝑅 is constant, i.e. an

agent’s binding assignment does not change throughout the task

execution. For example, 𝑟1 = {2, 3}, 𝑟2 = {1} denotes that agent 1 is
assigned bindings 2 and 3, and agent 2 is assigned binding 1.

Given 𝑛 agents and a set of binding propositions 𝐴𝑃𝜓 , we define

the function 𝜁 : 𝜓 → 2
2
𝐴𝑃𝜓

such that 𝜁 (𝜓) is the set of all possible
combinations of 𝜌 that satisfy 𝜓 . For example, 𝜁

(
(1 ∨ 2) ∧ 3

)
=

{{1, 3}, {2, 3}, {1, 2, 3}}.
The semantics of LTL

𝜓
are:

• (𝜎 (𝑖), 𝑅) |= 𝜑𝜓 iff ∃𝐾 ∈ 𝜁 (𝜓) s.t. (𝐾 ⊆
𝑛⋃

𝑝=1
𝑟𝑝) and (∀𝑗 s.t.𝐾 ∩𝑟 𝑗 ≠

∅, 𝜎 𝑗 (𝑖) |= 𝜑)

• (𝜎 (𝑖), 𝑅) |= (¬𝜑)𝜓 iff ∃𝐾 ∈ 𝜁 (𝜓) s.t. (𝐾 ⊆
𝑛⋃

𝑝=1
𝑟𝑝) and (∀𝑗 s.t.

𝐾 ∩ 𝑟 𝑗 ≠ ∅, 𝜎 𝑗 (𝑖) ̸|= 𝜑)

• (𝜎 (𝑖), 𝑅) |= ¬(𝜑𝜓) iff ∃𝐾 ∈ 𝜁 (𝜓) s.t. (𝐾 ⊆
𝑛⋃

𝑝=1
𝑟𝑝) and (∃ 𝑗 s.t.

𝐾 ∩ 𝑟 𝑗 ≠ ∅, 𝜎 𝑗 (𝑖) ̸|= 𝜑)

• (𝜎 (𝑖),𝑅)|=𝜑𝜓1

1
∧ 𝜑𝜓2

2
iff (𝜎 (𝑖),𝑅)|=𝜑𝜓1

1
and (𝜎 (𝑖),𝑅) |=𝜑𝜓2

2

• (𝜎 (𝑖),𝑅) |=𝜑𝜓1

1
∨𝜑𝜓2

2
iff (𝜎 (𝑖),𝑅) |=𝜑𝜓1

1
or (𝜎 (𝑖), 𝑅) |= 𝜑𝜓2

2

• (𝜎 (𝑖), 𝑅) |= ⃝𝜑𝜓 iff 𝜎 (𝑖 + 1), 𝑅 |= 𝜑𝜓

• (𝜎 (𝑖), 𝑅) |= 𝜑𝜓1

1
U𝜑𝜓2

2
iff ∃ℓ ≥ 𝑖 s.t. (𝜎 (ℓ), 𝑅) |= 𝜑𝜓2

2
and ∀𝑖 ≤ 𝑘 <

ℓ, (𝜎 (𝑘), 𝑅) |= 𝜑𝜓1

1

• (𝜎 (𝑖), 𝑅) |= □𝜑𝜓 iff ∀ℓ > 𝑖, (𝜎 (ℓ), 𝑅) |= 𝜑𝜓

Intuitively, the behavior of an agent team and their respective

binding assignments satisfy 𝜑𝜓 if there exists a possible binding

assignment in 𝜁 (𝜓) in which all the bindings are assigned to (at

least one) agent, and the behavior of all agents with a relevant

binding assignment satisfy 𝜑 . An agent can be assigned more than

one binding, and a binding can be assigned to more than one agent.

Remark 1. For the sake of clarity in notation, ¬𝜑𝜓 is equivalent to

(¬𝜑)𝜓 . For example, ¬𝑝𝑖𝑐𝑘𝑢𝑝1 ≜ (¬𝑝𝑖𝑐𝑘𝑢𝑝)1.
Remark 2.Note the subtle but important difference between (¬𝜑)𝜓
and ¬(𝜑𝜓). Informally, the former requires all agents with binding

assignments that satisfy 𝜓 to satisfy ¬𝜑 ; the latter requires the

formula 𝜑𝜓 to be violated, meaning that at least one agent’s trace

violates 𝜑 , i.e. satisfies ¬𝜑 .
Remark 3. Unique to LTL

𝜓
is the ability to encode both tasks that

include constraints on all agents or on at least one agent; “For

all agents” is captured by 𝜑𝜓 ; “at least one agent” is encoded as

¬((¬𝜑)𝜓), which captures “at least one agent assigned a binding in

𝐾 ∈ 𝜁 (𝜓) satisfies 𝜑”. This allows for multiple agents to be assigned

the same binding, but only one of those agents is necessary to satisfy

𝜑 . This can be particularly useful in tasks with safety constraints;

for example, we can write ¬(¬𝑟𝑒𝑔𝑖𝑜𝑛1
𝐴
) ⇒ (𝑟𝑒𝑔𝑖𝑜𝑛𝐴 ∧ 𝑣𝑖𝑠𝑢𝑎𝑙)2,

which says “if any agent assigned binding 1 is in region A, all

agents assigned binding 2 must take a picture of the region.”

Example. Let 𝐴𝑃𝜓 = {1, 2, 3}, 𝐴𝑃𝜑 = {𝑟𝑒𝑔𝑖𝑜𝑛𝐴, 𝑟𝑒𝑔𝑖𝑜𝑛𝐵, 𝑝𝑖𝑐𝑘𝑢𝑝,
𝑡ℎ𝑒𝑟𝑚𝑎𝑙, 𝑣𝑖𝑠𝑢𝑎𝑙,𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒,𝑈𝑉 }, and 𝜑𝜓 = 𝜑

𝜓

1
∧ 𝜑𝜓

2
, where

𝜑
𝜓

1
=^((𝑟𝑒𝑔𝑖𝑜𝑛𝐵∧𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒∧𝑈𝑉)2∧3∧(𝑟𝑒𝑔𝑖𝑜𝑛𝐴∧𝑝𝑖𝑐𝑘𝑢𝑝)1) (4a)

𝜑
𝜓

2
= ¬𝑝𝑖𝑐𝑘𝑢𝑝1 U (𝑟𝑒𝑔𝑖𝑜𝑛𝐴

∧ ((𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ∨ 𝑣𝑖𝑠𝑢𝑎𝑙) ∧ ¬(𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ∧ 𝑣𝑖𝑠𝑢𝑎𝑙)))2 (4b)

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

546

𝜑
𝜓

1
captures “Agent(s) assigned bindings 2 and 3 must take a

moisture and UV measurement in region B at the same time that

agent(s) assigned binding 1 picks up a soil sample in region A." 𝜑
𝜓

2

says “Before the soil sample is picked up, agent(s) assigned binding

2 must take a thermal or a visual image (but not both) of region A.”

Since multiple bindings can be assigned to the same agent, an

agent can be assigned both bindings 2 and 3, provided it has the

capabilities to satisfy the corresponding parts of the formula. In

addition, depending on the final assignments, the agents may need

to synchronize with one another to perform parts of the task. For

example, to satisfy 𝜑
𝜓

1
, agents assigned with any subset of bindings

{1, 2, 3} need to synchronize their respective actions.

4 CONTROL SYNTHESIS FOR LTL𝜓

Problem statement:Given𝑛 heterogeneous agents𝐴 = {𝐴1, ..., 𝐴𝑛}
and a task 𝜑𝜓 in LTL

𝜓
, find a team of agents 𝐴 ⊆ 𝐴, their binding

assignments 𝑅
𝐴̂
, and synthesize behavior 𝜎 𝑗 for each agent such

that (𝜎 (0), 𝑅
𝐴̂
) |= 𝜑𝜓 . This behavior includes synchronization con-

straints for agents to satisfy the necessary collaborative actions.

We assume that each agent is able to wait in any state (i.e. every

state in the agent model has a self-transition).

Example. Consider a group of four agents 𝐴 = {𝐴𝑔𝑟𝑒𝑒𝑛 , 𝐴𝑏𝑙𝑢𝑒 ,
𝐴𝑜𝑟𝑎𝑛𝑔𝑒 , 𝐴𝑝𝑖𝑛𝑘 } in a precision agriculture environment composed

of 5 regions, as illustrated in Fig. 2.𝐴𝑜𝑟𝑎𝑛𝑔𝑒 is amobile robotmanipu-

lator, such as Harvest Automation’s HV-100, while the other agents

are stationary with different onboard sensing capabilities. The set

of all capabilities is Λ = {𝜆area_j ,𝜆𝑚𝑜𝑡𝑖𝑜𝑛 , 𝜆𝑎𝑟𝑚 , 𝜆𝑈𝑉 , 𝜆𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 ,

𝜆𝑣𝑖𝑠𝑢𝑎𝑙 , 𝜆𝑡ℎ𝑒𝑟𝑚𝑎𝑙 }, where ∀𝑗 = {𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑝𝑖𝑛𝑘}, 𝜆area_j is agent
𝑗 ’s sensing area model. The green agent can orient its arm to reach

either region A or B. The blue agent can orient its sensors to see

one of three regions, B, C, or D; in order to reorient its sensors from

regions B to D, its sensing range must first pass through region C.

Similarly, the pink agent can orient its sensors to see either region A,

B, or C, and its sensing rangemust pass through region B to get from

regions A to C. The orange agent’s ability to move between adjacent

regions is represented by the capability 𝜆𝑚𝑜𝑡𝑖𝑜𝑛 . Its sensing region

is whichever region it is in. 𝐴𝑃𝑎𝑟𝑚 = {pickup, dropoff, weed} is an
abstraction of a robot manipulator that represents different actions

the arm can perform, such as picking up soil samples or pulling

weeds. 𝐴𝑃𝑈𝑉 , 𝐴𝑃𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 , 𝐴𝑃𝑣𝑖𝑠𝑢𝑎𝑙 , 𝐴𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 all contain a single

proposition representing a agent’s ability to take UVmeasurements,

soil moisture measurements, visual images, and thermal images, re-

spectively. 𝜆𝑎𝑟𝑚 has more states (see Fig. 1b). Each agent may have

distinct cost functions corresponding to individual capabilities.

The agent capabilities and label on the initial state are:

Λ𝑔𝑟𝑒𝑒𝑛 = {𝜆area_1, 𝜆arm}, 𝐿(𝑠0) = {𝑟𝑒𝑔𝑖𝑜𝑛𝐵}
Λ𝑏𝑙𝑢𝑒 = {𝜆area_2, 𝜆moisture, 𝜆𝑈𝑉 }, 𝐿(𝑠0) = {𝑟𝑒𝑔𝑖𝑜𝑛𝐷 }
Λ𝑜𝑟𝑎𝑛𝑔𝑒 = {𝜆motion, 𝜆moisture, 𝜆𝑈𝑉 , 𝜆𝑎𝑟𝑚}, 𝐿(𝑠0) = {𝑟𝑒𝑔𝑖𝑜𝑛𝐸 }
Λ𝑝𝑖𝑛𝑘 = {𝜆area_4, 𝜆thermal, 𝜆visual, 𝜆moisture, 𝜆𝑈𝑉 },𝐿(𝑠0) = {𝑟𝑒𝑔𝑖𝑜𝑛𝐶 }
The team receives the task (Eq. 4) and must determine a teaming

assignment and behavior to satisfy the task. During execution, the

agents must also synchronize with each other when necessary.

5 APPROACH
To find a teaming assignment and synthesize the corresponding syn-

chronization and control, we first automatically generate a Büchi

Figure 2: Agriculture environment and initial agent states.
The green, blue, and pink agents are stationary; the orienta-
tion of their sensors are indicated by the colored boxes.

automaton B for the task 𝜑𝜓 (Sec. 5.1). Each agent 𝐴 𝑗 then con-

structs a product automatonG𝑗 = 𝐴 𝑗×B (Sec. 5.2). For each binding

𝜌 ∈ 𝐴𝑃𝜓 , it checks whether or not it can perform the task associ-

ated with that binding by finding a path to an accepting cycle in G𝑗 .

Each agent creates a copy of the Büchi automaton B𝑗 pruned to

remove any unreachable transitions and stores information about

which combinations of binding assignments it can do.

For parts of the task that require collaboration (e.g., when a transi-

tion calls for actions with bindings {1, 2} and 𝑟𝑔𝑟𝑒𝑒𝑛 = {1, 2}, 𝑟𝑏𝑙𝑢𝑒 =

{2}), we need agents to synchronize. Thus, we synthesize behavior

that allows for parallel execution while also guaranteeing that the

team’s overall behavior satisfies the global specification.

To find a team of agents that can satisfy the task and their assign-

ments, we need to guarantee that 1) every binding is assigned to at

least one agent and 2) the agents synchronize for the collaborative

portions of the task. To do so, we first run a depth-first search (DFS)

to find a path through the B to an accepting cycle in which there

exists a team of agents such that for every transition in the path,

every proposition in 𝐴𝑃𝜓 is assigned to at least one agent (Sec.

5.4). Each agent then synthesizes behavior to satisfy this path and

communicates to other agents when synchronization is necessary.

5.1 Büchi Automaton for an LTL𝜓 Formula
When constructing a Büchi automaton for an LTL

𝜓
specification,

we automatically rewrite the specification such that the binding

propositions are only over individual atomic proposition 𝜋 ∈ 𝐴𝑃𝜑
(i.e. the formula is composed of 𝜋𝜌). For instance, the formula

(¬𝑝𝑖𝑐𝑘𝑢𝑝 U 𝑟𝑒𝑔𝑖𝑜𝑛𝐴)1∨2 is rewritten as (¬𝑝𝑖𝑐𝑘𝑢𝑝1 U 𝑟𝑒𝑔𝑖𝑜𝑛1
𝐴
) ∨

(¬𝑝𝑖𝑐𝑘𝑢𝑝2 U 𝑟𝑒𝑔𝑖𝑜𝑛2
𝐴
).

In our running example, we rewrite the formula in Eq. 4a as

^(𝑟𝑒𝑔𝑖𝑜𝑛2𝐵 ∧𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒2 ∧𝑈𝑉 2
(5)

∧ 𝑟𝑒𝑔𝑖𝑜𝑛3𝐵 ∧𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒3 ∧𝑈𝑉 3 ∧ 𝑟𝑒𝑔𝑖𝑜𝑛1𝐴 ∧ 𝑝𝑖𝑐𝑘𝑢𝑝1)
Remark 4. In rewriting the specification, negation follows bindings
in the order of operations. For example, ¬𝑝𝑖𝑐𝑘𝑢𝑝1∧2 = ¬𝑝𝑖𝑐𝑘𝑢𝑝1 ∧
¬𝑝𝑖𝑐𝑘𝑢𝑝2, and¬(𝑝𝑖𝑐𝑘𝑢𝑝1∧2) = ¬(𝑝𝑖𝑐𝑘𝑢𝑝1∧𝑝𝑖𝑐𝑘𝑢𝑝2) = ¬(𝑝𝑖𝑐𝑘𝑢𝑝1)∨
¬(𝑝𝑖𝑐𝑘𝑢𝑝2).

From𝐴𝑃𝜑 and𝐴𝑃𝜓 , we define the set of propositions𝐴𝑃
𝜓
𝜑 , where

∀𝜋 ∈ 𝐴𝑃𝜑 and ∀𝜌 ∈ 𝐴𝑃𝜓 , 𝜋𝜌 ∈ 𝐴𝑃𝜓𝜑 . Given 𝐴𝑃
𝜓
𝜑 , we automatically

translate the specification into a Büchi automaton using Spot [4].

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

547

To facilitate control synthesis, we transform any transitions

in the Büchi automaton labeled with disjunctive formulas into

disjunctive normal form (DNF). We then replace the transition

labeled with a DNF formula containing ℓ conjunctive clauses with

ℓ transitions between the same states, each labeled with a different

conjunction of the original label.

In general, when creating a Büchi automaton from an LTL for-

mula𝜑 ,𝑤 ∈ ΣB are Boolean formulas over𝐴𝑃𝜑 , the atomic proposi-

tions that appear in 𝜑 , as seen in Fig. 3. In the following, for creating

the product automaton, we use an equivalent representation, where

ΣB = 2
𝐴𝑃

𝜓
𝜑 × 2

𝐴𝑃
𝜓
𝜑
and 𝑤 = (𝜎𝑇 , 𝜎𝐹) ∈ ΣB contains the set of

propositions that must be true, 𝜎𝑇 , and the set of propositions that

must be false, 𝜎𝐹 , for the Boolean formula over a transition to eval-

uate to True. These sets are unique in our case since each transition

is labeled with a conjunctive clause (i.e. no disjunction). Note that

𝜎𝑇 ∩ 𝜎𝐹 = ∅ and 𝜎𝑇 ∪ 𝜎𝐹 ⊆ 𝐴𝑃𝜑 ; propositions that do not appear
in𝑤 can have any truth value.

Given a Büchi automaton for an LTL
𝜓
specification B, we define

the following functions:

Definition 1 (Binding Function). 𝔅 : ΣB → 2
𝐴𝑃𝜓

such that for

𝜎= (𝜎𝑇 , 𝜎𝐹) ∈ ΣB ,𝔅(𝜎) ⊆ 𝐴𝑃𝜓 is the set {𝜌 ∈ 𝐴𝑃𝜓 | ∃𝜋𝜌 ∈
𝜎𝑇 ∪ 𝜎𝐹 }. Intuitively, it is the set of bindings that appear in label 𝜎

of a Büchi transition.

Definition 2 (Capability Function). ℭ : ΣB ×𝐴𝑃𝜓 → 2
𝐴𝑃𝜑 × 2

𝐴𝑃𝜑

such that for 𝜎 = (𝜎𝑇 , 𝜎𝐹) ∈ ΣB , 𝜌 ∈ 𝐴𝑃𝜓 , ℭ(𝜎, 𝜌) = (𝐶𝑇 ,𝐶𝐹),
where 𝐶𝑇 = {𝜋 ∈ 𝐴𝑃𝜑 | ∃𝜋𝜌 ∈ 𝜎𝑇 } and 𝐶𝐹 = {𝜋 ∈ 𝐴𝑃𝜑 | ∃𝜋𝜌 ∈
𝜎𝐹 }. Here, 𝐶𝑇 and 𝐶𝐹 are the sets of action propositions that are

True/False and appear with binding 𝜌 in label𝜎 of a Büchi transition.

5.2 Agent Behavior for an LTL𝜓 Specification
To synthesize behavior for an agent, we find an accepting trace in its

product automaton G𝑗 = 𝐴 𝑗 ×B, where𝐴 𝑗 = (𝑆, 𝑠0, 𝐴𝑃 𝑗 , 𝛾, 𝐿,𝑊) is
the agent model, and B = (𝑍, 𝑧0, ΣB , 𝛿B , 𝐹) is the Büchi automaton.

Since the set of propositions of 𝐴 𝑗 may not be equivalent to

the set of propositions of B, we borrow from the definition of the

product automaton in [6]. We first define the following function:

Definition 3 (Binding Assignment Function). Let 𝑞 = (𝑠, 𝑧), 𝑞′ =
(𝑠′, 𝑧′), 𝜎 = (𝜎𝑇 , 𝜎𝐹) ∈ ΣB . Thenℜ(𝑞, 𝜎, 𝑞′) = {𝑟 ∈ 2

𝐴𝑃𝜓 \ ∅ | ∀𝜌 ∈
𝑟, (𝐶𝑇 ,𝐶𝐹) = ℭ(𝜎, 𝜌),⋃𝜌∈𝑟 𝐶𝑇 ⊆ 𝐿(𝑠′) and ⋃

𝜌∈𝑟 𝐶𝐹 ∩ 𝐿(𝑠′) = ∅}.
Intuitively,ℜ outputs all possible combinations of binding propo-

sitions that the agent can be assigned for a transition (𝑞, 𝜎, 𝑞′). An
agent can be assigned 𝜌 if and only if the agent’s next state 𝑠′ is
labeled with all the action and motion propositions 𝜋 ∈ 𝐴𝑃𝜑 that

appear in 𝜎𝑇 as 𝜋𝜌 , and all the propositions 𝜋 ∈ 𝐴𝑃𝜑 that appear in

𝜎𝐹 as 𝜋𝜌 are not part of the state label (i.e. the agent is not perform-

ing that action). If a proposition 𝜋𝜌 is in 𝜎𝐹 and 𝜋 is not in𝐴𝑃 𝑗 (e.g.

𝑠𝑐𝑎𝑛1 ∈ 𝜎𝐹 and the agent does not have 𝜆𝑠𝑐𝑎𝑛), the agent may be

assigned 𝜌 . Note that 𝑟 may include any binding propositions that

are not in 𝜎 , since there are no actions required by those bindings

in that transition. For example, if 𝜎 = ({𝑠𝑐𝑎𝑛1}, {𝑝𝑖𝑐𝑘𝑢𝑝2}) and
𝐴𝑃𝜓 = {1, 2, 3}, then {3} will be in the set ℜ(𝑞, 𝜎, 𝑞′) for all 𝑞, 𝑞′.

Given 𝐴 𝑗 and B, we define the product automaton G𝑗 = 𝐴 𝑗 × B:

Definition 4 (Product Automaton). The product automaton G𝑗 =

(𝑄,𝑞0, 𝐴𝑃 𝑗 , 𝛿G, 𝐿G,𝑊G, 𝐹G), where
• 𝑄 = 𝑆 × 𝑍 is a finite set of states

• 𝑞0 = (𝑠0, 𝑧0) ∈ 𝑄 is the initial state

• 𝛿G ⊆ 𝑄 × 𝑄 is the transition relation, where for 𝑞 = (𝑠, 𝑧) and
𝑞′ = (𝑠′, 𝑧′), (𝑞, 𝑞′) ∈ 𝛿G if and only if (𝑠, 𝑠′) ∈ 𝛾 and ∃𝜎 ∈ ΣB
such that (𝑧, 𝜎, 𝑧′) ∈ 𝛿B and ℜ(𝑞, 𝜎, 𝑞′) ≠ ∅

• 𝐿G is the labeling function s.t. for 𝑞 = (𝑠, 𝑧), 𝐿G (𝑞)=𝐿(𝑠) ⊆𝐴𝑃 𝑗
• 𝑊G : 𝛿G → R≥0 is the cost function s.t. for (𝑞, 𝑞′) ∈ 𝛿G , 𝑞 =

(𝑠, 𝑧), 𝑞′ = (𝑠′, 𝑧′),𝑊G ((𝑞, 𝑞′)) =𝑊 ((𝑠, 𝑠′))
• 𝐹G = 𝑆 × 𝐹 is the set of accepting states

Example. Fig. 4 depicts a small portion of G𝑔𝑟𝑒𝑒𝑛 ; for the self-
transition in B that is labeled with 𝜎 = (∅, {𝑝𝑖𝑐𝑘𝑢𝑝1, 𝑟𝑒𝑔𝑖𝑜𝑛2

𝐴
})

(labeled as 𝑒1 in Fig. 3), and for states in 𝐴𝑔𝑟𝑒𝑒𝑛 where 𝐿(𝑠1) =

{𝑟𝑒𝑔𝑖𝑜𝑛𝐵}, 𝐿(𝑠2) = {𝑟𝑒𝑔𝑖𝑜𝑛𝐴}, 𝐿(𝑠3) = {𝑟𝑒𝑔𝑖𝑜𝑛𝐴, 𝑝𝑖𝑐𝑘𝑢𝑝}, then the

possible binding assignments are ℜ((𝑠1, 1), 𝜎, (𝑠1, 2)) = 2
{1,2,3} \ ∅

and ℜ((𝑠1, 1), 𝜎, (𝑠2, 2)) = {{1}, {3}, {1, 3}}. When the agent is in

𝑠3, it cannot be assigned either bindings 1 or 2, but since no propo-

sitions appear with binding 3 in 𝜎 , ℜ((𝑠1, 1), 𝜎, (𝑠3, 2)) = {{3}}.

5.3 Finding Possible Individual Agent Bindings
To construct a team, we first reason about each agent and the sets

of bindings it can perform. For example, for a formula 𝑟𝑒𝑔𝑖𝑜𝑛1
𝐴
∧

𝑟𝑒𝑔𝑖𝑜𝑛2
𝐵
, an agent may be assigned 𝑟 𝑗 = {1} or 𝑟 𝑗 = {2} but not

𝑟 𝑗 = {1, 2}, since it cannot be in two regions at the same time.

To find the set of possible binding assignments 𝑅 𝑗 ⊆ 2
𝐴𝑃𝜓

, we

search for an accepting trace in G𝑗 for every binding assignment

𝑟 𝑗 ∈ 2
𝐴𝑃𝜓

. We start from the full set of bindings 𝑟 𝑗 = 𝐴𝑃𝜓 . Given an

assignment 𝑟 𝑗 to check, we find an accepting trace in G𝑗 such that

for all transitions (𝑞, 𝑞′) in the trace, 𝑟 𝑗 ⊆ ℜ(𝑞, 𝜎, 𝑞′). This ensures
that the agent can satisfy its binding assignment for the entirety of

its execution (i.e. 𝑟 𝑗 does not change). Since every subset of a binding

assignment 𝑟 𝑗 is itself a possible binding assignment, if the agent

can be assigned all𝑚 = |𝐴𝑃𝜓 | bindings, then we know it can also

be assigned every possible subset of𝑚. If not, we check the

(𝑚
𝑚−1

)
combinations, and continue iterating until we have determined the

agent’s ability to perform every combination of the𝑚 bindings.

Once an agent determines its possible binding assignments 𝑅 𝑗 ,

it creates the Büchi automaton B𝑗 by removing any transition in B
that cannot be traversed by any assignment in 𝑅 𝑗 . In our example

(Fig. 3), each agent can be assigned at least one binding over every

transition in B. Thus, ∀𝑗 ∈ {𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑜𝑟𝑎𝑛𝑔𝑒, 𝑝𝑖𝑛𝑘},B𝑗 = B.

5.4 Agent Team Assignment
A team of agents can perform the task if 1) all the bindings are

assigned, with each agent maintaining the same binding assignment

for the entirety of the task, and 2) the agents satisfy synchronization

requirements. For a viable team, the agents’ control follows the

same path in the Büchi automaton B to an accepting cycle. We

perform DFS over B to find an accepting trace (Alg. 1), where each

tuple in 𝑠𝑡𝑎𝑐𝑘 contains the current edge (𝑧, 𝜎, 𝑧′), the current team
of agents 𝑅

𝐴̂
, and the path traversed so far 𝛽

𝐴̂
.

We initialize the team with all agents 𝐴 𝑗 and all possible bind-

ing assignments 𝑅 𝑗 , and each path 𝛽
𝐴̂
starts from state 𝑧0 of B.

When checking a transition (𝑧, 𝜎, 𝑧′), we remove any agent 𝑗 if

∀((𝑠, 𝑧), (𝑠′, 𝑧′)) ∈ 𝛿G𝑗
, there are no possible binding assignments

it can satisfy. This is done by checking each agent’s pruned Büchi

automatonB𝑗 in update_team (line 8). We want the agent’s behav-

ior to satisfy not only the current transition, but also the entire path

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

548

Figure 3: B for 𝜑𝜓 (Eq. 4). The purple transitions illustrate a possible accepting trace.

with a consistent binding assignment. Thus, we update possible

bindings (update_bindings, lines 9-14).

To guarantee the overall team behavior, we need to ensure agents

are able to “wait in a state" before they synchronize, as they may

reach states at different times. This means that each state in the

trace must have a corresponding self-transition. Thus, for every

(𝑧, 𝜎, 𝑧′) that we add to the path in which 𝑧 ≠ 𝑧′, the next edge
to traverse must be a self-transition from 𝑧′ to itself; the same

holds vice-versa. In line 21, we check if the current transition is

self-looping or not, and add subsequent transitions into the stack

accordingly. If there is no self-transition on 𝑧′ (i.e. (𝑧′, 𝜎, 𝑧′) ∉ 𝛿B),
then we do not consider 𝑧′ to be valid and do not add it to the path.

Once we find a valid path to an accepting cycle, we parse it into

𝛽 , the path without self-transitions, and 𝛿𝑠𝑒𝑙 𝑓 , which contains the

corresponding self-transition for each state in the path. Fig. 3 shows

Figure 4: A small portion of G𝑔𝑟𝑒𝑒𝑛

a valid path in B for the example in Sec. 4 and the corresponding

team assignment 𝐴 = {𝐴𝑔𝑟𝑒𝑒𝑛, 𝐴𝑏𝑙𝑢𝑒 , 𝐴𝑜𝑟𝑎𝑛𝑔𝑒 , 𝐴𝑝𝑖𝑛𝑘 } and bindings

𝑟𝑔𝑟𝑒𝑒𝑛 = {1}, 𝑟𝑏𝑙𝑢𝑒 = {3}, 𝑟𝑜𝑟𝑎𝑛𝑔𝑒 = {1}, 𝑟𝑝𝑖𝑛𝑘 = {2, 3}. Note that
we find a valid path rather than a globally optimal one. However,

the algorithm is complete; it will find a feasible path if one exists.

5.5 Synthesis and Execution of Control and
Synchronization Policies

Given an accepting trace 𝛽 through B and the corresponding self-

transitions 𝛿𝑠𝑒𝑙 𝑓 that are valid for all agents in 𝑅
𝐴̂
, we synthesize

control and synchronization for each agent such that the overall

team execution satisfies 𝛽 (Alg. 2). For each transition (𝑧, 𝜎, 𝑧′) in
𝛽 , we find 𝑅, which contains the binding assignments of all agents

that require synchronization at state 𝑧′. Agent 𝑗 participates in the

synchronization step if 𝑟 𝑗 contains a binding 𝜌 that is required by

𝜎 and is not the only agent assigned bindings from 𝜎 (line 3).

Subsequently, agent 𝑗 finds an accepting trace in G𝑗 that reaches

𝑧′ with minimum cost, following self-transitions stored in 𝛿𝑠𝑒𝑙 𝑓
if necessary. As it executes this behavior, it communicates with

other agents the tuple 𝑝 , which contains 1) its ID, 2) the state 𝑧′ it
is currently going to, and 3) if it is ready for synchronization (line

8). If no synchronization is required (line 3), the agent can simply

execute the behavior. Otherwise, to guarantee that the behavior

does not violate the requirements of the task, the agent executes

the synthesized behavior up until the penultimate state, 𝑧𝑤𝑎𝑖𝑡 .

When the agent reaches 𝑧𝑤𝑎𝑖𝑡 , it signals to other agents that

it is ready for synchronization. Since all agents know the overall

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

549

Algorithm 1: Find Accepting Trace for Agent Team

Input :𝐴 = {𝐴1, 𝐴2, ..., 𝐴𝑛}, 𝑅 = {𝑅1, 𝑅2, ..., 𝑅𝑛}, B,

{B1,B2 ...,B𝑛}
Output :𝛽 , 𝛿𝑠𝑒𝑙 𝑓 , 𝐴 ⊆ 𝐴, 𝑅

𝐴̂

1 𝑠𝑡𝑎𝑐𝑘 = ∅, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = ∅
2 for 𝑒 ∈ {(𝑧, 𝜎, 𝑧′) ∈ 𝛿B | 𝑧 = 𝑧0} do
3 𝑠𝑡𝑎𝑐𝑘 = 𝑠𝑡𝑎𝑐𝑘 ∪ {(𝑒, 𝑅, [𝑒])}
4 while 𝑠𝑡𝑎𝑐𝑘 ≠ ∅ do
5 ((𝑧, 𝜎, 𝑧′), 𝑅

𝐴̂
, 𝛽

𝐴̂
) = 𝑠𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ()

6 if (𝑧, 𝜎, 𝑧′) ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
7 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ (𝑧, 𝜎, 𝑧′)
8 𝑅

𝐴̂
= update_team((𝑧, 𝜎, 𝑧′), {B1, ...,B𝑛})

9 for 𝑅 𝑗 ∈ 𝑅𝐴̂ do
10 𝑅′

𝑗
= update_bindings(𝑅 𝑗 , (𝑧, 𝜎, 𝑧′))

11 if 𝑅′
𝑗
= ∅ then

12 𝑅
𝐴̂
= 𝑅

𝐴̂
\ 𝑅 𝑗

13 else
14 𝑅

𝐴̂
= (𝑅

𝐴̂
\ 𝑅 𝑗) ∪ 𝑅′𝑗

15 if
⋃

𝑗 (𝑅 𝑗 ∈ 𝑅𝐴̂) = 𝐴𝑃𝜓 then
16 if 𝑧′ ∈ 𝐹 then
17 𝛽, 𝛿𝑠𝑒𝑙 𝑓 = parse_path(𝛽

𝐴̂
)

18 return 𝛽, 𝛿𝑠𝑒𝑙 𝑓 , 𝑅𝐴̂
19 𝐸 = {(𝑧′, 𝜎′, 𝑧′′) ∈ 𝛿B}
20 for (𝑧′, 𝜎′, 𝑧′′) ∈ 𝐸 do
21 if (𝑧 = 𝑧′ and 𝑧′ ≠ 𝑧′′) or

(𝑧 ≠ 𝑧′ and 𝑧′ = 𝑧′′) then
22 𝑠𝑡𝑎𝑐𝑘 = 𝑠𝑡𝑎𝑐𝑘 ∪

{
(
(𝑧′, 𝜎′, 𝑧′′), 𝑅

𝐴̂
, [𝛽

𝐴̂
(𝑧′, 𝜎′, 𝑧′′)]

)
}

teaming assignment, the agent continues to wait in state 𝑧𝑤𝑎𝑖𝑡 un-

til it receives a signal that all other agents in 𝑅 are ready (line 13).

These agents then move to the next state in the behavior simulta-

neously. Agent 𝑗 continues synthesizing behavior through 𝛽 until

synchronization is necessary again, and this process is repeated.

6 RESULTS AND DISCUSSION
Fig. 5 shows the final step of the synchronized behavior of the

agents for the example in Section 4, where 𝐴 = {𝐴𝑔𝑟𝑒𝑒𝑛 , 𝐴𝑏𝑙𝑢𝑒 ,
𝐴𝑜𝑟𝑎𝑛𝑔𝑒 , 𝐴𝑝𝑖𝑛𝑘 } with binding assignments 𝑟𝑔𝑟𝑒𝑒𝑛 = {1}, 𝑟𝑏𝑙𝑢𝑒 =

{3}, 𝑟𝑜𝑟𝑎𝑛𝑔𝑒 = {1}, 𝑟𝑝𝑖𝑛𝑘 = {2, 3}. A simulation of the full behavior

is shown in the accompanying video
1
.

Optimizing teams:Our synthesis algorithm can be seen as a great-

est fixpoint computation, where we start with the full set of agents

and remove those that cannot contribute to the task. As a result, the

team may have redundancies, i.e. agents can be removed while still

ensuring the overall task will be completed; this may be beneficial

for robustness. Furthermore, we can choose a sub-team to optimize

different metrics, as long as the agent bindings assignments still

cover all the required bindings. For example, minimizing the num-

ber of bindings per agent could result in𝐴 = {𝐴𝑔𝑟𝑒𝑒𝑛, 𝐴𝑏𝑙𝑢𝑒 , 𝐴𝑝𝑖𝑛𝑘 },

1
https://youtu.be/Qx14xGza3Bg

Algorithm 2: Synthesize an Agent’s Behavior

Input :G𝑗 , 𝑟 𝑗 , 𝑅𝐴̂ , 𝛽 , 𝛿𝑠𝑒𝑙 𝑓

1 for (𝑧, 𝜎, 𝑧′) ∈ 𝛽 do
2 𝑏 𝑗 = find_behavior(G𝑗 , 𝑟 𝑗 , (𝑧, 𝜎, 𝑧′), 𝛿𝑠𝑒𝑙 𝑓)
3 𝑅 = {𝑟𝑘 ∈ 𝑅

𝐴̂
| 𝑟𝑘 ∩𝔅(𝜎) ≠ ∅} if 𝑟 𝑗 ∉ 𝑅 or 𝑅 = {𝑟 𝑗 }

then
4 𝑝 = ()
5 execute(𝑏 𝑗 , 𝑝)
6 else
7 𝑝 = (𝑗, 𝑧′, 0), ℓ = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏 𝑗)
8 execute(𝑏 𝑗 [1 : ℓ − 1], 𝑝)
9 𝑧𝑤𝑎𝑖𝑡 = 𝑏 𝑗 [ℓ − 1], 𝑃 = { 𝑗}

10 while
⋃

𝑖∈𝑃 (𝑟𝑖 ∈ 𝑅) ≠ 𝔅(𝜎) do
11 𝑝 = (𝑗, 𝑧′, 1)
12 execute(𝑧𝑤𝑎𝑖𝑡 , 𝑝)
13 𝑃 = 𝑗 ∪ {𝑘 | (𝑘, 𝑧′, 1) ∈ receive()}
14 execute(𝑏 𝑗 [ℓ])

𝑟𝑔𝑟𝑒𝑒𝑛 = {1}, 𝑟𝑏𝑙𝑢𝑒 = {3}, 𝑟𝑝𝑖𝑛𝑘 = {2}; minimizing the number of

agents results in 𝐴 = {𝐴𝑔𝑟𝑒𝑒𝑛, 𝐴𝑝𝑖𝑛𝑘 }, 𝑟𝑔𝑟𝑒𝑒𝑛 = {1}, 𝑟𝑝𝑖𝑛𝑘 = {2, 3}.
To illustrate other possible metrics, we consider a set of 20 agents

and create a team for the specification in Eq. 4. Their final binding

assignments and costs are shown in Table 1. Minimizing cost results

in a team𝐴 = {𝐴7, 𝐴11}. Minimizing cost while requiring each bind-

ing to be assigned to two agents results in 𝐴 = {𝐴4, 𝐴7, 𝐴11, 𝐴16}.

Figure 5: The final step in the synchronized behavior of the
agent team with their corresponding actions.

Computational complexity: The control synthesis algorithm

(Alg. 2) is agnostic to the number of agents, since each agent deter-

mines its own possible binding assignments and behavior. For the

team assignment (Alg. 1), we store the current team and possible

binding assignments as we build an accepting trace. Thus, it has

both a space and time complexity of 𝑂 (|𝐸 | ∗ 2𝑚 ∗ 𝑛), where |𝐸 | is
the number of edges in B,𝑚 is the number of bindings, and 𝑛 is

the number of agents.

Fig. 6a shows the computation time of the synthesis framework

(Sec. 5.2 – 5.4) for simulated agent teams in which we vary the

number of agents from 3 to 20, running 30 simulations for each

set of agents and randomizing their capabilities. The task for each

simulation is the example in Eq. 4. We also ran simulations in which

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

550

https://youtu.be/Qx14xGza3Bg

Agent 𝑟 𝑗 𝑐𝑜𝑠𝑡 Agent 𝑟 𝑗 𝑐𝑜𝑠𝑡 Agent 𝑟 𝑗 𝑐𝑜𝑠𝑡 Agent 𝑟 𝑗 𝑐𝑜𝑠𝑡 Agent 𝑟 𝑗 𝑐𝑜𝑠𝑡

1 1 1.2 5 3 2.75 9 3 2.6 13 3 2.0 17 2,3 3.275

2 3 1.0 6 1 0.95 10 1 2.8 14 1 1.2 18 3 2.55

3 1 1.2 7 1 0.65 11 2,3 0.9 15 3 1.1 19 1 1.9

4 2,3 1.3 8 1 1.0 12 2,3 1.825 16 1 0.775 20 2,3 2.35

Table 1: Example teaming assignment with 20 robots

(a)

(b)

Figure 6: Computation time as the number of agents (a) and
bindings (b) increases. The error bars show min/max values.

we increase the number of bindings from 3 to 10 and randomized

the capabilities of 4 agents (Fig. 6b). The variance in computation

time is a result of the randomized agent capabilities, which affects

the computation time of possible binding assignments (Sec. 5.3).

All simulations ran on a 2.5 GHz quad-core Intel Core i7 CPU.

Task expressivity:We compare LTL
𝜓
with other temporal logic ap-

proaches to encode collaborative heterogeneous multi-agent tasks.

Standard LTL: One approach is to use LTL to express the task by

enumerating all possible assignments in the specification. In our

example, Eq. 4a would be rewritten as:

𝜑
𝜓

1
=(^((𝑟𝑒𝑔𝑖𝑜𝑛𝑔

𝐵
∧𝑚𝑜𝑖𝑠𝑔 ∧𝑈𝑉𝑔) ∧ (𝑟𝑒𝑔𝑖𝑜𝑛𝑏𝐴 ∧ 𝑝𝑖𝑐𝑘𝑢𝑝𝑏)))

∨(^((𝑟𝑒𝑔𝑖𝑜𝑛𝑔
𝐵
∧𝑚𝑜𝑖𝑠𝑔 ∧𝑈𝑉𝑔) ∧ (𝑟𝑒𝑔𝑖𝑜𝑛𝑜𝐴 ∧ 𝑝𝑖𝑐𝑘𝑢𝑝𝑜))) ∨ ...

where each agent has its own unique set of 𝐴𝑃 , denoted here by

each proposition’s superscript. As a result, the number of proposi-

tions increases exponentially with the number of agents. The task

complexity also increases, as the specification must include all pos-

sible agent assignments. Another drawback of using LTL for such

tasks is that the specification is not generalizable to any number of

agents; it must be rewritten when the set of agents change.

LTL𝜒 : In [15], tasks are written in LTL
𝜒
, where proposition 𝜋

𝑘,𝜒

𝑖, 𝑗

is true if at least 𝑖 agents of type 𝑗 are in region 𝑘 with binding

𝜒 . We can express 𝜑
𝜓

1
(Eq. 4a) of our example as ^(𝜋𝑟𝑒𝑔𝑖𝑜𝑛𝐵,2

1,𝑚𝑜𝑖𝑠
∧

𝜋
𝑟𝑒𝑔𝑖𝑜𝑛𝐵,2

1,𝑈𝑉
∧𝜋𝑟𝑒𝑔𝑖𝑜𝑛𝐵,3

1,𝑚𝑜𝑖𝑠
∧𝜋𝑟𝑒𝑔𝑖𝑜𝑛𝐵,3

1,𝑈𝑉
∧𝜋𝑟𝑒𝑔𝑖𝑜𝑛𝐴,1

1,𝑎𝑟𝑚
). The truth value of

𝜋
𝑘,𝜒

𝑖, 𝑗
is not dependent on any particular action an agent might take.

LTL
𝜒
can be extended to action propositions, but since an agent can

only be categorized as one type, each type of agent must have non-

overlapping capabilities (here, we have written the LTL
𝜒
formula

such that each type of agent only has one capability). In addition,

𝜑
𝜓

2
(Eq. 4b) cannot be written in LTL

𝜒
because the negation defined

in our grammar cannot be expressed in LTL
𝜒
. On the other hand,

the negative proposition ¬𝜋𝑘,𝜒
𝑖, 𝑗

from [15] is equivalent to “less than

𝑖 agents of type 𝑗 are in region 𝑘", which our logic cannot encode.

Capability Temporal Logic (CaTL): Tasks in CaTL [13] are con-

structed over tasks 𝑇 = (𝑑, 𝜋, 𝑐𝑝𝑇), where 𝑑 is a time duration, 𝜋 is

a region, (𝑐𝑖 ,𝑚𝑖) ∈ 𝑐𝑝𝑇 denotes that at least𝑚𝑖 agents with capabil-

ity 𝑐𝑖 are required. Similar to our grammar, CaTL allows agents to

have multiple capabilities, but each task must specify the number of

agents required. Since it is an extension of STL, tasks provide timing

requirements, which our logic cannot encode. However, it does not

include the concept of binding assignments; in our example 𝜑
𝜓

1
(Eq.

4a), CaTL cannot express that the same agent that took a UV mea-

surement must also take a thermal image. Ignoring binding assign-

ments and adding timing constraints,𝜑
𝜓

1
(Eq. 4a) can be rewritten in

CaTL as ^[0,10) (𝑇 (0.1, 𝑟𝑒𝑔𝑖𝑜𝑛𝐵, {(𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒, 2), (𝑈𝑉, 2)})∧ 𝑇 (0.5,
𝑟𝑒𝑔𝑖𝑜𝑛𝐴, {(𝑎𝑟𝑚, 1)}). Each capability in CaTL is represented as a

sensor and therefore cannot include more complex capabilities, e.g.

a robot arm that can perform several different actions. In addition,

because CaTL requires the formula to be in positive normal form

(i.e. no negation), we cannot express 𝜑
𝜓

2
(Eq. 4b) in this grammar.

7 CONCLUSION
We define a new task grammar for heterogeneous teams of agents

and develop a framework to automatically assign the task to a

(sub)team of agents and synthesize correct-by-construction control

policies to satisfy the task. We include synchronization constraints

to guarantee that the agents perform the necessary collaborations.

In the future, we plan to demonstrate the approach on physical

systems where we must ensure that the continuous execution satis-

fies all safety constraints. We will also explore different notions of

optimality when finding a teaming plan, and increase expressivity

of the grammar to allow for reactive tasks where agents modify

their behavior at runtime in response to environment events.

ACKNOWLEDGMENTS
This work is supported by the the National Defense Science &

Engineering Graduate (NDSEG) Fellowship Program.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

551

REFERENCES
[1] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. The

MIT Press.

[2] Ji Chen, Ruojia Sun, and Hadas Kress-Gazit. 2021. Distributed Control of Robotic

Swarms from Reactive High-Level Specifications. In 2021 IEEE 17th International
Conference on Automation Science and Engineering (CASE). 1247–1254. https:

//doi.org/10.1109/CASE49439.2021.9551578

[3] Yushan Chen, Xu Chu Ding, and Calin Belta. 2011. Synthesis of distributed

control and communication schemes from global LTL specifications. In 2011
50th IEEE Conference on Decision and Control and European Control Conference.
2718–2723. https://doi.org/10.1109/CDC.2011.6160740

[4] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud

Michaud, Etienne Renault, and Laurent Xu. 2016. Spot 2.0 — a framework for LTL

and𝜔-automata manipulation. In Proceedings of the 14th International Symposium
on Automated Technology for Verification and Analysis (ATVA’16) (Lecture Notes
in Computer Science, Vol. 9938). Springer, 122–129. https://doi.org/10.1007/978-3-

319-46520-3_8

[5] E. Allen Emerson. 1990. Temporal and Modal Logic. In Formal Models and
Semantics, JAN Van Leeuwen (Ed.). Elsevier, Amsterdam, 995–1072. https://doi.

org/10.1016/B978-0-444-88074-1.50021-4

[6] Amy Fang and Hadas Kress-Gazit. 2022. Automated Task Updates of Temporal

Logic Specifications for Heterogeneous Robots. In 2022 International Conference on
Robotics and Automation (ICRA). 4363–4369. https://doi.org/10.1109/ICRA46639.

2022.9812045

[7] Fatma Faruq, David Parker, Bruno Laccrda, and Nick Hawes. 2018. Simultaneous

Task Allocation and Planning Under Uncertainty. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 3559–3564. https://doi.org/

10.1109/IROS.2018.8594404

[8] Brian P. Gerkey and Maja J. Matarić. 2004. A Formal Analysis and Taxonomy

of Task Allocation in Multi-Robot Systems. The International Journal of Robot-
ics Research 23, 9 (2004), 939–954. https://doi.org/10.1177/0278364904045564

arXiv:https://doi.org/10.1177/0278364904045564

[9] Xiao Jia and Max Q.-H. Meng. 2013. A survey and analysis of task allocation

algorithms in multi-robot systems. In 2013 IEEE International Conference on
Robotics and Biomimetics (ROBIO). 2280–2285. https://doi.org/10.1109/ROBIO.

2013.6739809

[10] Yiannis Kantaros and Michael M Zavlanos. 2020. STyLuS*: A Temporal Logic

Optimal Control Synthesis Algorithm for Large-Scale Multi-Robot Systems. The
International Journal of Robotics Research 39, 7 (2020), 812–836. https://doi.org/

10.1177/0278364920913922 arXiv:https://doi.org/10.1177/0278364920913922

[11] Marius Kloetzer and Calin Belta. 2010. Automatic Deployment of Distributed

Teams of Robots From Temporal Logic Motion Specifications. IEEE Transactions

on Robotics 26, 1 (2010), 48–61. https://doi.org/10.1109/TRO.2009.2035776

[12] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. 2013. A comprehen-

sive taxonomy for multi-robot task allocation. The International Journal of Robot-
ics Research 32, 12 (2013), 1495–1512. https://doi.org/10.1177/0278364913496484

arXiv:https://doi.org/10.1177/0278364913496484

[13] Kevin Leahy, Zachary Serlin, Cristian-Ioan Vasile, Andrew Schoer, Austin M.

Jones, Roberto Tron, and Calin Belta. 2022. Scalable and Robust Algorithms for

Task-Based Coordination From High-Level Specifications (ScRATCHeS). IEEE
Transactions on Robotics 38, 4 (2022), 2516–2535. https://doi.org/10.1109/TRO.

2021.3130794

[14] Zhiyong Li, Bo Xu, Lei Yang, Jun Chen, and Kenli Li. 2009. Quantum Evolu-

tionary Algorithm for Multi-Robot Coalition Formation. In Proceedings of the
First ACM/SIGEVO Summit on Genetic and Evolutionary Computation (Shanghai,

China) (GEC ’09). Association for Computing Machinery, New York, NY, USA,

295–302. https://doi.org/10.1145/1543834.1543874

[15] Xusheng Luo and Michael M. Zavlanos. 2022. Temporal Logic Task Allocation in

Heterogeneous Multirobot Systems. IEEE Transactions on Robotics (2022), 1–20.
https://doi.org/10.1109/TRO.2022.3181948

[16] Yunus Emre Sahin, Petter Nilsson, and Necmiye Ozay. 2017. Synchronous and

asynchronous multi-agent coordination with cLTL+ constraints. In 2017 IEEE
56th Annual Conference on Decision and Control (CDC). 335–342. https://doi.org/

10.1109/CDC.2017.8263687

[17] Philipp Schillinger, Mathias Bürger, and Dimos V. Dimarogonas. 2018. Si-

multaneous task allocation and planning for temporal logic goals in het-

erogeneous multi-robot systems. The International Journal of Robotics Re-
search 37, 7 (2018), 818–838. https://doi.org/10.1177/0278364918774135

arXiv:https://doi.org/10.1177/0278364918774135

[18] Thomas Schmickl, Christoph Möslinger, and Karl Crailsheim. 2006. Collective

Perception in a Robot Swarm. 144–157. https://doi.org/10.1007/978-3-540-71541-

2_10

[19] Jana Tumova and Dimos V. Dimarogonas. 2016. Multi-agent planning under

local LTL specifications and event-based synchronization. Automatica 70 (2016),
239–248. https://doi.org/10.1016/j.automatica.2016.04.006

[20] Alphan Ulusoy, Stephen L. Smith, Xu Chu Ding, and Calin A. Belta. 2012. Robust

multi-robot optimal path planning with temporal logic constraints. 2012 IEEE
International Conference on Robotics and Automation (2012), 4693–4698.

[21] Hanlin Wang and Michael Rubenstein. 2020. Shape Formation in Homogeneous

Swarms Using Local Task Swapping. IEEE Transactions on Robotics 36, 3 (2020),
597–612. https://doi.org/10.1109/TRO.2020.2967656

[22] Bo Xu, Zhaofeng Yang, Yu Ge, and Zhiping Peng. 2015. Coalition Formation in

Multi-agent Systems Based on Improved Particle Swarm Optimization Algorithm.

International Journal of Hybrid Information Technology 8 (03 2015), 1–8. https:

//doi.org/10.14257/ijhit.2015.8.3.01

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

552

https://doi.org/10.1109/CASE49439.2021.9551578
https://doi.org/10.1109/CASE49439.2021.9551578
https://doi.org/10.1109/CDC.2011.6160740
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1109/ICRA46639.2022.9812045
https://doi.org/10.1109/ICRA46639.2022.9812045
https://doi.org/10.1109/IROS.2018.8594404
https://doi.org/10.1109/IROS.2018.8594404
https://doi.org/10.1177/0278364904045564
https://arxiv.org/abs/https://doi.org/10.1177/0278364904045564
https://doi.org/10.1109/ROBIO.2013.6739809
https://doi.org/10.1109/ROBIO.2013.6739809
https://doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
https://arxiv.org/abs/https://doi.org/10.1177/0278364920913922
https://doi.org/10.1109/TRO.2009.2035776
https://doi.org/10.1177/0278364913496484
https://arxiv.org/abs/https://doi.org/10.1177/0278364913496484
https://doi.org/10.1109/TRO.2021.3130794
https://doi.org/10.1109/TRO.2021.3130794
https://doi.org/10.1145/1543834.1543874
https://doi.org/10.1109/TRO.2022.3181948
https://doi.org/10.1109/CDC.2017.8263687
https://doi.org/10.1109/CDC.2017.8263687
https://doi.org/10.1177/0278364918774135
https://arxiv.org/abs/https://doi.org/10.1177/0278364918774135
https://doi.org/10.1007/978-3-540-71541-2_10
https://doi.org/10.1007/978-3-540-71541-2_10
https://doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1109/TRO.2020.2967656
https://doi.org/10.14257/ijhit.2015.8.3.01
https://doi.org/10.14257/ijhit.2015.8.3.01

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Linear Temporal Logic
	2.2 Büchi Automata
	2.3 Agent Model

	3 Task Grammar - LTL
	4 Control Synthesis for LTL
	5 Approach
	5.1 Büchi Automaton for an LTL Formula
	5.2 Agent Behavior for an LTL Specification
	5.3 Finding Possible Individual Agent Bindings
	5.4 Agent Team Assignment
	5.5 Synthesis and Execution of Control and Synchronization Policies

	6 Results and Discussion
	7 Conclusion
	Acknowledgments
	References

